首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ontogeny of surfactant apoprotein D, SP-D, in the rat lung   总被引:1,自引:0,他引:1  
Surfactant protein D (SP-D) is a collagenous surfactant-associated glycoprotein synthesized by alveolar type II cells. Antiserum against rat SP-D was raised in rabbits and an enzyme-linked immunosorbant assay (ELISA) has been developed using anti-rat SP-D IgG. In the present study we examined the developmental profile of SP-D in the rat lung compared with that of surfactant protein A (SP-A). SP-A content in the lungs increased during late gestation and reached its maximum on day 1 of neonate, and then gradually decreased until at least day 5. SP-D content during early gestation was less than 10 ng/mg protein until day 18, but on day 19 there was a 4-fold increase in SP-D (compared to that on day 18). It increased twice between day 21 and the day of birth, when it reached the adult level of 250 ng/mg protein, which is about one fourth that of the adult level of SP-A. Unlike SP-A there seemed to be no decrease in SP-D content after birth. These results demonstrate that SP-D is regulated developmentally as are the other components of surfactant, but the inconsistency in the developmental profiles of SP-A and SP-D suggests that these proteins may play different roles in lung maturation.  相似文献   

2.
The effect of the synthetic glucocorticoid betamethasone on the regulation of the glucocorticoid receptor mRNA and on receptor protein was studied in fetal rat lung during development. Using a glucocorticoid receptor cRNA probe, glucocorticoid receptor mRNA was examined by Northern blot hybridization and by solution hybridization. A monoclonal antibody against the glucocorticoid receptor was used to study regulation of the receptor protein by the Western immunoblotting technique. In fetal rat lungs, of 16-21 days of gestation, as well as in adult lungs, betamethasone treatment resulted in a significant decrease of glucocorticoid receptor mRNA to 50-65% of the control level. In contrast, betamethasone treatment did not down-regulate the receptor protein in rat lungs of 16-19 days of gestation, whereas a decrease of glucocorticoid receptor protein to 40-60% of control was seen in lungs of 21 days of gestation, in postnatal and adult lung. These results provide data for a change in regulation in vivo of the glucocorticoid receptor by its homologous ligand in fetal rat lung during development.  相似文献   

3.
Pulmonary surfactant participates in the regulation of alveolar compliance and lung host defense. Surfactant homeostasis is regulated through a combination of synthesis, secretion, clearance, recycling, and degradation of surfactant components. The extracellular pool size of surfactant protein (SP) D fluctuates significantly during acute inflammation. We hypothesized that changes in SP-D levels are due, in part, to altered clearance of SP-D. Clearance pathways in rats were assessed with fluorescently labeled SP-D that was instilled into control lungs or lungs that had been treated with lipopolysaccharide (LPS) 16 h earlier. SP-D clearance from lavage into lung tissue was time dependent from 5 min to 1 h and 1.7-fold greater in LPS-treated lungs than in control lungs. Analysis of cells isolated by enzymatic digestion of lung tissue revealed differences in the SP-D-positive cell population between groups. LPS-treated lungs had 28.1-fold more SP-D-positive tissue-associated neutrophils and 193.6-fold greater SP-D association with those neutrophils compared with control lungs. These data suggest that clearance of SP-D into lung tissue is increased during inflammation and that tissue-associated neutrophils significantly contribute to this process.  相似文献   

4.
Intratracheal bleomycin in rats is associated with respiratory distress of uncertain etiology. We investigated the expression of surfactant components in this model of lung injury. Maximum respiratory distress, determined by respiratory rate, occurred at 7 days, and surfactant dysfunction was confirmed by increased surface tension of the large-aggregate fraction of bronchoalveolar lavage (BAL). In injured animals, phospholipid content and composition were similar to those of controls, mature surfactant protein (SP) B was decreased 90%, and SP-A and SP-D contents were increased. In lung tissue, SP-B and SP-C mRNAs were decreased by 2 days and maximally at 4--7 days and recovered between 14 and 21 days after injury. Immunostaining of SP-B and proSP-C was decreased in type II epithelial cells but strong in macrophages. By electron microscopy, injured lungs had type II cells lacking lamellar bodies and macrophages with phagocytosed lamellar bodies. Surface activity of BAL phospholipids of injured animals was restored by addition of exogenous SP-B. We conclude that respiratory distress after bleomycin in rats results from surfactant dysfunction in part secondary to selective downregulation of SP-B and SP-C.  相似文献   

5.
Recent studies have shown that surfactant components, in particular the collectins surfactant protein (SP)-A and -D, modulate the phagocytosis of various pathogens by alveolar macrophages. This interaction might be important not only for the elimination of pathogens but also for the elimination of inhaled allergens and might explain anti-inflammatory effects of SP-A and SP-D in allergic airway inflammation. We investigated the effect of surfactant components on the phagocytosis of allergen-containing pollen starch granules (PSG) by alveolar macrophages. PSG were isolated from Dactylis glomerata or Phleum pratense, two common grass pollen allergens, and incubated with either rat or human alveolar macrophages in the presence of recombinant human SP-A, SP-A purified from patients suffering from alveolar proteinosis, a recombinant fragment of human SP-D, dodecameric recombinant rat SP-D, or the commercially available surfactant preparations Curosurf and Alveofact. Dodecameric rat recombinant SP-D enhanced binding and phagocytosis of the PSG by alveolar macrophages, whereas the recombinant fragment of human SP-D, SP-A, or the surfactant lipid preparations had no effect. In addition, recombinant rat SP-D bound to the surface of the PSG and induced aggregation. Binding, aggregation, and enhancement of phagocytosis by recombinant rat SP-D was completely blocked by EDTA and inhibited by d-maltose and to a lesser extent by d-galactose, indicating the involvement of the carbohydrate recognition domain of SP-D in these functions. The modulation of allergen phagocytosis by SP-D might play an important role in allergen clearance from the lung and thereby modulate the allergic inflammation of asthma.  相似文献   

6.
7.

Background

Surfactant protein D (SP-D), an innate immune molecule, plays an important protective role during airway inflammation. Deficiency of this molecule induces emphysematous changes in murine lungs, but its significance in human COPD remains unclear.

Methods

We collected bronchoalveolar lavage fluid from 20 subjects with varying degrees of COPD (8 former smokers and 12 current smokers) and 15 asymptomatic healthy control subjects (5 never smokers, 3 remote former smokers, and 7 current smokers). All subjects underwent a complete medical history and pulmonary function testing. SP-D was measured by Enzyme-Linked ImmunoSorbent Assay. Statistical analysis was performed using nonparametric methods and multivariable linear regression for control of confounding. The effect of corticosteroid treatment on SP-D synthesis was studied in vitro using an established model of isolated type II alveolar epithelial cell culture.

Results

Among former smokers, those with COPD had significantly lower SP-D levels than healthy subjects (median 502 and 1067 ng/mL, respectively, p = 0.01). In a multivariable linear regression model controlling for age, sex, race, and pack-years of tobacco, COPD was independently associated with lower SP-D levels (model coefficient -539, p = 0.04) and inhaled corticosteroid use was independently associated with higher SP-D levels (398, p = 0.046). To support the hypothesis that corticosteroids increase SP-D production we used type II alveolar epithelial cells isolated from adult rat lungs. These cells responded to dexamethasone treatment by a significant increase of SP-D mRNA (p = 0.041) and protein (p = 0.037) production after 4 days of culture.

Conclusion

Among former smokers, COPD is associated with lower levels of SP-D and inhaled corticosteroid use is associated with higher levels of SP-D in the lung. Dexamethasone induced SP-D mRNA and protein expression in isolated epithelial cells in vitro. Given the importance of this molecule as a modulator of innate immunity and inflammation in the lung, low levels may play a role in the pathogenesis and/or progression of COPD. Further, we speculate that inhaled steroids may induce SP-D expression and that this mechanism may contribute to their beneficial effects in COPD. Larger, prospective studies are warranted to further elucidate the role of surfactant protein D in modulating pulmonary inflammation and COPD pathogenesis.  相似文献   

8.
Glucocorticoid receptors have been detected in placenta from several species, including the rat, although the biological function of corticoids is unknown in placenta from the latter species. The present experiments examined the effect of glucocorticoid treatment on placental progesterone biosynthesis from endogenous precursors by incubated basal zone trophoblast and labyrinthine zone of placentas from adrenalectomized-ovariectomized rats at the end of pregnancy. It was found that a higher proportion of synthesized progesterone was retained in the tissue than that released into the incubation medium. Treatment of rats on the 17th-18th day of pregnancy with 10 micrograms/ml of dexamethasone in the drinking saline for 3 days, produced a significant inhibition of progesterone detected in tissue and medium of incubated placental zones. In vitro addition of dexamethasone (10(-4) M) was also effective in reducing progesterone in the placental zone studied (LZ). Serum progesterone of intact rats was in the range of rats near parturition (approx 25 ng/ml) and dropped to almost undetectable levels in rats with adrenalectomy and ovariectomy, with or without dexamethasone treatment, suggesting that in late pregnancy the rat placenta does not contribute significantly to circulating levels of progesterone. This glucocorticoid effect could not be extended to estrogens, as we, in accord with the work of other groups, failed to detect estrogen synthesis in rat placenta. It is suggested that a function for glucocorticoid receptors in rat placenta may be the inhibition of local progesterone production.  相似文献   

9.
Secretion of lung surfactant phospholipids is a highly regulated process. A variety of physiological and pharmacological agents stimulate surfactant phospholipid secretion in isolated type II cells. Although the lipid and hydrophobic protein components of surfactant are believed to be secreted together by exocytosis of lamellar body contents, regulation of surfactant protein (SP) B and SP-C secretion has not previously been examined. To address the question of whether secretion of SP-B and SP-C is stimulated by the same agonists that stimulate phospholipid secretion, we measured secretion of all four SPs under the same conditions used to measure phosphatidylcholine secretion. Freshly isolated rat type II cells were cultured overnight and exposed to known surfactant phospholipid secretagogues for 2.5 h, after which the amounts of SP-A, SP-B, SP-C, and SP-D in the medium were measured with immunoblotting. Secretion of SP-B and SP-C was stimulated three- to fivefold by terbutaline, 5'-(N-ethylcarboxyamido)adenosine, ATP, 12-O-tetradecanoylphorbol 13-acetate, and ionomycin. Similar to their effects on phospholipid secretion, the stimulatory effects of the agonists were abolished by Ro 31-8220. Secretion of SP-A and SP-D was not stimulated by the secretagogues tested. We conclude that secretion of the phospholipid and hydrophobic protein components of surfactant is similarly regulated, whereas secretion of the hydrophilic proteins is regulated differently.  相似文献   

10.
Pulmonary surfactant protein D (SP-D) is expressed in alveolar type II and bronchiolar epithelial cells and is secreted into alveoli and conducting airways. However, SP-D has also been measured in serum and is increased in patients with acute respiratory distress syndrome, pulmonary fibrosis, and alveolar proteinosis. To demonstrate that SP-D can be measured in rat serum, we instilled rats with keratinocyte growth factor, which produces type II cell hyperplasia and an increase in SP-D in bronchoalveolar lavage fluid (BALF). To evaluate serum SP-D as a biomarker of lung injury, we examined several injury models. In rats treated with 1 unit of bleomycin, serum SP-D was elevated on days 3, 7, 14, and 28 after instillation, and SP-D mRNA was increased in focal areas as detected by in situ hybridization. However, there was no increase in whole lung SP-D mRNA when the expression was normalized to whole lung 18S rRNA. After instillation of 2 units of bleomycin, the serum levels of SP-D were higher, and SP-D was also increased in BALF and lung homogenates. In another model of subacute injury, serum SP-D was increased in rats treated with paraquat plus oxygen. Finally to evaluate acute lung injury, we instilled rats with HCl; SP-D was increased at 4 h after instillation. Our data indicate that serum SP-D may be a useful indicator of lung injury and type II cell hyperplasia in rats.  相似文献   

11.
During postnatal maturation, there is an increase in renal brush border membrane vesicle (BBMV) osmotic water permeability and a parallel increase in aquaporin-1 (AQP1) protein abundance. The mechanisms responsible for these changes remain unknown. Because serum glucocorticoid levels rise postnatally and have previously been linked to other maturational changes in renal function, we examined the effects of glucocorticoids on osmotic (Pf) and diffusional (P(DW)) water permeability and AQP1 protein abundance of renal BBMV. Neonatal rabbits were treated with dexamethasone (10 microg/100 g) for three days and compared with control neonates and adults. Pf and P(DW) were measured at 20 degrees C with a stopped-flow apparatus using light-scattering and aminonaphthalene trisulfonic acid (ANTS) fluorescence, respectively. Pf was significantly higher in BBMV from dexamethasone-treated neonates compared with vehicle-treated neonates, but remained lower than in BBMV from adults (P<0.05). P(DW) in dexamethasone and vehicle-treated neonatal BBMV was lower than in adult BBMV. Pf/P(DW) ratio increased from neonate (5.1+/-0.3) to dexamethasone (7.0+/-0.1) and adult BBMV (6.3+/-0.1). AQP1 expression was increased by dexamethasone treatment to adult levels. Membrane fluidity, which is inversely related to generalized polarization (GP) of steady-state laurdan fluorescence, was significantly higher in neonatal BBMV than both dexamethasone and adult BBMV (GP: neonate 0.285+/-0.002, dexamethasone treatment 0.302+/-0.006, and adult 0.300+/-0.005; P<0.05). These combined results show that dexamethasone-treatment during days 4-7 of life increases BBMV water permeability despite a decrease in membrane fluidity. This occurs by increasing channel-mediated water transport, as reflected in an increase in AQP1 protein abundance and a higher Pf/P(DW) ratio. This mimics the maturational changes and suggests a physiological role for glucocorticoids in maturation of proximal tubule water transport.  相似文献   

12.
13.
Respiratory distress and bronchopulmonary dysplasia (BPD) are major problems in preterm infants that are often addressed by glucocorticoid treatment and increased oxygen supply, causing catabolic and injurious side effects. Recombinant human keratinocyte growth factor (rhKGF) is noncatabolic and antiapoptotic and increases surfactant pools in immature lungs. Despite its usefulness in injured neonatal lungs, the mechanisms of improved surfactant homeostasis in vivo and systemic effects on lipid homeostasis are unknown. We therefore exposed newborn rats to 85% vs. 21% oxygen and treated them systemically with rhKGF for 48 h before death at 7 days. We determined type II pneumocyte (PN-II) proliferation, surfactant protein (SP) mRNA expression, and the pulmonary metabolism of individual phosphatidylcholine (PC) species using [D(9)-methyl]choline and tandem mass spectrometry. In addition, we assessed liver and plasma lipid metabolism, addressing PC synthesis de novo, the liver-specific phosphatidylethanolamine methyl transferase (PEMT) pathway, and triglyceride concentrations. rhKGF was found to maintain PN-II proliferation and increased SP-B/C expression and surfactant PC in both normoxic and hyperoxic lungs. We found increased total PC together with decreased [D(9)-methyl]choline enrichment, suggesting decreased turnover rather than increased secretion and synthesis as the underlying mechanism. In the liver, rhKGF increased PC synthesis, both de novo and via PEMT, underlining the organotypic differences of rhKGF actions on lipid metabolism. rhKGF increased the hepatic secretion of newly synthesized polyunsaturated PC, indicating improved systemic supply with choline and essential fatty acids. We suggest that rhKGF has potential as a therapeutic agent in neonates by improving pulmonary and systemic PC homeostasis.  相似文献   

14.
An in vivo rat model was used to evaluate the effects of Escherichia coli pneumonia on lung function and surfactant in bronchoalveolar lavage (BAL). Total extracellular surfactant was increased in infected rats compared with controls. BAL phospholipid content in infected rats correlated with the severity of alveolar-capillary leak as reflected in lavage protein levels (R(2) = 0.908, P < 0.0001). Western blotting showed that levels of surfactant protein (SP)-A and SP-D in BAL were significantly increased in both large and small aggregate fractions at 2 and 6 h postinstillation of E. coli. SP-B was also increased at these times in the large aggregate fraction of BAL, whereas SP-C levels were increased at 2 h and decreased at 6 h relative to controls. The small-to-large (S/L) aggregate ratio (a marker inversely proportional to surfactant function) was increased in infected rats with >50 mg total BAL protein. There was a significant correlation (R(2) = 0.885, P < 0.0001) between increasing S/L ratio in BAL and pulmonary damage assessed by total protein. Pulmonary volumes, compliance, and oxygen exchange were significantly decreased in infected rats with >50 mg of total BAL protein, consistent with surfactant dysfunction. In vitro surface cycling studies with calf lung surfactant extract suggested that bacterially derived factors may have contributed in part to the surfactant alterations seen in vivo.  相似文献   

15.
Collagenous lectins (collectins) present in mammalian serum and pulmonary fluids bind to influenza virus and display antiviral activity in vitro, but their role in vivo has yet to be determined. We have used early and late isolates of H3N2 subtype influenza viruses that differ in their degree of glycosylation to examine the relationship between sensitivity to murine serum and pulmonary lectins in vitro and the ability of a virus to replicate in the respiratory tract of mice. A marked inverse correlation was found between these two parameters. Early H3 isolates (1968 to 1972) bear 7 potential glycosylation sites on hemagglutinin (HA), whereas later strains carry 9 or 10. Late isolates were shown to be much more sensitive than early strains to neutralization by the mouse serum mannose-binding lectin (MBL) and rat lung surfactant protein D (SP-D) and bound greater levels of these lectins in enzyme-linked immunosorbent assays and Western blot analyses. They also replicated very poorly in mouse lungs compared to the earlier strains. Growth in the lungs was greatly enhanced, however, if saccharide inhibitors of the collectins were included in the virus inoculum. The level of SP-D in bronchoalveolar lavage fluids increased on influenza virus infection. MBL was absent from lavage fluids of normal mice but could be detected in fluids from mice 3 days after infection with the virulent strain A/PR/8/34 (H1N1). The results implicate SP-D and possibly MBL as important components of the innate defense of the respiratory tract against influenza virus and indicate that the degree or pattern of glycosylation of a virus can be an important factor in its virulence.  相似文献   

16.
17.
18.
Surfactant protein D (SP-D) and serum conglutinin are closely related members of the collectin family of host defense lectins. Although normally synthesized at different anatomic sites, both proteins participate in the innate immune response to microbial challenge. To discern the roles of specific domains in the function of SP-D in vivo, a fusion protein (SP-D/Cong(neck+CRD)) consisting of the NH(2)-terminal and collagenous domains of rat SP-D (rSP-D) and the neck and carbohydrate recognition domains (CRDs) of bovine conglutinin (Cong) was expressed in the respiratory epithelium of SP-D gene-targeted (SP-D(-/-)) mice. While SP-D/Cong(neck+CRD) fusion protein did not affect lung morphology and surfactant phospholipid levels in the lungs of wild type mice, the chimeric protein substantially corrected the increased lung phospholipids in SP-D(-/-) mice. The SP-D/Cong(neck+CRD) fusion protein also completely corrected defects in influenza A clearance and inhibited the exaggerated inflammatory response that occurs following viral infection. However, the chimeric protein did not ameliorate the ongoing lung inflammation, enhanced metalloproteinase expression, and alveolar destruction that characterize this model of SP-D deficiency. By contrast, a single arm mutant (RrSP-D(Ser15,20)) partially restored antiviral activity but otherwise failed to rescue the deficient phenotype. Our findings directly implicate the CRDs of both SP-D and conglutinin in host defense in vivo. Our findings also strongly suggest that the molecular mechanisms underlying impaired pulmonary host defense and abnormal lipid metabolism are distinct from those that promote ongoing inflammation and the development of emphysema.  相似文献   

19.
Increasing evidence now identifies surfactant protein D (SP-D) as an important element of the innate immune system of the lung. In this study, we examined the interactions of rat and human SP-D with the human pathogen, Mycoplasma pneumoniae. Rat and human SP-D bound the organism with high affinity in a reaction that required Ca(2+) and was inhibited by EGTA. Membranes derived from the organism bound the proteins in a similar manner, except the rat SP-D also exhibited a significant level of Ca(2+)-independent binding. Pretreatment of membranes with proteases did not alter the Ca(2+)-dependent SP-D binding of membranes by either protein. Mannose, glucose, maltose, and inositol, at millimolar concentrations, competed for human SP-D binding to the bacterial membrane. Lipids extracted from membranes and separated by two-dimensional thin layer chromatography bound human SP-D with high affinity in a Ca(2+)-dependent reaction. A tandem mutant of SP-D with E321Q and N323D substitutions, failed to bind M. pneumoniae lipids, directly implicating the carbohydrate recognition domain in the interaction. The interaction of rat and human SP-D with M. pneumoniae was unaffected by the presence of surfactant lipids and the hydrophobic surfactant proteins. These findings demonstrate that M. pneumoniae is likely to be recognized by SP-D in the alveolar environment and that primary determinants recognized on the organism are lipid components of the cell membrane.  相似文献   

20.

Background

Surfactant protein D (SP-D), an innate immune molecule, plays an important protective role during airway inflammation. Deficiency of this molecule induces emphysematous changes in murine lungs, but its significance in human COPD remains unclear.

Methods

We collected bronchoalveolar lavage fluid from 20 subjects with varying degrees of COPD (8 former smokers and 12 current smokers) and 15 asymptomatic healthy control subjects (5 never smokers, 3 remote former smokers, and 7 current smokers). All subjects underwent a complete medical history and pulmonary function testing. SP-D was measured by Enzyme-Linked ImmunoSorbent Assay. Statistical analysis was performed using nonparametric methods and multivariable linear regression for control of confounding. The effect of corticosteroid treatment on SP-D synthesis was studied in vitro using an established model of isolated type II alveolar epithelial cell culture.

Results

Among former smokers, those with COPD had significantly lower SP-D levels than healthy subjects (median 502 and 1067 ng/mL, respectively, p = 0.01). In a multivariable linear regression model controlling for age, sex, race, and pack-years of tobacco, COPD was independently associated with lower SP-D levels (model coefficient -539, p = 0.04) and inhaled corticosteroid use was independently associated with higher SP-D levels (398, p = 0.046). To support the hypothesis that corticosteroids increase SP-D production we used type II alveolar epithelial cells isolated from adult rat lungs. These cells responded to dexamethasone treatment by a significant increase of SP-D mRNA (p = 0.041) and protein (p = 0.037) production after 4 days of culture.

Conclusion

Among former smokers, COPD is associated with lower levels of SP-D and inhaled corticosteroid use is associated with higher levels of SP-D in the lung. Dexamethasone induced SP-D mRNA and protein expression in isolated epithelial cells in vitro. Given the importance of this molecule as a modulator of innate immunity and inflammation in the lung, low levels may play a role in the pathogenesis and/or progression of COPD. Further, we speculate that inhaled steroids may induce SP-D expression and that this mechanism may contribute to their beneficial effects in COPD. Larger, prospective studies are warranted to further elucidate the role of surfactant protein D in modulating pulmonary inflammation and COPD pathogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号