首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Endurance exercise training (Ex) has been shown to increase maximal skeletal muscle blood flow. The purpose of this study was to test the hypothesis that increased endothelium-dependent vasodilation is associated with the Ex-induced increase in muscle blood flow. Furthermore, we hypothesized that enhanced endothelium-dependent dilation is confined to vessels in high-oxidative muscles that are recruited during Ex. To test these hypotheses, sedentary (Sed) and rats that underwent Ex (30 m/min x 10% grade, 60 min/day, 5 days/wk, 8-12 wk) were studied using three experimental approaches. Training effectiveness was evidenced by increased citrate synthase activity in soleus and vastus lateralis (red section) muscles (P < 0.05). Vasodilatory responses to the endothelium-dependent agent acetylcholine (ACh) in situ tended to be augmented by training in the red section of gastrocnemius muscle (RG; Sed: control, 0.69 +/- 0.12; ACh, 1.25 +/- 0.15; Ex: control, 0.86 +/- 0.17; ACh, 1.76 +/- 0.27 ml x min(-1) x 100 g(-1) x mmHg(-1); 0.05 < P < 0.10 for Ex vs. Sed during ACh). Responses to ACh in situ did not differ between Sed and Ex for either the soleus muscle or white section of gastrocnemius muscle (WG). Dilatory responses of second-order arterioles from the RG in vitro to flow (4-8 microl/min) and sodium nitroprusside (SNP; 10(-7) through 10(-4) M), but not ACh, were augmented in Ex (vs. Sed; P < 0.05). Dilatory responses to ACh, flow, and SNP of arterioles from soleus and WG muscles did not differ between Sed and Ex. Content of the endothelial isoform of nitric oxide synthase (eNOS) was increased in second-order, fourth-order, and fifth-order arterioles from the RG of Ex; eNOS content was similar between Sed and Ex in vessels from the soleus and WG muscles. These findings indicate that Ex induces endothelial adaptations in fast-twitch, oxidative, glycolytic skeletal muscle. These adaptations may contribute to enhanced skeletal muscle blood flow in endurance-trained individuals.  相似文献   

2.
This study tested the hypothesis that both structural and functional adaptations of arterioles occur within the skeletal muscle of rats aerobically trained for 8-10 wk with treadmill exercise. The training regimen used has been shown to elicit a 37% increase in plantaris citrate synthase activity but did not result in an elevation in citrate synthase activity in the spinotrapezius or gracilis muscles of rats used in this study. In the in vivo resting spinotrapezius muscle, arteriole diameters were similar in sedentary (SED) and trained (TR) rats. However, large- (1A) and intermediate- (2A) sized arterioles dilated proportionately more in TR than in SED rats during 1- to 8-Hz muscle contractions, even though the passive mechanical properties (circumference-passive wall tension relationships) were similar between groups. Vascular casts demonstrated a trend for an increase in the number of small (3A) arterioles and an approximately 20% increase in the passive diameter of 1A and 2A arterioles in the spinotrapezius muscle of TR rats. In contrast, in the gracilis muscle, arteriole diameters and density were identical in SED and TR rats, but the capillary-to-muscle fiber ratio was approximately 15% higher in TR rats. The results suggest that aerobic exercise training can greatly increase functional vasodilation and induce a slight increase in vascular density in skeletal muscle tissues, even if the oxidative capacity of these tissues is not increased by the training regimen.  相似文献   

3.
The purpose of this investigation was to determine whether long-term, heavy resistance training would cause adaptations in rat skeletal muscle structure and function. Ten male Wistar rats (3 weeks old) were trained to climb a 40-cm vertical ladder (4 days/week) while carrying progressively heavier loads secured to their tails. After 26 weeks of training the rats were capable of lifting up to 800 g or 140% of their individual body mass for four sets of 12–15 repetitions per session. No difference in body mass was observed between the trained rats and age-matched sedentary control rats. Absolute and relative heart mass were greater in trained rats than control rats. When expressed relative to body mass, the mass of the extensor digitorum longus (EDL) and soleus muscles was greater in trained rats than control rats. No difference in absolute muscle mass or maximum force-producing capacity was evident in either the EDL or soleus muscles after training, although both muscles exhibited an increased resistance to fatigue. Individual fibre hypertrophy was evident in all four skeletal muscles investigated, i.e. EDL, soleus, plantaris and rectus femoris muscles of trained rats, but muscle fibre type proportions within each of the muscles tested remained unchanged. Despite an increased ability of the rats to lift progressively heavier loads, this heavy resistance training model did not induce gross muscle hypertrophy nor did it increase the force-producing capacity of the EDL or soleus muscles. Accepted: 17 September 1997  相似文献   

4.
Although several studies have analyzed the fatty acid profile of phospholipids (PL) and, to a lesser degree, triacylglycerols (TG) in one or more tissues concurrently, a systematic comparison of the fatty acid composition of different tissues and/or lipid classes is lacking. The purpose of the present study was to compare the fatty acid composition of major lipid classes (PL and TG) in the rat serum, soleus muscle, extensor digitorum longus muscle and the heart. Lipids were extracted from these tissues and analyzed by a combination of thin-layer chromatography and gas chromatography. We found many significant differences in various tissues and lipid classes. Serum had the most distinct fatty acid profile in PL but this "uniqueness" was less apparent in TG, where differences among tissues were in general less frequent than in PL. These two skeletal muscles exhibited similar fatty acid composition in both lipid classes despite their different muscle fiber type composition, denoting that fiber type is not a major determinant of the fatty acid composition of rat skeletal muscle. The fatty acid profile of heart PL was the most different from that of the other tissues examined. PL were rich in polyunsaturated fatty acids, whereas TG were rich in monounsaturated fatty acids. Although the reasons for the differences in fatty acid profile among the tissues examined are largely unknown, it is likely that these differences have an impact upon numerous biological functions.  相似文献   

5.
Our laboratory has demonstrated (Steen MS, Foianini KR, Youngblood EB, Kinnick TR, Jacob S, and Henriksen EJ, J Appl Physiol 86: 2044-2051, 1999) that exercise training and treatment with the angiotensin-converting enzyme (ACE) inhibitor trandolapril interact to improve insulin action in insulin-resistant obese Zucker rats. The present study was undertaken to determine whether a similar interactive effect of these interventions is manifest in an animal model of normal insulin sensitivity. Lean Zucker (Fa/-) rats were assigned to either a sedentary, trandolapril-treated (1 mg. kg(-1). day(-1) for 6 wk), exercise-trained (treadmill running for 6 wk), or combined trandolapril-treated and exercise-trained group. Exercise training alone or in combination with trandolapril significantly (P < 0.05) increased peak oxygen consumption by 26-32%. Compared with sedentary controls, exercise training alone or in combination with ACE inhibitor caused smaller areas under the curve for glucose (27-37%) and insulin (41-44%) responses during an oral glucose tolerance test. Exercise training alone or in combination with trandolapril also improved insulin-stimulated glucose transport in isolated epitrochlearis (33-50%) and soleus (58-66%) muscles. The increases due to exercise training alone or in combination with trandolapril were associated with enhanced muscle GLUT-4 protein levels and total hexokinase activities. However, there was no interactive effect of exercise training and ACE inhibition observed on insulin action. These results indicate that, in rats with normal insulin sensitivity, exercise training improves oral glucose tolerance and insulin-stimulated muscle glucose transport, whereas ACE inhibition has no effect. Moreover, the beneficial interactive effects of exercise training and ACE inhibition on these parameters are not apparent in lean Zucker rats and, therefore, are restricted to conditions of insulin resistance.  相似文献   

6.
Chronic leptin administration reduces triacylglycerol content in skeletal muscle. We hypothesized that chronic leptin treatment, within physiologic limits, would reduce the fatty acid uptake capacity of red and white skeletal muscle due to a reduction in transport protein expression (fatty acid translocase (FAT/CD36) and plasma membrane-associated fatty acid-binding protein (FABPpm)) at the plasma membrane. Female Sprague-Dawley rats were infused for 2 weeks with leptin (0.5 mg/kg/day) using subcutaneously implanted miniosmotic pumps. Control and pair-fed animals received saline-filled implants. Leptin levels were significantly elevated (approximately 4-fold; p < 0.001) in treated animals, whereas pair-fed treated animals had reduced serum leptin levels (approximately -2-fold; p < 0.01) relative to controls. Palmitate transport rates into giant sarcolemmal vesicles were reduced following leptin treatment in both red (-45%) and white (-84%) skeletal muscle compared with control and pair-fed animals (p < 0.05). Leptin treatment reduced FAT mRNA (red, -70%, p < 0.001; white, -48%, p < 0.01) and FAT/CD36 protein expression (red, -32%; p < 0.05) in whole muscle homogenates, whereas FABPpm mRNA and protein expression were unaltered. However, in leptin-treated animals plasma membrane fractions of both FAT/CD36 and FABPpm protein expression were significantly reduced in red (-28 and -34%, respectively) and white (-44 and -56%, respectively) muscles (p < 0.05). Across all experimental treatments and muscles, palmitate uptake by giant sarcolemmal vesicles was highly correlated with the plasma membrane FAT/CD36 protein (r = 0.88, p < 0.01) and plasma membrane FABPpm protein (r = 0.94, p < 0.01). These studies provide the first evidence that protein-mediated long chain fatty acid transport is subject to long term regulation by leptin.  相似文献   

7.
FATP1 and FATP4 appear to be important for the cellular uptake and handling of long chain fatty acids (LCFA). These findings were obtained from loss- or gain of function models. However, reports on FATP1 and FATP4 in human skeletal muscle are limited. Aerobic training enhances lipid oxidation; however, it is not known whether this involves up-regulation of FATP1 and FATP4 protein. Therefore, the aim of this project was to investigate FATP1 and FATP4 protein expression in the vastus lateralis muscle from healthy human individuals and to what extent FATP1 and FATP4 protein expression were affected by an increased fuel demand induced by exercise training. Eight young healthy males were recruited to the study. All subjects were non smokers and did not participate in regular physical activity (<1 time per week for the past 6 months, VO2peak 3.4±0.1 l O2 min−1). Subjects underwent an 8 week supervised aerobic training program. Training induced an increase in VO2peak from 3.4±0.1 to 3.9±0.1 l min−1 and citrate synthase activity was increased from 53.7±2.5 to 80.8±3.7 µmol g−1 min−1. The protein content of FATP4 was increased by 33%, whereas FATP1 protein content was reduced by 20%. Interestingly, at the end of the training intervention a significant association (r2 = 0.74) between the observed increase in skeletal muscle FATP4 protein expression and lipid oxidation during a 120 min endurance exercise test was observed. In conclusion, based on the present findings it is suggested that FATP1 and FATP4 proteins perform different functional roles in handling LCFA in skeletal muscle with FATP4 apparently more important as a lipid transport protein directing lipids for lipid oxidation.  相似文献   

8.
Fatty acid transport proteins are present on the plasma membrane and are involved in the uptake of long-chain fatty acids into skeletal muscle. The present study determined whether acute endurance exercise increased the plasma membrane content of fatty acid transport proteins in rat and human skeletal muscle and whether the increase was accompanied by an increase in long-chain fatty acid transport in rat skeletal muscle. Sixteen subjects cycled for 120 min at ~60 ± 2% Vo(2) peak. Two skeletal muscle biopsies were taken at rest and again following cycling. In a parallel study, eight Sprague-Dawley rats ran for 120 min at 20 m/min, whereas eight rats acted as nonrunning controls. Giant sarcolemmal vesicles were prepared, and protein content of FAT/CD36 and FABPpm was measured in human and rat vesicles and whole muscle homogenate. Palmitate uptake was measured in the rat vesicles. In human muscle, plasma membrane FAT/CD36 and FABPpm protein contents increased 75 and 20%, respectively, following 120 min of exercise. In rat muscle, plasma membrane FAT/CD36 and FABPpm increased 20 and 30%, respectively, and correlated with a 30% increase in palmitate transport following 120 min of running. These data suggest that the translocation of FAT/CD36 and FABPpm to the plasma membrane in rat skeletal muscle is related to the increase in fatty acid transport and oxidation that occurs with endurance running. This study is also the first to demonstrate that endurance cycling induces an increase in plasma membrane FAT/CD36 and FABPpm content in human skeletal muscle, which is predicted to increase fatty acid transport.  相似文献   

9.
We have recently demonstrated (Saengsirisuwan V, Kinnick TR, Schmit MB, and Henriksen EJ, J Appl Physiol 91: 145-153, 2001) that exercise training (ET) and the antioxidant R-(+)-alpha-lipoic acid (R-ALA) interact in an additive fashion to improve insulin action in insulin-resistant obese Zucker (fa/fa) rats. The purpose of the present study was to assess the interactions of ET and R-ALA on insulin action and oxidative stress in a model of normal insulin sensitivity, the lean Zucker (fa/-) rat. For 6 wk, animals either remained sedentary, received R-ALA (30 mg. kg body wt(-1). day(-1)), performed ET (treadmill running), or underwent both R-ALA treatment and ET. ET alone or in combination with R-ALA significantly increased (P < 0.05) peak oxygen consumption (28-31%) and maximum run time (52-63%). During an oral glucose tolerance test, ET alone or in combination with R-ALA resulted in a significant lowering of the glucose response (17-36%) at 15 min relative to R-ALA alone and of the insulin response (19-36%) at 15 min compared with sedentary controls. Insulin-mediated glucose transport activity was increased by ET alone in isolated epitrochlearis (30%) and soleus (50%) muscles, and this was associated with increased GLUT-4 protein levels. Insulin action was not improved by R-ALA alone, and ET-associated improvements in these variables were not further enhanced with combined ET and R-ALA. Although ET and R-ALA caused reductions in soleus protein carbonyls (an index of oxidative stress), these alterations were not significantly correlated with insulin-mediated soleus glucose transport. These results indicate that the beneficial interactive effects of ET and R-ALA on skeletal muscle insulin action observed previously in insulin-resistant obese Zucker rats are not apparent in insulin-sensitive lean Zucker rats.  相似文献   

10.
To study the peripheral effects of melanocortin on fuel homeostasis in skeletal muscle, we assessed palmitate oxidation and AMP kinase activity in alpha-melanocyte-stimulating hormone (alpha-MSH)-treated muscle cells. After alpha-MSH treatment, carnitine palmitoyltransferase-1 and fatty acid oxidation (FAO) increased in a dose-dependent manner. A strong melanocortin agonist, NDP-MSH, also stimulated FAO in primary culture muscle cells and C2C12 cells. However, [Glu6]alpha-MSH-ND, which has ample MC4R and MC3R agonistic activity, stimulated FAO only at high concentrations (10(-5) M). JKC-363, a selective MC4R antagonist, did not suppress alpha-MSH-induced FAO. Meanwhile, SHU9119, which has both antagonistic activity on MC3R and MC4R and agonistic activity on both MC1R and MC5R, increased the effect of alpha-MSH on FAO in both C2C12 and primary muscle cells. Small interference RNA against MC5R suppressed the alpha-MSH-induced FAO effectively. cAMP analogues mimicked the effect of alpha-MSH on FAO, and the effects of both alpha-MSH and cAMP analogue-mediated FAO were antagonized by a protein kinase A inhibitor (H89) and a cAMP antagonist ((Rp)-cAMP). Acetyl-CoA carboxylase activity was suppressed by alpha-MSH and cAMP analogues by phosphorylation through AMP-activated protein kinase activation in C2C12 cells. Taken together, these results suggest that alpha-MSH increases FAO in skeletal muscle, in which MC5R may play a major role. Furthermore, these results suggest that alpha-MSH-induced FAO involves cAMP-protein kinase A-mediated AMP-activated protein kinase activation.  相似文献   

11.
12.
Exercise training (ET) or the antioxidant R(+)-alpha-lipoic acid (R-ALA) individually increases insulin action in the insulin-resistant obese Zucker rat. The purpose of the present study was to determine the interactions of ET and R-ALA on insulin action and oxidative stress in skeletal muscle of the obese Zucker rat. Animals either remained sedentary, received R-ALA (30 mg x kg body wt(-1) x day(-1)), performed ET (treadmill running), or underwent both R-ALA treatment and ET for 6 wk. During an oral glucose tolerance test, ET alone or in combination with R-ALA resulted in a significant lowering of the glucose (26-32%) and insulin (29-30%) responses compared with sedentary controls. R-ALA alone decreased (19%) the glucose-insulin index (indicative of increased insulin sensitivity), and this parameter was reduced (48-52%) to the greatest extent in the ET and combined treatment groups. ET or R-ALA individually increased insulin-mediated glucose transport activity in isolated epitrochlearis (44-48%) and soleus (37-57%) muscles. The greatest increases in insulin action in these muscles (80 and 99%, respectively) were observed in the combined treatment group. Whereas the improvement in insulin-mediated glucose transport in soleus due to R-ALA was associated with decreased protein carbonyl levels (an index of oxidative stress), improvement because of ET was associated with decreased protein carbonyls as well as enhanced GLUT-4 protein. However, there was no interactive effect of ET and R-ALA on GLUT-4 protein or protein carbonyl levels. These results indicate that ET and R-ALA interact in an additive fashion to improve insulin action in insulin-resistant skeletal muscle. Because the further improvement in muscle glucose transport in the combined group was not associated with additional upregulation of GLUT-4 protein or a further reduction in oxidative stress, the mechanism for this interaction must be due to additional, as yet unidentified, factors.  相似文献   

13.
14.
Stimulation of AMPK and decreased glycogen levels in skeletal muscle have a deep involvement in enhanced insulin action and GLUT-4 protein content after exercise training. The present study examined the chronic effects of a continuous low-carbohydrate diet after long-term exercise on GLUT-4 protein content, glycogen content, AMPK, and insulin signaling in skeletal muscle. Rats were divided randomly into four groups: normal chow diet sedentary (N-Sed), low carbohydrate diet sedentary (L-Sed), normal chow diet exercise (N-Ex), and low carbohydrate diet exercise (L-Ex) groups. Rats in the exercise groups (N-Ex and L-Ex) were exercised by swimming for 6 hours/day in two 3-hour bouts separated by 45 minutes of rest. The 10-day exercise training resulted in a significant increase in the GLUT-4 protein content (p<0.01). Additionally, the GLUT-4 protein content in L-Ex rats was increased by 29% above that in N-Ex rats (p<0.01). Finally, the glycogen content in skeletal muscle of L-Ex rats was decreased compared with that of N-Ex rats. Taken together, we suggest that the maintenance of glycogen depletion after exercise by continuous low carbohydrate diet results in the increment of the GLUT-4 protein content in skeletal muscle.  相似文献   

15.
16.
17.
Dynamic exercise training in foxhounds. II. Analysis of skeletal muscle   总被引:1,自引:0,他引:1  
The purpose of this study was to determine whether 8-12 wk of endurance training produces biochemical and histochemical adaptations in skeletal muscle in foxhounds. Analyses were performed on samples removed from gastrocnemius, triceps, and semitendinosus muscles of foxhounds before and after a treadmill running program. Biochemical analysis showed that training did not alter the activities of phosphofructokinase, beta-hydroxyacyl-CoA dehydrogenase, succinate dehydrogenase, or total phosphorylase. Histochemical analysis of myofibrillar actomyosin ATPase demonstrated three distinct classes of type II fibers and one type I fiber in the semitendinosus and triceps muscles and two type II and two type I fibers in the gastrocnemius muscle. Fiber type distribution and oxidative and glycolytic potentials, as indicated by nicotinamide adenine dinucleotide tetrazolium reductase or alpha-glycerophosphate dehydrogenase staining intensity, were unaltered by training. Similarly, capillary density, capillary-to-fiber ratios, and capillary area-to-fiber area ratios did not change with training. Thus, unlike humans and other mammals (i.e., rat), these foxhounds did not manifest biochemical or histochemical adaptations in skeletal muscle as the result of endurance training. This is consistent with the results of the study in which endurance training produced a 27% increase in maximal cardiac output and a 4% increase in maximal arteriovenous O2 extraction in foxhounds.  相似文献   

18.
This study investigated the effect of reduced free fatty acid (FFA) availability on pyruvate dehydrogenase activation (PDHa) and carbohydrate metabolism during moderate aerobic exercise. Eight active male subjects cycled for 40 min at 55% Vo(2 peak) on two occasions. During one trial, subjects ingested 20 mg/kg body mass of the antilipolytic drug nicotinic acid (NA) during the hour before exercise to reduce FFA. Nothing was ingested in the control trial (CON). Blood and expired gas measurements were obtained throughout the trials, and muscle biopsy samples were obtained immediately before exercise and at 5, 20, and 40 min of exercise. Plasma FFA were lower in the NA trial (0.13 +/- 0.01 vs. 0.48 +/- 0.03 mM, P < 0.05), and the respiratory exchange ratio (RER) was increased with NA (0.93 +/- 0.01 vs. 0.89 +/- 0.01, P < 0.05), resulting in a 14.5 +/- 1.8% increase in carbohydrate oxidation compared with CON. PDHa increased rapidly in both trials at exercise onset but was approximately 15% higher (P < 0.05) throughout exercise in the NA trial (2.44 +/- 0.19 and 2.07 +/- 0.12 mmol x kg wet muscle(-1) x min(-1) for NA and CON at 40 min). Muscle glycogenolysis was 15.3 +/- 9.6% greater in the NA trial vs. the CON trial but did not reach statistical significance. Glucose 6-phosphate contents were elevated (P < 0.05) in the NA trial at 30 and 40 min of exercise, but pyruvate and lactate contents were unaffected. These data demonstrate that the reduction of exogenous FFA availability increased the activation of PDH and carbohydrate oxidation during moderate aerobic exercise in men. The increased activation of PDH was not explained by changes in muscle pyruvate or the ATP/ADP ratio but may be related to a decrease in the NADH/NAD(+) ratio or an epinephrine-induced increase in calcium concentration.  相似文献   

19.
We analyzed the whole-cell protein content of gastrocnemius muscles from rats in different thyroid states. Twenty differentially expressed proteins were unambiguously identified. They were involved in substrates and energy metabolism, stress response, cell structure, and gene expression. This study represents the first systematic identification of thyroid state-induced changes in the skeletal muscle protein-expression profile and reveals new cellular pathways as targets for thyroid hormone action.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号