首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Dyatlov  V. A. 《Neurophysiology》1988,20(5):489-492
The role of calcium ions in modulating serotonin action on acetylcholine (ACh) response in nonidentified and identified (LPa3 and RPa3) neurons ofHelix pomatia was investigated using voltage-clamping at the neuronal membrane. Exposure for 1 min to serotonin prior to ACh application reduced response to ACh in neuron LPa3 and raised it in RPa3. The same two patterns of modulating ACh-induced response were produced by extracellular application of theophylline and dibutyryl c-AMP. Injecting calcium ions into neuron LPa3 led to reinforcement of ACh-induced current in the presence of serotonin, thus changing the pattern of serotonin-induced modulation of ACh response in this unit. In neuron RPa3, the same process enhanced the serotonin-induced modulating effect on ACh response but without changing the pattern of modulation, while injected EDTA produced the reverse effects. Increased intracellular concentration of calcium ions brought about a reduction in the degree of serotonin-induced modulation of ACh response in neuron RPa3. Possible reasons are discussed for changes in serotonin-induced bimodal modulation of ACh response in test neurons produced by altering the extracellular concentration of calcium ions.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 20, No. 5, pp. 666–671, September–October, 1988.  相似文献   

2.
Functional characteristics of cerebral serotoninergic neuron Cl, axons of which terminate at the buccal ganglia [7], were investigated in the pteropod molluskClione. Stimulating neuron Cl induced activation of the feeding rhythm generator located in the buccal ganglia — an effect arising after a long latency and persisting for some tens of seconds once stimulation had ended. Neuron Cl receives feedback from buccal ganglion cells and this brings about periodic modulation in ganglia activity during the generation of feeding rhythm. Activity of neuron Cl is correlated with operation of the locomotor rhythm generator located in the pedal ganglia. The firing rate of Cl neurons increased upon activation of the locomotor generator (whether spontaneous or induced by stimulating certain command neurons). The correlation found between workings of the locomotor generator and activity of Cl neurons is thought to be one of the manifestations of feeding synergy involving simultaneous activation of the locomotor and buccal apparatus.Institute for Research on Information Transmission, Academy of Sciences of the USSR, Moscow. M. V. Lomonosov State University, Moscow. Translated from Neirofiziologiya, Vol. 23, No. 1, pp. 18–25, January–February, 1991.  相似文献   

3.
Characteristics of the right partietal ganglion neuron of the gastropod molluskLymnaea stagnalis (RPD1) were investigated by intracellular staining with Lucifer Yellow. Branches proceeding from this neuron are found in nerves of the right parietal, visceral, cerebral, and pedal ganglia of the central nervous system (CNS) as well as along peripheral nerves. Concentrations of RPD1 neurite branches were revealed in the distal, right parietal, and pleural ganglia. Electrophysiological techniques were used to investigate neuronal response to adequate stimulation of different sensory organs and cutaneous coverings (tentacles, lips, mantle, and so on). It was found that RPD1 has wide-ranging polymodal sensory input and responds to adequate stimulation of mechano-, chemo-, and photoreceptors of cutaneous coverings of the head of mantle. Stimulus application produced either subthreshold summated EPSP or a spike response in the neuron. Response in this unit during blockade of chemical synaptic transmission at peripheral and central regions of the nervous system is analyzed.A. A. Ukhtomskii Physiological Institute, A. A. Zhdanov State University, Leningrad. Translated from Neirofiziologiya, Vol. 20, No. 6, pp. 785–793, November–December, 1988.  相似文献   

4.
Kononenko  N. I.  Osipenko  O. N. 《Neurophysiology》1988,20(5):483-488
The ionic mechanisms of hyperpolarization produced by applying oxytocin (OT) were investigated at the membrane of identifiedHelix pomatia neurons. Two types of neuron were known to exist, in one of which hyperpolarization is produced by a reduction in chloride ions at the membrane and a rise in membrane permeability to potassium ions in the other. In the first of these, response to OT had a reversal potential of –40 mV and decreased when furosemide and tolbutamide were added to the external medium. In the second case, the potential of the reversal of the response to OT was –70 mV. Upon doubling of potassium ion concentration in the external solution it was shifted towards depolarization by 15 mV. It is sugested thatHelix pomatia neurons have different types of OT receptors, some of which, when activated, manifest reduced chloride permeability at the membrane (probably through the cell cyclase system) with a rise in potassium permeability at the membrane in others.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 20, No. 5, pp. 659–666, September–October, 1988.  相似文献   

5.
Membrane hyperpolarization induced by short pulses of inward current, by stimulation of the anal nerve, which leads to the appearance of a long IPSP in the neuron, and developing during the appearance of spontaneous IPSPs in the neuron was investigated in neuron RPa1 ofHelix pomatia. Short-term hyperpolarization of the neuron membrane by an inward current (10 msec) led to the development of self-maintained (regenerative) membrane hyperpolarization lasting several seconds. The amplitude and duration of regenerative hyperpolarization increased with an increase in amplitude and duration of the pulse of inward current. The time course of IPSPs arising spontaneously in the neuron and in response to stimulation of the anal nerve was similar to that of regenerative hyperpolarization evoked by a pulse of inward current. It is suggested that regenerative hyperpolarization associated with activation of endogenous mechanisms of regulation of the bursting activity of the neuron may be due not only to short-term membrane hyperpolarization of the test neuron by the electric current, but also to hyperpolarization occurring during IPSP generation.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 13, No. 1, pp. 67–74, January–February, 1981.  相似文献   

6.
Ionic mechanisms of the transmembrane current evoked by injection of cyclic AMP into identified neurons ofHelix pomatia were investigated by the voltage clamp method. Injection of cyclic AMP into neurons RPa3, LPa2, LPa3, and LPl1 was shown to cause the development of a two-component transmembrane (cyclic AMP) current. The current-voltage characteristic curve of the early component is linear in the region from –40 to –90 mV; the reversal potential of the early component, determined by extrapolation, lies between –5 and +20 mV; the current-voltage characteristic curve of the late component also is linear and has a reversal potential between –55 and –60 mV. A decrease in the sodium concentration in the external medium from 100 to 25 mM led to a decrease in amplitude of the cyclic AMP current and to a shift of the reversal potential for the early component by 30–32 mV toward hyperpolarization. It is suggested that the early component of the cyclic AMP current in neurons RPa3, LPa2, LPa3, and LPl1 is associated with an increase in permeability of the neuron membrane chiefly for sodium ions, whereas the late component is correspondingly connected with permeability for potassium ions. Injection of cyclic AMP also caused the appearance of a transmembrane inward current in neuron LPa8, but it was independent of the holding potential and was unaccompanied by any change in membrane permeability. It is suggested that this current may be due to a change in the activity of the electrogenic ion pump.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 12, No. 5, pp. 526–532, September–October, 1980.  相似文献   

7.
Response to application of and superfusion with solutions containing arginine-vasopressin and its derivatives (VPS), was investigated in identifiedHelix pomatia neurons. Different VPS exerted a similar effect on neurons in all cases. De- and hyperpolarizing as well as modulatory effects were shown. Depolarizing and hyperpolarizing response was accompanied by a rise and fall in steady-state conductance of the cell membrane. Reversal potential of response was determined as in the region of chloride reversal potential. Adding furosemide to the extracellular solution reversibly inhibited response to VPS. It was concluded from this that both de- and hyperpolarizing response took the form of an increase in the amplitude of trans-membrane ionic current induced by injecting cAMP into the neuron under the effects of superfusing the preparation with a VPS-containing VPS solution. Specific VPS receptors, probably associated with the cell cyclic nucleotide system, are thought to exist at the membrane of someHelix pomatia neurons.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 22, No. 3, pp. 368–373, May–June, 1990.  相似文献   

8.
A neuronal process was identified inLymnaea stagnalis nerve cells which may be viewed as one of the mechanisms underlying the interval selectivity previously described in research into the functional relationships between mammalian brain cells. This process takes the form of regularly-occurring changes in excitability resulting in a high probability (of 0.6–1) of neuronal spike response to what had previously been subthreshold depolarizing current pulses following similar subthreshold (conditioning) pulses at intervals specific to each individual neuron. It was found that the cycle of change in neuronal excitability following threshold depolarization did not arise from temporal summation of electrotonic local or postsynaptic neuronal potentials; it was an endogenous (cytoplasmic) process insensitive to transmitter (acetylcholine) application but altering irreversibly under the effects of bombesin, one of the modulator peptides.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad; Institute of Experimental Medicine, Academy of Medical Sciences of the USSR, Leningrad. Translated from Neirofiziologya, Vol. 21, No. 3, pp. 291–299, May–June, 1989.  相似文献   

9.
Elementary EPSPs arising in two different identified neurons of the parietal ganglion ofHelix pomatia were recorded after stimulation of the identified triggering neuron. Repetitive stimulation (0.1–1.5 Hz) led to low-frequency depression of EPSPs. By the use of known and modified models of transmitter depletion parameters characterizing storage, mobilization, breakdown, and liberation of transmitter were determined. The fraction of available pool (F) released in two different synapses of the same trigger neuron did not differ significantly. The available pool of transmitter (C) and the demobilization constant ( ) in synapses on the RPa3 neuron were 2–3 times higher, and mobilization (M) was 10 times higher than on the LPa2 neuron. Predictions of the depletion model showed deviations from the experimental data. A method of calculating consistently whatever law of change of F was adopted was devised. Absence of correlation between parameters F and C of the depletion model and binomial parameters p and n, calculated on the basis of the quantal hypothesis of synaptic transmission shows that this hypothesis and the transmitter depletion model describe different synaptic mechanisms.Brain Institute, Academy of Medical Sciences of the USSR, Moscow. Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 13, No. 1, pp. 88–97, January–February, 1981.  相似文献   

10.
Analysis of postsynaptic unit responses in the visual center ofRana temporaria showed that optic nerve fibers with high and low conduction velocities usually converge on a single neuron of the tectum opticum (TO). In response to stimulation of the optic nerve a complex depolarization potential consisting of 3 (or possibly 4) EPSPs was recorded in one group of neurons; these EPSPs were probably generated through excitation of several groups of afferent fibers. Either an increase or a decrease in the EPSPs can be observed in the TO neurons in response to repetitive and paired stimulation of the optic nerve. Postsynaptic inhibitory responses of some TO neurons, probably of direct and recurrent origin, are discussed.M. V. Lomonosov Moscow State University. Translated from Neirofiziologiya, Vol. 3, No. 6, pp. 637–643, November–December, 1971.  相似文献   

11.
The response was investigated of neurons composing the cerebral ganglia inAchatina fulica (the Giant African snail) to application of acetylcholine (ACh), gamma-aminobutyric acid (GABA), and glycine (Gly). Chloride-dependent currents induced by these transmitters in 1 1/2-month old siblings were inhibited by dibutyryl-cAMP and strychnine. Inhibition of ACh response produced 10–8 M GABA was mimicked by application of dibutyryl-cAMP and isobutylmethylxanthine. Complete cross-desensitization was characteristic of both GABA- and Bly-induced response, but this effect did not occur when ACh and GABA (or Gly) were applied. A conclusion was reached on the basis of the pharmacological relationship between GABA- and Gly-induced response that these amino acids act on a single receptor — channel complex in the neurons of infant snails, whereas ACh-, GABA-, and Gly-induced chloride currents were not so related in cells of 4 year-oldAchatina.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 23, No. 1, pp. 35–43, January–February, 1991.  相似文献   

12.
Intracellular microelectrode recordings from neurons ofHelix pomatia revealed several local zones of action potential generation both on the soma and on some of the branches of the neurons. Under certain conditions the activity of individual loci of the neuron membrane was synchronized to produce a normal action potential. It is suggested that the somatic membrane of neurons is heterogeneous in structure and consists of separate loci of an electrically excitable membrane, incorporating active and latent pacemaker zones. Neurons ofH. pomatia are characterized by two types of action potential with different triggering mechanisms: one (synaptic) type is generated under the influence of the EPSP, the other (pacemaker) arises through activation of endogenous factors for the neuron (pacemaker potentials). The interaction between synaptic and pacemaker potentials during integrative activity of the neuron is discussed.M. V. Lomonosov Moscow State University. Translated from Neirofiziologiya, Vol. 5, No. 1, pp. 88–94, January–February, 1973.  相似文献   

13.
The effect of theophylline, an inhibitor of cyclic nucleotide phosphodiesterase, on electrical activity of bursting neuron RPa1 ofHelix pomatia was investigated. In a concentration of 1 mM theophylline, when added to the external solution, increases the frequency and number of action potentials in the burst and also the duration of the inter-burst interval and the amplitude of membrane potential waves. In concentrations of 2.5 and 5.0 mM theophylline leads to reversible inhibition of bursting activity. During rinsing this activity rises to a higher level and then returns to the original value. The action of theophylline develops and disappears (as a result of rinsing) in the course of 1–5 min, depending on concentration of the inhibitor. It is suggested that electrical activity of the molluscan bursting neuron is controlled through the cyclic nucleotide system.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 13, No. 1, pp. 75–79, January–February, 1981.  相似文献   

14.
The effect of intracellular iontophoretic injection of cyclic AMP on electrical activity of neurons RPa1, RPa3, LPa2, LPa3, and LPl1 in the corresponding ganglia ofHelix pomatia was investigated. Injection of cyclic AMP into neuron LPl1 was found to cause the appearance of rhythmic activity (if the neuron was originally "silent"), an increase in the frequency of spike generation (if the neuron had rhythmic activity), and a decrease in amplitude of waves of membrane potential, in the duration of the interval between bursts, and in the number of action potentials in the burst (if the neuron demonstrated bursting activity). In the remaining "silent" neurons injection of cyclic AMP led to membrane depolarization. Injection of cyclic AMP into neurons whose membrane potential was clamped at the resting potential level evoked the development of an inward transmembrane current (cyclic AMP current), the rate of rise and duration of which increased proportionally to the size and duration of the injection. Theophylline in a concentration of 1 mM led to an increase in the amplitude and duration of the cyclic AMP current by about 50%. It is concluded that a change in the cyclic AMP concentration within the nerve cell may modify the ionic permeability of its membrane and, correspondingly, its electrical activity.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 12, No. 5, pp. 517–525, September–October, 1980.  相似文献   

15.
The heart of the pteropod molluskClione limacina is innervated by the median nerve arising from the left abdominal ganglion. Five neurons sending axons to the heart have been identified in theClione central nervous system with retrograde cobalt or Lucifer yellow staining. Neuron H1 located in the left pedal ganglion produced an excitatory effect on heart beat. Stimulation of three neurons, H2–H4, situated in a compact group in the medial region of the left abdominal ganglion, led to inhibition of cardiac contraction, while H5, located in the caudal region of the left abdominal ganglion, did not affect heart beat. The activity of efferent cardiac neurons (ECN) was found to be related to the operation of the locomotor rhythm generator. Spontaneous or reflex depression of the latter was found to inhibit neuron H1 and activate units H2–H4. The behavior of these ECN accounts for the positive correlation between heart operation and locomotor activity inClione limacina.Institute of Research on Information Transmission, Academy of Sciences of the USSR, Moscow, M. V. Lomonosov State University, Moscow. Translated from Neirofiziologiya, Vol. 21, No. 2, pp. 185–192, March–April, 1989.  相似文献   

16.
The expression of two types of voltage-gated ion channels of the inflowing current ("fast" sodium channels, sensitive to tetrodotoxin, and high-threshold calcium channels) was detected by electrophysiological methods in the membrane ofXenopus oocytes, after injection of poly(A)+-mRNA from the brains of 18- to 20-day-old rats. When Cd2+ (200 µmoles/liter) was added to the extracellular solution, the barium current through the expressed calcium channels was completely suppressed, but no sensitivity to D-600 (20 µmoles/liter) and nitrendipine (50 µmoles/liter) was exhibited. A peptide blocker of the high-threshold calcium channels of the neuron membrane, -conotoxin GVIA, in a concentration of 1 µmole/liter led to 20–40 min suppression of the barium current expressed in the oocyte. Steady-state inactivation of this current could be described by the Boltzman formula, using the values of the half-inactivation potential V1/2=–50 mV and the steepness factor k=14 mV. It is concluded that in potential-dependent and pharmacological properties, the calcium channels expressed in the oocyte, despite the absence of any appreciable time-dependent inactivation, most resemble the high-threshold inactivatable (HTI- or N-type) calcium channels of the neuron membrane.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 23, No. 3, pp. 344–353, May–June, 1991.  相似文献   

17.
The overall electric reactions and action potentials of single neurons in the auditory cortex were investigated for Vespertilionidae (Myotis oxygnathus) and Rhinolophidae (Rhinolophus ferrum equinum) narcotized with Hexenal. In the Vespertilionidae the greatest sensitivity to ultrasound is manifest at frequencies from 10 to 50 kHz, and in the Rhinolophidae for the ranges from 10 to 40 and from 82 to 84 kHz. The shapes of the response areas of single neurons in both types of bats are similar except for neurons discovered in Rhinolophidae that have three response areas with characteristic frequencies in the ranges 27–28, 40–42, and 80–84kHz. Narrow response areas with characteristic frequencies in the range from 70 to 90kHz appear on a considerable proportion of the neurons in the Rhinolophidae, but not the Vespertilionidae. Low thresholds are recorded to the stimulus cutoff in the range from 76 to 86 kHz.A. A. Zhdanov Leningrad State University. Translated from Neirofiziologiya, Vol. 3, No. 5, pp. 526–532, September–October, 1971.  相似文献   

18.
It was found that applying 10–8 M oxytocin (OT) affects the functional properties of three types of cholinoreceptors under conditions of voltage clamping at the membrane of identified ganglia neurons inHelix pomatia. This neuropeptide depressed acetycholine-(ACh-)induced sodium-potassium-calcium current in neuron RB3 without altering reversal potential of ACh-induced current. Two (sub-) types of cholinoreceptors were distinguished on the basis of findings on OT effects on ACh-induced chloride currents; ACh-induced chloride current was reduced by the action of OT on the cholinoreceptors of one of these (neuron F4) and increased in the case of neurons D5 and F86. The effects of applying OT and serotonin were reversible but not cumulative. Injection of OT exerted an action on ACh-induced chloride current independent of that of OT application. Involvement of cyclic adenosine monophosphate in OT-induced bimodal modulation of functional properties of three types of cholinoreceptors was demonstrated.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziology, Vol. 22, No. 1, pp. 87–93, January–February, 1990.  相似文献   

19.
The ionic mechanisms underlying modulatory effects of serotonin on acetylcholine-response in identified and nonidentifiedHelix pomatia neurons were investigated using voltage-clamping techniques at the neuronal membrane. External application of 10–5–10–4 M serotonin to the membrane of neurons responding to application of acetylcholine depending on Na+ depolarization (DNa response) reduced membrane conductivity during response to acetylcholine without changing reversal potential of acetylcholine-induced current. Acetylcholine (10–6–10–4 M) administration took place 1–3 min later. Neurons with response to acetylcholine application dependent on Cl+ depolarization (DCl response) or hyperpolarization (HCl response) behaved similarly. Analogous effects could be produced by external application of theophylline which, together with the latency and residual effect characteristic of serotonin action points to the participation of intracellular processes associated with the cellular cyclase system in the changes produced by serotonin in acetylcholineinduced response. Serotonin brought about a shift in reversal potential and an increase in the acetylcholine-induced current in those neurons where this response was associated with changed permeability at the membrane to certain types of ions. During two-stage acetylcholine-induced response of the DNa-HK type, serotonin inhibited the inward current stage. Mechanisms underlying modulatory serotonin action on acetylcholine-induced response in test neurons are discussed in the light of our findings.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 20, No. 1, pp. 57–64, January–February, 1988.  相似文献   

20.
The dependence of monosynaptic EPSP pattern on membrane potential level was investigated during experiments on identifiedPlanorbis corneus neurons. A random sequence of twin stimuli spaced at different intervals was used to ascertain this pattern. It was shown that the value of interstimulus interval corresponding to the most marked EPSP interactions mainly depended on postsynaptic mechanisms: selected changes in the parameters of the postsynaptic neuron leads to similar alteration in the summation function extremum. The possibility arises from these results of selective tuning (applying to each input or groups of inputs) to specific intervals (or frequencies); this tuning may be modulated according to changing membrane potential at the relevant portion of the neuron. The possible functional role of this mechanism is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 21, No. 3, pp. 314–320, May–June, 1989.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号