首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cultured microvascular endothelial cells isolated from rat epididymal fat pads produce glycosaminoglycans that accelerate thrombin-antithrombin complex formation. The heparinlike nature of these macromolecules was established by complete destruction of their anticoagulant activity employing purified Flavobacterium heparinase. Only 15% of the biologic activity of these complex carbohydrates was expressed when the heparin binding domain on the protease inhibitor was chemically modified at the Trp 49 residue. The anticoagulantly active species contains disaccharides which constitute the unique antithrombin binding region of the mucopolysaccharide. Removal of the biologically active heparinlike components from endothelial cells with 0.05% trypsin suggests that these molecular species are present on the cell surface.  相似文献   

2.
Blood coagulation factor IXa has been presumed to be regulated by the serpin, antithrombin, and its polysaccharide activator, heparin, but it has not been clear whether factor IXa is inhibited by the serpin with a specificity comparable to that for thrombin and factor Xa or what determinants govern this specificity. Here we show that antithrombin is essentially unreactive with factor IXa in the absence of heparin (k(ass) approximately 10 M(-1) s(-1)) but undergoes a remarkable approximately 1 million-fold enhancement in reactivity with this proteinase to the physiologically relevant range (k(ass) approximately 10(7) M(-1) s(-1)) when activated by heparin in the presence of physiologic levels of calcium. This rate enhancement is shown to derive from three sources: (i) allosteric activation of antithrombin by a sequence-specific heparin pentasaccharide (300-500-fold), (ii) allosteric activation of factor IXa by calcium ions (4-8-fold), and (iii) heparin bridging of antithrombin and factor IXa augmented by calcium ions (130-1000-fold depending on heparin chain length). Mutagenesis of P6-P3' reactive loop residues of antithrombin further reveals that the reactivity of the unactivated inhibitor is principally determined by the P1 Arg residue, whereas exosites outside the loop which are present on the activated serpin and on heparin are responsible for heparin enhancement of this reactivity. These results together with our previous findings demonstrate that exosites are responsible for the unusual specificity of antithrombin and heparin for three clotting proteases with quite distinct substrate specificities.  相似文献   

3.
We have previously shown that exosites in antithrombin outside the P6-P3' reactive loop region become available upon heparin activation to promote rapid inhibition of the target proteases, factor Xa and factor IXa. To identify these exosites, we prepared six antithrombin-alpha 1-proteinase inhibitor chimeras in which antithrombin residues 224-286 and 310-322 that circumscribe a region surrounding the reactive loop on the inhibitor surface were replaced in 10-16-residue segments with the homologous segments of alpha1-proteinase inhibitor. All chimeras bound heparin with a high affinity similar to wild-type, underwent heparin-induced fluorescence changes indicative of normal conformational activation, and were able to form SDS-stable complexes with thrombin, factor Xa, and factor IXa and inhibit these proteases with stoichiometries minimally altered from those of wild-type antithrombin. With only one exception, conformational activation of the chimeras with a heparin pentasaccharide resulted in normal approximately 100-300-fold enhancements in reactivity with factor Xa and factor IXa. The exception was the chimera in which residues 246-258 were replaced, corresponding to strand 3 of beta-sheet C, which showed little or no enhancement of its reactivity with these proteases following pentasaccharide activation. By contrast, all chimeras including the strand 3C chimera showed essentially wild-type reactivities with thrombin after pentasaccharide activation as well as normal full-length heparin enhancements in reactivity with all proteases due to heparin bridging. These findings suggest that antithrombin exosites responsible for enhancing the rates of factor Xa and factor IXa inhibition in the conformationally activated inhibitor lie in strand 3 of beta-sheet C of the serpin.  相似文献   

4.
We previously showed that conformational activation of the anticoagulant serpin, antithrombin, by heparin generates new exosites in strand 3 of beta-sheet C, which promote the reaction of the inhibitor with the target proteases, factor Xa and factor IXa. To determine which residues comprise the exosites, we mutated strand 3C residues that are conserved in all vertebrate antithrombins. Combined mutations of the three conserved surface-accessible residues, Tyr253,Glu255, and Lys257, or of just Tyr253 and Glu255, but not any of these residues alone, was sufficient to reproduce the exosite defects of a strand 3C antithrombin-alpha1-proteinase inhibitor chimera in reactions of the heparin-activated variants with both factor Xa and factor IXa. Importantly, the exosite-defective antithrombins bound heparin with nearly wild-type affinities, and the heparin-activated mutants showed near normal reactivities with thrombin, a protease that does not utilize the exosite. Mutation of the conserved but partially buried strand 3C residue, Gln254, the reactive loop P6' residue, Arg399, which interacts with Glu255, or a residue proposed to constitute the exosite from modeling studies, Glu237, all produced minimal effects on antithrombin reactivity with thrombin, factor Xa, and factor IXa in the absence or presence of heparin. Together, these results indicate that Tyr253 and Glu255 are key exosite determinants responsible for promoting the reactions of conformationally activated antithrombin with both factor Xa and factor IXa.  相似文献   

5.
We investigated the kinetics of the inhibitory action of antithrombin III and antithrombin III plus heparin during the activation of factor X by factor IXa. Generation and inactivation curves were fitted to a three-parameter two-exponentional model to determine the pseudo first-order rate constants of inhibition of factor IXa and factor Xa by antithrombin III/heparin. In the absence of heparin, the second-order rate constant of inhibition of factor Xa generated by factor IXa was 2.5-fold lower than the rate constant of inhibition of exogenous factor Xa. It appeared that phospholipid-bound factor X protected factor Xa from inactivation by antithrombin III. It is, as yet, unclear whether an active site or a nonactive site interaction between factor Xa and factor X at the phospholipid surface is involved. The inactivation of factor IXa by antithrombin III was found to be very slow and was not affected by phospholipid, calcium, and/or factor X. With unfractionated heparin above 40 ng/ml and antithrombin III at 200 nM, the apparent second-order rate constant of inhibition of exogenous and generated factor Xa were the same. Thus, in this case phospholipid-bound factor X did not protect factor Xa from inhibition. In the presence of synthetic pentasaccharide heparin, however, phospholipid-bound factor X reduced the rate constant about 5-fold. Pentasaccharide had no effect on the factor IXa/antithrombin III reaction. Unfractionated heparin (1 micrograms/ml) stimulated the antithrombin III-dependent inhibition of factor IXa during factor X activation 400-fold. In the absence of reaction components this stimulated was 65-fold. We established that calcium stimulated the heparin-dependent inhibition of factor IXa.  相似文献   

6.
The kinetics of inhibition of four hemostatic system enzymes by antithrombin were examined as a function of heparin concentration. Plots of the initial velocity of factor Xa-antithrombin or plasmin-antithrombin interaction versus the level of added mucopolysaccharide exhibit an ascending limb and subsequent plateau regions. In each case, the kinetic profile is closely correlated with the concentration of the heparin . antithrombin complex formed within the reaction mixture. A decrease in the velocity of inhibition is not observed at high levels of added mucopolysaccharide despite the generation of significant quantities of heparin-enzyme interaction products. The second-order rate constants for the neutralization of factor Xa or plasmin by the mucopolysaccharide . inhibitor complex are 2.4 x 10(8) M-1 min-1 and 4.0 x 10(6) M-1 min-1, respectively. These parameters must be contrasted with the similarly designated constants obtained in the absence of heparin which are 1.88 x 10(5) M-1 min-1 and 4.0 x 10(4) M-1 min-1, respectively. Plots of the initial velocity of the factor IXa-antithrombin or the thrombin-antithrombin interaction versus the level of added mucopolysaccharide exhibit an ascending limb, pseudoplateau, descending limb, and final plateau regions. In each case, the ascending limb and pseudoplateau are closely correlated with the concentration of heparin c antithrombin complex formed within the reaction mixture. Furthermore, the descending limb and final plateau of these two processes coincide with the generation of increasing amounts of the respective mucopolysaccharide-enzyme interaction products. The second-order rate constants for the neutralization of factor IXa or thrombin by the heparin . antithrombin complex are 3.0 x 10(8) M-1 min-1 and 1.7 x 10(9) M-1 min-1, respectively. The second-order rate constants for the inhibition of mucopolysaccharide-factor IXa or mucopolysaccharide-thrombin interaction products by the heparin . antithrombin complex are 2.0 x 10(7) M-1 min-1 and 3.0 x 10(8) M-1 min-1, respectively. These kinetic parameters must be contrasted with similarly designated constants obtained in the absence of mucopolysaccharide which are 2.94 x 10(4) M-1 min-1 and 4.25 x 10(5) M-1 min-1, respectively. Thus, our data demonstrate that binding of heparin to antithrombin is required for the mucopolysaccharide-dependent enhancement in the rates of neutralization of thrombin, factor IXa, factor Xa, or plasmin by the protease inhibitor. Furthermore, a careful comparison of the various constants suggests that the direct interaction between heparin and antithrombin may be largely responsible for the kinetic effect of this mucopolysaccharide.  相似文献   

7.
Neuenschwander PF 《Biochemistry》2004,43(10):2978-2986
Blood coagulation factor IXa (fIXa) is a trypsin-like serine protease with low inherent activity that is greatly enhanced in the factor X activation complex. Molecular details of the conversion of fIXa from an inactive enzyme into a fully functional procoagulant are unclear. Recent studies have identified a heparin-binding exosite in the protease domain of fIXa. Effects of exosite occupation on fIXa activity are unclear. We used the Kunitz-type inhibitor bovine pancreatic trypsin inhibitor (BPTI) to probe fIXa reactivity in the absence and in the presence of heparin. While fIXa alone was poorly reactive with BPTI (K(i) approximately 0.7 mM), this reactivity was increased roughly 20-fold (K(i) = 37 +/- 6 microM) by heparin. This was reproducible with low-molecular-weight heparin (enoxaparin; K(i) = 70 +/- 12 microM). Surface plasmon resonance studies of the interaction between heparin and BPTI indicated an unstable interaction with very low affinity (K(d) = 172 microM). In contrast, kinetic studies revealed a high-affinity interaction between heparin and fIXa (K(d) = 128 +/- 26 nM) and showed that the enhancement of BPTI inhibition of fIXa by heparin was well described by a competitive inhibition model where heparin acts as an affecter of fIXa reactivity with inhibitor. Fluorescence studies with dansyl-EGR-fIXa supported the high-affinity interaction between heparin and fIXa and suggested an altered environment in the fIXa active-site region upon heparin binding. This modulating effect of heparin was supported by the observation of a heparin-induced increase in reactivity of fIXa toward a pentapeptide substrate. When viewed together, the results imply that specific physiological exosite interactions with heparin can induce alterations in the environment of the extended fIXa active site that can result in increased reactivity.  相似文献   

8.
Blood clotting proceeds through the sequential proteolytic activation of a series of serine proteases, culminating in thrombin cleaving fibrinogen into fibrin. The serine protease inhibitors (serpins) antithrombin (AT) and protein C inhibitor (PCI) both inhibit thrombin in a heparin-accelerated reaction. Heparin binds to the positively charged D-helix of AT and H-helix of PCI. The H-helix of AT is negatively charged, and it was mutated to contain neutral or positively charged residues to see if they contributed to heparin stimulation or protease specificity in AT. To assess the impact of the H-helix mutations on heparin stimulation in the absence of the known heparin-binding site, negative charges were also introduced in the D-helix of AT. AT with both positively charged H- and D-helices showed decreases in heparin stimulation of thrombin and factor Xa inhibition by 10- and 5-fold respectively, a decrease in affinity for heparin sepharose, and a shift in the heparin template curve. In the absence of a positively charged D-helix, changing the H-helix from neutral to positively charged increased heparin stimulation of thrombin inhibition 21-fold, increased heparin affinity and restored a normal maximal heparin concentration for inhibition.  相似文献   

9.
Protease nexin. Properties and a modified purification procedure   总被引:21,自引:0,他引:21  
The present paper describes chemical and functional properties of protease nexin, a serine protease inhibitor released from cultured human fibroblasts. It is shown that protease nexin is actually synthesized by fibroblasts and represents about 1% of their secreted protein. Analysis of the amino acid composition of purified protease nexin indicates that it is evolutionarily related to antithrombin III and heparin cofactor II. Protease nexin contains approximately 6% carbohydrate, with 2.3% amino sugar, 1.1% neutral sugar, and 3.0% sialic acid. The Mr calculated from equilibrium sedimentation analysis is 43,000. Protease nexin is a broad specificity inhibitor of trypsin-like serine proteases. It reacts rapidly with trypsin (kassoc = 4.2 +/- 0.4 X 10(6) M-1 s-1), thrombin (kassoc = 6.0 +/- 1.3 X 10(5) M-1 s-1), urokinase (kassoc = 1.5 +/- 0.1 X 10(5) M-1 s-1), and plasmin (kassoc = 1.3 +/- 0.1 X 10(5) M-1 s-1), and slowly inhibits Factor Xa and the gamma subunit of nerve growth factor but does not inhibit chymotrypsin-like proteases or leukocyte elastase. In the presence of heparin, protease nexin inhibits thrombin at a nearly diffusion-controlled rate. Two heparin affinity classes of protease nexin can be detected. The present characterization pertains to the fraction of protease nexin having the higher affinity for heparin. The low affinity material, which is the minor fraction, is lost during purification.  相似文献   

10.
A novel variant of antithrombin, the major serpin inhibitor of coagulation proteases, has been identified in a patient with early onset thrombosis and abnormal plasma antithrombin activity. Sequencing of the antithrombin genes of the patient revealed that one of the two alleles was abnormal due to an in-frame deletion of the codon for the P1 arginine residue. The abnormal antithrombin was separated from the normal inhibitor by complexing the latter with thrombin followed by heparin-agarose affinity chromatography. The purified variant, antithrombin London, was completely inactive as a thrombin or factor Xa inhibitor even after heparin activation. Surprisingly, the variant bound heparin with a K(D) reflecting an approximately 10-fold greater affinity than the normal inhibitor. Stopped-flow kinetic analysis showed that this was almost entirely due to a more favorable conformational activation of the variant than the normal inhibitor, as reflected by a decreased rate constant for reversal of the activation. Consistent with its higher than normal heparin affinity, the inactive antithrombin variant was a potent competitive antagonist of the heparin-catalyzed reaction of normal antithrombin with thrombin but did not affect the uncatalyzed reaction. These results suggest that deletion of the antithrombin P1 residue partially activates the serpin by inducing strain in the reactive center loop, which destabilizes the native loop-buried state and favors the activated loop-exposed state with high heparin affinity. The unusually severe thrombosis associated with the heterozygous mutation may be explained by the ability of antithrombin London to bind endogenous heparan sulfate or heparin molecules with high affinity and to thereby block activation of the normal inhibitor.  相似文献   

11.
F Lian  L He  N S Colwell  P Lollar  D M Tollefsen 《Biochemistry》2001,40(29):8508-8513
A monoclonal IgG isolated from a patient with multiple myeloma has been shown to bind to exosite II of thrombin, prolong both the thrombin time and the activated partial thromboplastin time (aPTT) when added to normal plasma, and alter the kinetics of hydrolysis of synthetic peptide substrates. Although the IgG does not affect cleavage of fibrinogen by thrombin, it increases the rate of inhibition of thrombin by purified antithrombin approximately 3-fold. Experiments with plasma immunodepleted of antithrombin or heparin cofactor II confirm that prolongation of the thrombin time requires antithrombin. By contrast, prolongation of the aPTT requires neither antithrombin nor heparin cofactor II. The IgG delays clotting of plasma initiated by purified factor IXa but has much less of an effect on clotting initiated by factor Xa. In a purified system, the IgG decreases the rate of activation of factor VIII by thrombin. These studies indicate that binding of a monoclonal IgG to exosite II prolongs the thrombin time indirectly by accelerating the thrombin-antithrombin reaction and may prolong the aPTT by interfering with activation of factor VIII, thereby diminishing the catalytic activity of the factor IXa/VIIIa complex.  相似文献   

12.
Reactivity of factor IXa with basic pancreatic trypsin inhibitor is enhanced by low molecular weight heparin (enoxaparin). Previous studies by us have suggested that this effect involves allosteric modulation of factor IXa. We examined the reactivity of factor IXa with several isolated Kunitz-type inhibitor domains: basic pancreatic trypsin inhibitor, the Kunitz inhibitor domain of protease Nexin-2, and the first two inhibitor domains of tissue factor pathway inhibitor. We find that enhancement of factor IXa reactivity by enoxaparin is greatest for basic pancreatic trypsin inhibitor (>10-fold), followed by the second tissue factor pathway inhibitor domain (1.7-fold) and the Kunitz inhibitor domain of protease Nexin-2 (1.4-fold). Modeling studies of factor IXa with basic pancreatic trypsin inhibitor suggest that binding of this inhibitor is sterically hindered by the 99-loop of factor IXa, specifically residue Lys(98). Slow-binding kinetic studies support the formation of a weak initial enzyme-inhibitor complex between factor IXa and basic pancreatic trypsin inhibitor that is facilitated by enoxaparin binding. Mutation of Lys(98) to Ala in factor IXa results in enhanced reactivity with all inhibitors examined, whereas almost completely abrogating the enhancing effects of enoxaparin. The results implicate Lys(98) and the 99-loop of factor IXa in defining enzyme inhibitor specificity. More importantly, these results demonstrate the ability of factor IXa to be allosterically modulated by occupation of the heparin-binding exosite.  相似文献   

13.
Reactions between near equimolar amounts of antithrombin and Factors IXa or Xa resulted in the formation of a free proteolytically modified, two-chain form of the inhibitor, in addition to the inactive antithrombin-protease complexes. The modified inhibitor produced by either enzyme was electrophoretically identical with that formed in the reaction with thrombin. As in the latter reaction, the formation of the modified antithrombin by Factor Xa was increased in the presence of heparin, while only small amounts were produced by Factor IXa both in the absence and presence of the polysaccharide. NH2-terminal sequence analyses of the isolated modified inhibitor formed by Factor Xa showed that a single Arg-Ser bond in the COOH-terminal end of the inhibitor had been cleaved. This cleavage site is identical with that identified in free thrombin-modified antithrombin. The purified antithrombin-Factor IXa and antithrombin-Factor Xa complexes were dissociated by ammonia or hydroxylamine into free enzyme and a modified two-chain form of the inhibitor. Electrophoresis studies and NH2-terminal sequence analyses showed that the modified antithrombin obtained from either complex was identical with that produced in free form by the two enzymes and also with the modified inhibitor that is released from the antithrombin-thrombin complex. The fact that identical results were obtained for the reactions between antithrombin and three enzymes with different specificities strongly suggests that the observed Arg-Ser cleavage site is the active site of antithrombin.  相似文献   

14.
Heparin activates the serpin, antithrombin, to inhibit its target blood-clotting proteases by generating new protease interaction exosites. To resolve the effects of these exosites on the initial Michaelis docking step and the subsequent acylation and conformational change steps of antithrombin-protease reactions, we compared the reactions of catalytically inactive S195A and active proteases with site-specific fluorophore-labeled antithrombins that allow monitoring of these reaction steps. Heparin bound to N,N'-dimethyl-N-(acetyl)-N'-(7-nitrobenz-3-oxa-1,3-diazol-4-yl)ethylenediamine (NBD)-fluorophore-labeled antithrombins and accelerated the reactions of the labeled inhibitor with thrombin and factor Xa similar to wild type. Equilibrium binding of NBD-labeled antithrombins to S195A proteases showed that exosites generated by conformationally activating antithrombin with a heparin pentasaccharide enhanced the affinity of the serpin for S195A factor Xa minimally 100-fold. Moreover, additional bridging exosites provided by a hexadecasaccharide heparin activator enhanced antithrombin affinity for both S195A factor Xa and thrombin at least 1000-fold. Rapid kinetic studies showed that these exosite-mediated enhancements in Michaelis complex affinity resulted from increases in k(on) and decreases in k(off) and caused antithrombin-protease reactions to become diffusion-controlled. Competitive binding and kinetic studies with exosite mutant antithrombins showed that Tyr-253 was a critical mediator of exosite interactions with S195A factor Xa; that Glu-255, Glu-237, and Arg-399 made more modest contributions to these interactions; and that exosite interactions reduced k(off) for the Michaelis complex interaction. Together these results show that exosites generated by heparin activation of antithrombin function both to promote the formation of an initial antithrombin-protease Michaelis complex and to favor the subsequent acylation of this complex.  相似文献   

15.
The synthetic antithrombin-binding heparin pentasaccharide and a full-length heparin of approximately 26 saccharides containing this specific sequence have been compared with respect to their interactions with antithrombin and their ability to promote inhibition and substrate reactions of antithrombin with thrombin and factor Xa. The aim of these studies was to elucidate the pentasaccharide contribution to heparin's accelerating effect on antithrombin-proteinase reactions. Pentasaccharide and full-length heparins bound antithrombin with comparable high affinities (KD values of 36 +/- 11 and 10 +/- 3 nM, respectively, at I 0.15) and induced highly similar protein fluorescence, ultraviolet and circular dichroism changes in the inhibitor. Stopped-flow fluorescence kinetic studies of the heparin binding interactions at I 0.15 were consistent with a two-step binding process for both heparins, involving an initial weak encounter complex interaction formed with similar affinities (KD 20-30 microM), followed by an inhibitor conformational change with indistinguishable forward rate constants of 520-700 s-1 but dissimilar reverse rate constants of approximately 1 s-1 for the pentasaccharide and approximately 0.2 s-1 for the full-length heparin. Second order rate constants for antithrombin reactions with thrombin and factor Xa were maximally enhanced by the pentasaccharide only 1.7-fold for thrombin, but a substantial 270-fold for factor Xa, in an ionic strength-independent manner at saturating oligosaccharide. In contrast, the full-length heparin produced large ionic strength-dependent enhancements in second order rate constants for both antithrombin reactions of 4,300-fold for thrombin and 580-fold for factor Xa at I 0.15. These enhancements were resolvable into a nonionic component ascribable to the pentasaccharide and an ionic component responsible for the additional rate increase of the larger heparin. Stoichiometric titrations of thrombin and factor Xa inactivation by antithrombin, as well as sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the products of these reactions, indicated that pentasaccharide and full-length heparins similarly promoted the formation of proteolytically modified inhibitor during the inactivation of factor Xa by antithrombin, whereas only the full-length heparin was effective in promoting this substrate reaction of antithrombin during the reaction with thrombin.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
'Thrombin aptamers' are based on the 15-nucleotide consensus sequence of d(GGTTGGTGTGGTTGG) that binds specifically to thrombin's anion-binding exosite-I. The effect of aptamer-thrombin interactions during inhibition by the serine protease inhibitor (serpin) heparin cofactor II (HCII) and antithrombin (AT) has not been described. Thrombin inhibition by HCII without glycosaminoglycan was decreased approximately two-fold by the aptamer. In contrast, the aptamer dramatically reduced thrombin inhibition by >200-fold and 30-fold for HCII-heparin and HCII-dermatan sulfate, respectively. The aptamer had essentially no effect on thrombin inhibition by AT with or without heparin. These results add to our understanding of thrombin aptamer activity for potential clinical application, and they further demonstrate the importance of thrombin exosite-I during inhibition by HCII-glycosaminoglycans.  相似文献   

17.
Heparin allosterically activates antithrombin as an inhibitor of factors Xa and IXa by enhancing the initial Michaelis complex interaction of inhibitor with protease through exosites. Here, we investigate the mechanism of this enhancement by analyzing the effects of alanine mutations of six putative antithrombin exosite residues and three complementary protease exosite residues on antithrombin reactivity with these proteases in unactivated and heparin-activated states. Mutations of antithrombin Tyr253 and His319 exosite residues produced massive 10–200-fold losses in reactivity with factors Xa and IXa in both unactivated and heparin-activated states, indicating that these residues made critical attractive interactions with protease independent of heparin activation. By contrast, mutations of Asn233, Arg235, Glu237, and Glu255 exosite residues showed that these residues made both repulsive and attractive interactions with protease that depended on the activation state and whether the critical Tyr253/His319 residues were mutated. Mutation of factor Xa Arg143, Lys148, and Arg150 residues that interact with the exosite in the x-ray structure of the Michaelis complex confirmed the importance of all residues for heparin-activated antithrombin reactivity and Arg150 for native serpin reactivity. These results demonstrate that the exosite is a key determinant of antithrombin reactivity with factors Xa and IXa in the native as well as the heparin-activated state and support a new model of allosteric activation we recently proposed in which a balance between attractive and repulsive exosite interactions in the native state is shifted to favor the attractive interactions in the activated state through core conformational changes induced by heparin binding.  相似文献   

18.
Inhibition of bovine factor IXa and factor Xabeta by antithrombin III.   总被引:10,自引:0,他引:10  
Factor IXa and factor Xabeta are serine proteases which participate in the middle phase of blood coagulation. These two enzymes are inhibited by antithrombin III by the formation of an enzyme-inhibitor complex containing 1 mol of enzyme and 1 mol of antithrombin III. The complex was readily demonstrated by sodium dodecyl sulfate polyacrylamide gel electrophoresis and loss of coagulant or esterase activity at increasing concentrations of inhibitor. The inactivation of factor IXa by antithrombin III was relatively slow, but the reaction was greatly accelerated by the addition of heparin.  相似文献   

19.
Allosteric conformational changes in antithrombin induced by binding a specific heparin pentasaccharide result in very large increases in the rates of inhibition of factors IXa and Xa but not of thrombin. These are accompanied by CD, fluorescence, and NMR spectroscopic changes. X-ray structures show that heparin binding results in extension of helix D in the region 131–136 with coincident, and possibly coupled, expulsion of the hinge of the reactive center loop. To examine the importance of helix D extension, we have introduced strong helix-promoting mutations in the 131–136 region of antithrombin (YRKAQK to LEEAAE). The resulting variant has endogenous fluorescence indistinguishable from WT antithrombin yet, in the absence of heparin, shows massive enhancements in rates of inhibition of factors IXa and Xa (114- and 110-fold, respectively), but not of thrombin, together with changes in near- and far-UV CD and 1H NMR spectra. Heparin binding gives only ∼3–4-fold further rate enhancement but increases tryptophan fluorescence by ∼23% without major additional CD or NMR changes. Variants with subsets of these mutations show intermediate activation in the absence of heparin, again with basal fluorescence similar to WT and large increases upon heparin binding. These findings suggest that in WT antithrombin there are two major complementary sources of conformational activation of antithrombin, probably involving altered contacts of side chains of Tyr-131 and Ala-134 with core hydrophobic residues, whereas the reactive center loop hinge expulsion plays only a minor additional role.  相似文献   

20.
The purpose of this study was to compare three heparin-binding plasma proteinase inhibitors in order to identify common and unique features of heparin binding and heparin-enhanced proteinase inhibition. Experiments with antithrombin, heparin cofactor, and protein C inhibitor were performed under identical conditions in order to facilitate comparisons. Synthetic peptides corresponding to the putative heparin binding regions of antithrombin, heparin cofactor, and protein C inhibitor bound to heparin directly and interfered in heparin-enhanced proteinase inhibition assays. All three inhibitors obeyed a ternary complex mechanism for heparin-enhanced thrombin inhibition, and the optimum heparin concentration was related to the apparent heparin affinity of the inhibitor. The maximum inhibition rate and rate enhancement due to heparin appeared to be unique properties of each inhibitor. In assays with heparin oligosaccharides of known size, only the antithrombin-thrombin reaction exhibited a sharp threshold for rate enhancement at 14-16 saccharide units. Acceleration of antithrombin inhibition of factor Xa, heparin cofactor inhibition of thrombin, and protein C inhibitor inhibition of thrombin, activated protein C, and factor Xa did not require a minimum saccharide size. The differences in heparin size dependence and rate enhancement of proteinase inhibition by these inhibitors might reflect differences in the importance of the ternary complex mechanism and other mechanisms, alterations in inhibitor reactivity, and orientation effects in heparin-enhanced proteinase inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号