首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The substrate 16-methylene estra-1,3,5(10)-triene-3,17 beta-diol (16-methylene estradiol-17 beta) and its enzyme-generated alkylating product, 3-hydroxy-16-methylene estra-1,3,5(10)-triene-17-one (16-methylene estrone), were synthesized to study the 17 beta- and 20 alpha-hydroxysteroid dehydrogenase activities which coexist in homogeneous enzyme purified from human placental cytosol. 16-Methylene estradiol, an excellent substrate (Km = 8.0 microM; Vmax = 2.8 mumol/mg/min) when enzymatically oxidized to 16-methylene estrone in the presence of NAD+ (256 microM), inactivates simultaneously the 17 beta- and 20 alpha-activities in a time-dependent and irreversible manner following pseudo-first order kinetics (t1/2 = 1.0 h, 100 microM, pH 9.2). 16-Methylene estradiol does not inactivate the enzyme in the absence of NAD+. 16-Methylene estrone (Km = 2.7 microM; Vmax = 2.9 mumol/mg/min) is an affinity alkylator (biomolecular rate constant k'3 = 63.3 liters/mol-s, pH 9.2; KI = 261 microM; k3 = 8.0 X 10(-4) S-1, pH 7.0) which also simultaneously inhibits both activities in an irreversible time-dependent manner (at 25 microM; t1/2 = 7.2 min, pH 9.2; t1/2 = 2.7 h, pH 7.0). Substrates (estradiol-17 beta, estrone, and progesterone) protect against inhibition of enzyme activity by 16-methylene estrone and 16-methylene estradiol. Affinity radioalkylation studies using 16-methylene [6,7-3H]estrone demonstrate that 1 mol of alkylator binds per mol of inactivated enzyme dimer. Thus, 16-methylene estradiol functions as a unique substrate for the enzymatic generation of a powerful affinity alkylator of 17 beta,20 alpha-hydroxysteroid dehydrogenase and should be a useful pharmacological tool.  相似文献   

2.
Human membrane 17 beta-hydroxysteroid dehydrogenase 2 is an enzyme essential in the conversion of the highly active 17beta-hydroxysteroids into their inactive keto forms in a variety of tissues. 17 beta-hydroxysteroid dehydrogenase 2 with 6 consecutive histidines at its N terminus was expressed in Sf9 insect cells. This recombinant protein retained its biological activity and facilitated the enzyme purification and provided the most suitable form in our studies. Dodecyl-beta-D-maltoside was found to be the best detergent for the solubilization, purification, and reconstitution of this enzyme. The overexpressed integral membrane protein was purified with a high catalytic activity and a purity of more than 90% by nickel-chelated chromatography. For reconstitution, the purified protein was incorporated into dodecyl-beta-D-maltoside-destabilized liposomes prepared from l-alpha-phosphatidylcholine. The detergent was removed by adsorption onto polystyrene beads. The reconstituted enzyme had much higher stability and catalytic activity (2.6 micromol/min/mg of enzyme protein with estradiol) than the detergent-solubilized and purified protein (0.9 micromol/min/mg of enzyme protein with estradiol). The purified and reconstituted protein (with a 2-kDa His tag) was proved to be a homodimer, and its functional molecular mass was calculated to be 90.4 +/- 1.2 kDa based on glycerol gradient analytical ultracentrifugation and chemical cross-linking study. The kinetic studies demonstrated that 17 beta-hydroxysteroid dehydrogenase 2 was an NAD-preferring dehydrogenase with the K(m) of NAD being 110 +/- 10 microM and that of NADP 9600 +/- 100 microM using estradiol as substrate. The kinetic constants using estradiol, testosterone, dihydrotestosterone, and 20 alpha-dihydroprogesterone as substrates were also determined.  相似文献   

3.
Characteristics of acyl-coenzyme A (acyl-CoA):steroid acyltransferase from the digestive gland of the oyster Crassostrea virginica were determined by using estradiol (E2) and dehydroepiandrosterone (DHEA) as substrates. The apparent Km and Vmax values for esterification of E2 with the six fatty acid acyl-CoAs tested (C20:4, C18:2, C18:1, C16:1, C18:0, and C16:0) were in the range of 9-17 microM E2 and 35-74 pmol/min/mg protein, respectively. Kinetic parameters for esterification of DHEA (Km: 45-120 microM; Vmax: 30-182 pmol/min/mg protein) showed a lower affinity of the enzyme for this steroid. Formation of endogenous fatty acid esters of steroids by microsomes of digestive gland and gonads incubated in the presence of ATP and CoA was assessed, and at least seven E2 fatty acid esters and five DHEA fatty acid esters were observed. Some peaks eluted at the same retention times as palmitoleoyl-, linoleoyl-, oleoyl/palmitoyl-, and stearoyl-E2; and palmitoleoyl-, oleoyl/palmitoyl-, and stearoyl-DHEA. The same endogenous esters, although in different proportions, were produced by gonadal microsomes. The kinetic parameters for both E2 (Km: 10 microM; Vmax: 38 pmol/min/mg protein) and DHEA (Km: 61 microM; Vmax: 60 pmol/min/mg protein) were similar to those obtained in the digestive gland. Kinetic parameters obtained are similar to those observed in mammals; thus, fatty acid esterification of sex steroids appears to be a well-conserved conjugation pathway during evolution.  相似文献   

4.
A sensitive nonradiometric assay of aromatization of 16 alpha-hydroxylated androgens, 16 alpha-hydroxy-4-androstene-3,17-dione (16 alpha-OHA), and 16 alpha-hydroxytestosterone (16 alpha-OHT), has been developed using reverse-phase high-performance liquid chromatography with voltametric detector. The estrogens produced by human placental microsomes, estriol (E3) and 16 alpha-hydroxyestrone (16 alpha-OHE1), were simultaneously detected in quantities as low as 1-2 ng using 3-methoxy-1,3,5(10)-estratriene-2, 16 alpha,17 beta-triol as an internal standard. E3 was the only estrogen detected from the incubate of 16 alpha-OHT with the microsomes and NADPH, while 16 alpha-OHA gave 16 alpha-OHE1 and E3 under the same conditions. Apparent Km and Vmax of the microsomal aromatase for 16 alpha-OHA and 16 alpha-OHT were 2.56 microM and 71.4 pmol/min/mg and 13.33 microM and 15.4 pmol/min/mg, respectively.  相似文献   

5.
The metabolism of estradiol 17-sulfate by subcellular localization enzymes of pheochromocytoma tissue obtained from a 41-year old female was investigated. In any incubations under the presence of NADH and NADPH, metabolites hydroxylated at the C-2, C-4, C-6 beta, C-7 alpha and C-7 beta positions were produced. These hydroxylations are considered to occur without cleavage of the sulfate group. The 2-hydroxylation at the substrate concentration of 100 microM by mitochondria, microsomes and cytosol fractions occurred at rates of 141, 222 and 167 pmol/mg protein/30 min, respectively; the corresponding rates for the 4-hydroxylation were 24, 40 and 38 pmol/mg protein/30 min. Mitochondrial 2- and 4-hydroxylations were enhanced by addition of calcium ion (Ca2+) into the incubation medium.  相似文献   

6.
G L Murdock  J C Warren  F Sweet 《Biochemistry》1988,27(12):4452-4458
Human placental estradiol 17 beta-dehydrogenase (EC 1.1.1.62) was affinity labeled with 17 alpha-estradiol 17-(bromo[2-14C]acetate) (10 microM) or 17 beta-estradiol 17-(bromo[2-14C]acetate) (10 microM). The steroid bromoacetates competitively inhibit the enzyme (against 17 beta-estradiol) with Ki values of 90 microM (17 alpha bromoacetate) and 134 microM (17 beta bromoacetate). Inactivation of the enzyme followed pseudo-first-order kinetics with a t1/2 = 110 min (17 alpha bromoacetate) and t1/2 = 220 min (17 beta bromoacetate). Amino acid analysis of the affinity radioalkylated enzyme samples from the two bromoacetates revealed that N pi-(carboxy[14C]methyl)histidine was the modified amino acid labeled in each case. Digestion with trypsin produced peptides that were isolated by reverse-phase high-performance liquid chromatography and found to contain N pi-(carboxy[14C]methyl)histidine. Both the 17 alpha bromoacetate and also the 17 beta bromoacetate modified the same histidine in the peptide Phe-Tyr-Gln-Tyr-Leu-Ala-His(pi-CM)-Ser-Lys. Previously, the same histidine had been exclusively labeled by estrone 3-(bromoacetate) and shown not to be directly involved in catalytic hydrogen transfer at the D-ring of estradiol. Therefore, this histidine was presumed to proximate the A-ring of the bound steroid substrate. The present results suggest that the 17 alpha bromoacetate and 17 beta bromoacetate D-ring analogues of estradiol react with the same active site histidine residue as estrone 3-(bromoacetate), the A-ring analogue of estrone.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The effect of epostane [(2 alpha,4 alpha,5 alpha,17 beta)-4,5-epoxy-17-hydroxy-4,17-dimethyl-3-oxo- androstane-2-carbonitrile] on the conversion of pregnenolone to progesterone and of dehydroepiandrosterone (DHA) to androstenedione was studied in human term placental microsomes and in comparison with human ovarian and adrenal microsomes. Using pregnenolone as substrate, 3 beta-hydroxysteroid dehydrogenase (3 beta-HSD) activity in the three tissues had a similar Km (3-6 microM) but Vmax ranged from 1.3 nmol/mg protein per min in ovary to 10 nmol/mg protein per min in placenta. Epostane inhibited 3 beta-HSD activity in all three tissues with the characteristics of a pure competitive inhibitor: mean Ki values were 1.7 microM for placenta, 0.5 microM for adrenal and 0.1 microM for ovary. Moreover, in placental microsomes epostane inhibited the conversion of DHA to androstenedione with a Ki of 0.6 microM. The mechanism of action of epostane explains its effectiveness in blocking progesterone synthesis during the luteal phase and in pregnancy in women, and its strong anti-steroidogenic effect in other endocrine tissues in vitro.  相似文献   

8.
We have correlated the concentrations of serum LH, estradiol and progesterone with the activities of 2 ovarian steroid biosynthetic enzymes during the rat estrous cycle. Ovarian 3 β-hydroxysteroid dehydrogenase isomerase (3-βHSD) activity decreased from 29 ± 6 nmol/mg protein/ min (mean ± SEM) in diestrus, to 7 ± 0.4 nmol/mg protein/min in late proestrus (p < 0.005), and subsequently increased to 36 ± 9 nmol/mg protein/min in metestrus (p < 0.01). Ovarian 17-hydroxylase (17-OH) activity decreased from early to late proestrus (3.3 ± 0.2 vs 2.2 ± 0.2 nmol/mg protein/min, p <0.0025), and subsequently increased to 3.9 ± 0.2 in metestrus (p<0.001). Serum LH, estradiol and progesterone peaked during proestrus, and reached a nadir during estrus. We conclude that the activities of 3-βHSD and 17-OH in the rat ovary vary markedly during the estrous cycle. These changes may underlie the pattern of steroid secretion characteristic of this process.  相似文献   

9.
Kinetic studies of inhibition of estradiol 2- and 16 alpha-hydroxylase activities in male rat liver microsomes with cytochrome P-450 inhibitors, alpha-naphthoflavone, DL-aminoglutethimide, SKF-525A and metyrapone, were extensively carried out. All of the inhibitors competitively blocked the two enzyme activities. The former three inhibitors preferentially inhibited the 16 alpha-hydroxylase activity while the reverse result was obtained in the case of metyrapone, and SKF-525A was the most potent inhibitors for the two enzyme among the four inhibitors. The kinetic data, the apparent Ki's for the four inhibitors and Km's for the substrate estradiol in the assays, along with the inhibition results with carbon monooxide suggest that different forms of cytochrome P-450 may be involved in the two hydroxylations. Kinetic parameters of the two hydroxylase activities in female rat liver microsomes were then determined to be an apparent Km of 23.0 and 158 microM and Vmax of 99.0 and 5.65 pmol/min/mg protein for the 2-hydroxylation and the 16 alpha-hydroxylation, respectively. The kinetic data show that the 2-hydroxylation may be quantitatively an exclusive hydroxylative pathway in estrogen metabolism in female.  相似文献   

10.
Human multidrug resistance protein 4 (MRP4) has recently been determined to confer resistance to the antiviral purine analog 9-(2-phosphonylmethoxyethyl)adenine and methotrexate. However, neither its substrate selectivity nor physiological functions have been determined. Here we report the results of investigations of the in vitro transport properties of MRP4 using membrane vesicles prepared from insect cells infected with MRP4 baculovirus. It is shown that expression of MRP4 is specifically associated with the MgATP-dependent transport of cGMP, cAMP, and estradiol 17-beta-D-glucuronide (E(2)17 beta G). cGMP, cAMP, and E(2)17 beta G are transported with K(m) and V(max) values of 9.7 +/- 2.3 microm and 2.0 +/- 0.3 pmol/mg/min, 44.5 +/- 5.8 microm and 4.1 +/- 0.4 pmol/mg/min, and 30.3 +/- 6.2 microm and 102 +/- 16 pmol/mg/min, respectively. Consistent with its ability to transport cyclic nucleotides, it is demonstrated that the MRP4 drug resistance profile extends to 6-mercaptopurine and 6-thioguanine, two anticancer purine analogs that are converted in the cell to nucleotide analogs. On the basis of its capacity to transport cyclic nucleotides and E(2)17 beta G, it is concluded that MRP4 may influence diverse cellular processes regulated by cAMP and cGMP and that its substrate range is distinct from that of any other characterized MRP family member.  相似文献   

11.
Testosterone biosynthesis by Leydig cells can be modulated by estradiol. This modulation appears to occur at the 17-hydroxylase and 17,20-desmolase stage. In this study we have examined the effects of estradiol and progesterone on the activities of the 17-hydroxylase (17-OH) and 3 beta-hydroxysteroid dehydrogenase (3 beta-HSD) in rat ovarian tissue, to examine the hypothesis that estradiol may regulate these enzymes in the ovary as well as in the testis. Estradiol capsule implants produced a decrease in 17-OH activity (0.5 +/- 0.05 vs. 2.1 +/- 0.1 nmol/mg protein/min, mean +/- SEM, p less than 0.001), and an increase in 3 beta-HSD activity (15.5 +/- 0.9 vs 9.7 +/- 0.7 nmol/mg protein/min p less than 0.001). Progesterone injections produced a decrease in both 17-OH (0.9 +/- 0.1 vs. 2.3 +/- 0.2 p less than 0.005) and 3 beta-HSD (2.5 +/- .4 vs. 8.6 +/- 0.5; p less than 0.005) activities. We conclude that estradiol decreases 17-OH activity in the ovary as it does in the testis. This, coupled with an increase in 3 beta-HSD may explain the pre-ovulatory increase in progesterone seen in many species. Progesterone seems to decrease the steroidogenic activity of the ovarian tissue, perhaps offering an explanation for the gonadotropin resistance seen in corpus luteus bearing ovaries.  相似文献   

12.
Kinetic mechanism of guinea pig neutrophil 5-lipoxygenase   总被引:2,自引:0,他引:2  
The kinetic mechanism of guinea pig neutrophil 5-lipoxygenase was investigated using a continuous spectrophotometric assay that monitors product diene formation at 236 nm due to substrate oxygenation. Progress curves for reactions with both arachidonic acid and eicosapentaenoic acid are characterized by 1-3-min lag phases in the attainment of steady-state velocities and product inhibition, as indicated by the total cessation of the reaction prior to complete depletion of substrate. The dependence of the steady-state velocity on arachidonic acid concentration appears to follow Michaelis-Menten kinetics, with Vmax = 4.2 +/- 0.4 nmol of 5-hydroxy-6,8,11,14-eicosatetraenoic acid/min/mg of protein and Ks = 25 +/- 4 microM. The addition of Ca2+ results in an overall activation: lag phases are shortened to 10-20 s, Vmax increases to 24 +/- 2 nmol/min/mg of protein, and Ks decreases to 7.7 +/- 1.7 microM; and a change in a mechanism to one involving substrate inhibition (Kss = 13 +/- 1 microM). The observed activation by Ca2+ has a half-maximal response at around 30 microM. In the presence of Ca2+, ATP causes an increase in Vmax to 30 +/- 4 nmol/min/mg of protein without changing Ks or Kss and a reduction of the lag to less than 5 s. The half-maximal response for ATP is 31 +/- 7 microM. Oxygenation of eicosapentaenoic acid in the presence of Ca2+ and ATP occurs with similar kinetics, except for significantly less substrate inhibition: Vmax = 31 +/- 6 nmol/min/mg of protein, Ks = 7 +/- 1 microM, and Kss = 33 +/- 2 microM. This is the first report suggesting a kinetic mechanism for 5-lipoxygenase, which accounts for substrate inhibition, regulation by Ca2+, and ATP and substrate specificity.  相似文献   

13.
The luteinizing hormone releasing hormone analog D-Trp6-Pro9-Net-LHRH (LHRHa) inhibits rat ovarian estradiol secretion. To determine whether LHRHa decreases serum estradiol concentrations solely by inhibiting gonadotropin secretion or, in addition, by influencing directly ovarian estradiol biosynthesis, we examined the effects of LHRHa on the activities of 5 key ovarian steroidogenic enzymes. Fifty hypophysectomized, gonadotropin-treated rats were given either LHRHa (1 microgram/day) or saline sc during 7 days. The LHRHa treated animals exhibited a significant decrease in serum estradiol when compared with the control group (461 +/- 30 vs 31 +/- 5 pg/ml, mean +/- SE, P less than 0.001). The changes in estradiol concentration were associated with decreases in ovarian weight (372 +/- 19 vs 185 +/- 11 mg, P less than 0.001) and in the microsomal enzyme activities of 3 beta-hydroxysteroid dehydrogenase (156 +/- 5 vs 53 +/- 4 nmol/mg prot/min, P less than 0.001), 17 hydroxylase (4.7 +/- 0.8 vs 3.7 +/- 0.7 nmol/mg prot/min, P less than 0.002), 17,20 desmolase (279 +/- 14 vs 50 +/- 7 pmol/mg prot/min, P less than 0.001), 17 keto-steroid reductase (132 +/- 11 vs 6 +/- 1 nmol/mg prot/min, P less than 0.001), and aromatase (19 +/- 1.5 vs 0.9 +/- 0.1 nmol/mg prot/min, P less than 0.001) in LHRHa treated animals. These findings indicate that LHRHa can inhibit directly rat ovarian estradiol biosynthesis.  相似文献   

14.
15.
L A Sheean  R A Meigs 《Steroids》1983,41(2):225-241
Human placental microsomes converted epitestosterone to estradiol-17 alpha at rates of 23-48 pmol/min X mg protein with a Km of 113 microM. Activity was inhibited 70-90% by concentrations of CO, metyrapone, n-octylamine, 7,8-benzoflavone and 7-ethoxycoumarin which had no effect on the aromatization of 4-androstene-3, 17-dione. Conversely, cyanide and azide were more effective inhibitors of the conversion of the latter androgen. A variety of neutral steroids inhibited the aromatization of epitestosterone with 19-norsteroids being particularly effective, but competitive effects could not be demonstrated. Both 17 beta-hydroxy-4-estren-3-one and 16 alpha-hydroxy-4-androstene-3,17-dione caused a mixed inhibition. A number of phenolic steroids were also inhibitory with 16-oxo compounds being particularly effective. Inhibition by estrone was non-competitive (Ki = 16 microM). The aromatization of epitestosterone resembles placental microsomal oxidase activities against estrone and benzo [a]pyrene in its inhibitor specificity and epitestosterone may be the native substrate for an oxidase also active in the metabolism of aromatic xenobiotic chemicals.  相似文献   

16.
We have previously cloned rat MRP3 as an inducible transporter in the liver (Hirohashi, T., Suzuki, H., Ito, K., Ogawa, K., Kume, K., Shimizu, T., and Sugiyama, Y. (1998) Mol. Pharmacol. 53, 1068-1075). In the present study, the function of rat MRP3 was investigated using membrane vesicles isolated from LLC-PK1 and HeLa cell population transfected with corresponding cDNA. The ATP-dependent uptake of both 17beta estradiol 17-beta-D-glucuronide ([3H]E217betaG) and glucuronide of [14C] 6-hydroxy-5, 7-dimethyl-2-methylamino-4-(3-pyridylmethyl) benzothiazole (E3040), but not that of [3H]leukotriene C4 and [3H]2, 4-dinitrophenyl-S-glutathione, was markedly stimulated by MRP3 transfection in both cell lines. The Km and Vmax values for the uptake of [3H]E217betaG were 67 +/- 14 microM and 415 +/- 73 pmol/min/mg of protein, respectively, for MRP3-expressing membrane vesicles and 3.0 +/- 0.7 microM and 3.4 +/- 0.4 pmol/min/mg of protein, respectively, for the endogenous transporter expressed on HeLa cells. [3H]E217betaG had also a similar Km value for MRP3 when LLC-PK1 cells were used as the host. All glucuronide conjugates examined (E3040 glucuronide, 4-methylumbelliferone glucuronide, and naphthyl glucuronide) and methotrexate inhibited MRP3-mediated [3H]E217betaG transport in LLC-PK1 cells. Moreover, [3H]methotrexate was transported via MRP3. The inhibitory effect of estrone sulfate, [3H]2,4-dinitrophenyl-S-glutathione, and [3H]leukotriene C4 was moderate or minimal, whereas N-acetyl-2,4-dinitrophenylcysteine had no effect on the uptake of [3H]E217betaG. The uptake of [3H]E217betaG was enhanced by E3040 sulfate and 4-methylumbelliferone sulfate. Thus we were able to demonstrate that several kinds of organic anions are transported via MRP3, although the substrate specificity of MRP3 differs from that of MRP1 and cMOAT/MRP2 in that glutathione conjugates are poor substrates for MRP3.  相似文献   

17.
We have previously shown that cloned rat multidrug resistance-associated protein 3 (Mrp3) has the ability to transport organic anions such as 17beta-estradiol 17-beta-D-glucuronide (E(2)17betaG) and has a different substrate specificity from MRP1 and MRP2 in that glutathione conjugates are poor substrates for Mrp3 (Hirohashi, T., Suzuki, H., and Sugiyama, Y. (1999) J. Biol. Chem. 274, 15181-15185). In the present study, the involvement of Mrp3 in the transport of endogenous bile salts was investigated using membrane vesicles from LLC-PK1 cells transfected with rat Mrp3 cDNA. The ATP-dependent uptake of [(3)H]taurocholate (TC), [(14)C]glycocholate (GC), [(3)H]taurochenodeoxycholate-3-sulfate (TCDC-S), and [(3)H]taurolithocholate-3-sulfate (TLC-S) was markedly stimulated by Mrp3 transfection in LLC-PK1 cells. The extent of Mrp3-mediated transport of bile salts was in the order, TLC-S > TCDC-S > TC > GC. The K(m) and V(max) values for the uptake of TC and TLC-S were K(m) = 15.9 +/- 4.9 microM and V(max) = 50.1 +/- 9.3 pmol/min/mg of protein and K(m) = 3.06 +/- 0.57 microM and V(max) = 161.9 +/- 21.7 pmol/min/mg of protein, respectively. At 55 nM [(3)H]E(2)17betaG and 1.2 microM [(3)H]TC, the apparent K(m) values for ATP were 1.36 and 0.66 mM, respectively. TC, GC, and TCDC-S inhibited the transport of [(3)H]E(2)17betaG and [(3)H]TC to the same extent with an apparent IC(50) of approximately 10 microM. TLC-S inhibited the uptake of [(3)H]E(2)17betaG and [(3)H]TC most potently (IC(50) of approximately 1 microM) among the bile salts examined, whereas cholate weakly inhibited the uptake (IC(50) approximately 75 microM). Although TC and GC are transported by bile salt export pump/sister of P-glycoprotein, but not by MRP2, and TCDC-S and TLC-S are transported by MRP2, but not by bile salt export pump/sister of P-glycoprotein, it was found that Mrp3 accepts all these bile salts as substrates. This information, together with the finding that MRP3 is extensively expressed on the basolateral membrane of human cholangiocytes, suggests that MRP3/Mrp3 plays a significant role in the cholehepatic circulation of bile salts.  相似文献   

18.
In earlier studies, two distinct molecules, 20 alpha-HSD-I and 20 alpha-HSD-II, responsible for 20 alpha-HSD activity of pig adrenal cytosol were purified to homogeneity and characterized [S. Nakajin et al., J. Steroid Biochem. 33 (1989) 1181-1189]. We report here that the purified 20 alpha-HSD-I, which mainly catalyzes the reduction of 17 alpha-hydroxyprogesterone to 17 alpha,20 alpha-dihydroxy-4-pregnen-3-one, catalyzes 3 alpha-hydroxysteroid oxidoreductase activity for 5 alpha (or 5 beta)-androstanes (C19), 5 alpha (or 5 beta)-pregnanes (C21) in the presence of NADPH as the preferred cofactor. The purified enzyme has a preference for the 5 alpha (or 5 beta)-androstane substrates rather than 5 alpha (or 5 beta)-pregnane substrates, and the 5 beta-isomers rather than 5 alpha-isomers, respectively. Kinetic constants in the reduction for 5 alpha-androstanedione (Km; 3.3 microM, Vmax; 69.7 nmol/min/mg) and 5 beta-androstanedione (Km; 7.7 microM, Vmax; 135.7 nmol/min/mg) were demonstrated for comparison with those for 17 alpha-hydroxyprogesterone (Km; 26.2 microM, Vmax; 1.3 nmol/min/mg) which is a substrate for 20 alpha-HSD activity. Regarding oxidation, the apparent Km and Vmax values for 3 alpha-hydroxy-5 alpha-androstan-17-one were 1.7 microM and 43.2 nmol/min/mg, and 1.2 microM and 32.1 nmol/min/mg for 3 alpha-hydroxy-5 beta-androstan-17-one, respectively. 20 alpha-HSD activity in the reduction of 17 alpha-hydroxyprogesterone catalyzed by the purified enzyme was inhibited competitively by addition of 5 alpha-DHT with a Ki value of 2.0 microM. Furthermore, 17 alpha-hydroxyprogesterone inhibited competitively 3 alpha-HSD activity with a Ki value of 150 microM.  相似文献   

19.
Periodate-oxidized NADP+ (o-NADP+), an analogue of the cofactors, is a reversible inhibitor of estradiol 17 beta-dehydrogenase in human placenta. Mode of the inhibition by o-NADP+ appeared to be competitive type (Ki = 0.84 microM) against NAD+ and non-competitive type (Ki = 1.13 microM) against estradiol, respectively. Treatment of the estradiol 17 beta-dehydrogenase with o-NADP+ resulted in time-dependent loss of the enzyme activity. The inactivation exhibited pseudo-first order kinetics (t1/2 = 15 min) and was protected by NAD+ and NADP+. On the other hand, periodate-oxidized ATP inactivated slightly the estradiol 17 beta-dehydrogenase. These results indicate that the residue(s) of lysines is located near the cofactor-binding region of estradiol 17 beta-dehydrogenase of human placenta.  相似文献   

20.
Calcium transport in membrane vesicles of Bacillus subtilis.   总被引:4,自引:3,他引:1       下载免费PDF全文
Right-side-out membrane vesicles of Bacillus subtilis W23 grown on tryptone-citrate medium accumulated Ca2+ under aerobic conditions in the presence of a suitable electron donor. Ca2+ uptake was an electrogenic process which was completely inhibited by carbonyl cyanide m-chlorophenylhydrazone or valinomycin and not by nigericin. This electrogenic uptake of calcium was strongly dependent on the presence of phosphate and magnesium ions. The system had a low affinity for Ca2+. The kinetic constants in membrane vesicles were Km = 310 microM Ca2+ and Vmax = 16 nmol/mg of protein per min. B. subtilis also possesses a Ca2+ extrusion system. Right-side-out-oriented membrane vesicles accumulated Ca2+ upon the artificial imposition of a pH-gradient, inside acid. This system had a high affinity for Ca2+; Km = 17 microM Ca2+ and Vmax = 3.3 nmol/mg of protein per min. Also, a membrane potential, inside positive, drove Ca2+ transport via this Ca2+ extrusion system. Evidence for a Ca2+ extrusion system was also supplied by studies of inside-out-oriented membrane vesicles in which Ca2+ uptake was energized by respiratory chain-linked oxidation of NADH or ascorbate-phenazine methosulfate. Both components of the proton motive force, the pH gradient and the membrane potential, drove Ca2+ transport via the Ca2+ extrusion system, indicating a proton-calcium antiport system with a H+ to Ca2+ stoichiometry larger than 2. The kinetic parameters of this Ca2+ extrusion system in inside-out-oriented membranes were Km = 25 microM and Vmax = 0.7 nmol/mg of protein per min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号