首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Ets factor Friend leukemia integration 1 (Fli-1) is an important regulator of megakaryocytic (Mk) differentiation. Here, we demonstrate two novel nuclear localization signals (NLSs) within Fli-1: one (NLS1) is located at the N terminus, and another (NLS2) is within the Ets domain. Nuclear accumulation of Fli-1 reflected the combined functional effects of the two discrete NLSs. Each NLS can independently direct nuclear transport of a carrier protein, with mutations within the NLSs affecting nuclear accumulation. NLS1 has a bipartite motif, whereas the NLS2 region contains a nonclassical NLS. Both NLSs bind importin alpha (IMPalpha) and IMPbeta, with NLS1 and NLS2 being predominantly recognized by IMPalpha and IMPbeta, respectively. Fli-1 also contains one nuclear export signal. Leptomycin B abolished its cytoplasmic accumulation, showing CRM1 dependency. We demonstrate that Ets domain binding to specific target DNA effectively blocks IMP binding, indicating that the targeted DNA binding plays a role in localizing Fli-1 to its destination and releasing IMPs for recycling back to the cytoplasm. Finally, by analyzing full-length Fli-1 carrying NLS1, NLS2, and combined NLS1-NLS2 mutations, we conclude that two functional NLSs exist in Fli-1 and that each NLS is sufficient to target Fli-1 to the nucleus for activation of Mk-specific genes.  相似文献   

2.
Heat shock cognate protein 70 (Hsc70) serves nuclear transport of several proteins as a molecular chaperone. We have recently identified a novel variant of human Hsc70, heat shock cognate protein 54 (Hsc54), that lacks amino acid residues 464-616 in the protein binding and variable domains of Hsc70. In the present study, we examined nucleocytoplasmic localization of Hsc70 and Hsc54 by using green fluorescent protein (GFP) fusions. GFP-Hsc70 is localized in both the cytoplasm and the nucleus at 37 degrees C and accumulated into the nucleolus/nucleus after heat shock, whereas GFP-Hsc54 always remained exclusively in the cytoplasm under these conditions. Mutation studies indicated that 20 amino acid residues of nuclear localization-related signals, which are missing in Hsc54 but are retained in Hsc70, are required for proper nuclear localization of Hsc70. We further found that Hsc54 contains a functional leucine-rich nuclear export signal (NES, (394)LDVTPLSL(401)) which is differently situated from the previously proposed NES in Saccharomyces cerevisiae Ssb1p. The cytoplasmic localization of Hsc54 was impaired by a mutation in NES as well as by a nuclear export inhibitor, leptomycin B, suggesting that Hsc54 is actively exported from the nucleus to the cytoplasm through a CRM1-dependent mechanism. In contrast, the nucleocytoplasmic localization of Hsc70 was not affected by the same mutation of NES or leptomycin B. These results suggest that the nuclear localization-related signal could functionally mask NES leading to prolonged retention of Hsc70 in the nucleus. An additional mechanism for unmasking the NES may regulate nucleocytoplasmic trafficking of Hsc70.  相似文献   

3.
4.
Pan1 is an actin patch-associated protein involved in endocytosis. Our studies revealed that in oleate-grown cells Pan1 is located in the nucleus as well as in patches. One of three putative nuclear localization signals (NLS) of Pan1, NLS2, directed beta-galactosidase (beta-gal) to the nucleus. However, GFP-Pan1(886-1219), containing NLS2, was found in the cytoplasm indicating that it may contain a nuclear export signal (NES). A putative Pan1 NES, overlapping with NLS3, re-addressed NLS(H2B)-NES/NLS3-beta-gal from the nucleus to the cytoplasm. Inactivation of the NES allowed NLS3 to be effective. Thus, Pan1 contains functional NLSs and a NES and appears to shuttle in certain circumstances.  相似文献   

5.
6.
Yu M  Liu X  Cao S  Zhao Z  Zhang K  Xie Q  Chen C  Gao S  Bi Y  Sun L  Ye X  Gao GF  Liu W 《Journal of virology》2012,86(9):4970-4980
The nuclear export of the influenza A virus ribonucleoprotein (vRNP) is crucial for virus replication. As a major component of the vRNP, nucleoprotein (NP) alone can also be shuttled out of the nucleus by interacting with chromosome region maintenance 1 (CRM1) and is therefore hypothesized to promote the nuclear export of the vRNP. In the present study, three novel nuclear export signals (NESs) of the NP--NES1, NES2, and NES3--were identified as being responsible for mediating its nuclear export. The nuclear export of NES3 was CRM1 dependent, whereas that of NES1 or NES2 was CRM1 independent. Inactivation of these NESs led to an overall nuclear accumulation of NP. Mutation of all three NP-NESs significantly impaired viral replication. Based on structures of influenza virus NP oligomers, these three hydrophobic NESs are found present on the surface of oligomeric NPs. Functional studies indicated that oligomerization is also required for nuclear export of NP. Together, these results suggest that the nuclear export of NP is important for virus replication and relies on its NESs and oligomerization.  相似文献   

7.
The bovine herpesvirus 1 (BHV-1) tegument protein VP22 is predominantly localized in the nucleus after viral infection. To analyze subcellular localization in the absence of other viral proteins, a plasmid expressing BHV-1 VP22 fused to enhanced yellow fluorescent protein (EYFP) was constructed. The transient expression of VP22 fused to EYFP in COS-7 cells confirmed the predominant nuclear localization of VP22. Analysis of the amino acid sequence of VP22 revealed that it does not have a classical nuclear localization signal (NLS). However, by constructing a series of deletion derivatives, we mapped the nuclear targeting domain of BHV-1 VP22 to amino acids (aa) 121 to 139. Furthermore, a 4-aa motif, 130PRPR133, was able to direct EYFP and an EYFP dimer (dEYFP) or trimer (tEYFP) predominantly into the nucleus, whereas a deletion or mutation of this arginine-rich motif abrogated the nuclear localization property of VP22. Thus, 130PRPR133 is a functional nonclassical NLS. Since we observed that the C-terminal 68 aa of VP22 mediated the cytoplasmic localization of EYFP, an analysis was performed on these C-terminal amino acid sequences, and a leucine-rich motif, 204LDRMLKSAAIRIL216, was detected. Replacement of the leucines in this putative nuclear export signal (NES) with neutral amino acids resulted in an exclusive nuclear localization of VP22. Furthermore, this motif was able to localize EYFP and dEYFP in the cytoplasm, and the nuclear export function of this NES could be blocked by leptomycin B. This demonstrates that this leucine-rich motif is a functional NES. These data represent the first identification of a functional NLS and NES in a herpesvirus VP22 homologue.  相似文献   

8.
Transport across the nuclear envelope is mediated by transport receptors from the Importin beta family. We identified Exportin 1 from Arabidopsis (AtXPO1/AtCRM1) as the nuclear export receptor for proteins carrying leucine-rich nuclear export signals (NESs). AtXPO1 shares 42-50% identity with its functional homologues from humans and yeasts. We functionally characterised AtXPO1 by its interaction with NESs of animal and plant proteins, which is inhibited by the cytotoxin leptomycin B (LMB), and also by its interaction with the small GTPase Ran1 in the yeast two-hybrid system. Furthermore, we demonstrated the existence of a nuclear export pathway for proteins in plants. For the characterisation of nuclear export activities, we established an in vivo assay based on the localisation equilibrium of a GFP reporter protein fused to both a nuclear localisation signal (NLS) and an NES motif. Using this in vivo assay we demonstrated that the NES of the heterologous protein Rev is also functional in plants and that its export is inhibited by LMB. In addition, we identified a leucine-rich NES in the Arabidopsis protein AtRanBP1a. The NES, which is located at the carboxy terminus of the protein, is disrupted by mutating three long chain hydrophobic amino acid residues to alanine (L176A, L179A, V181A). In BY-2 protoplasts the NES of AtRanBP1a is functionally indistinguishable from the Rev NES. Our results demonstrate that the machinery for the nuclear export of proteins is functionally conserved in plants.  相似文献   

9.
Sphingosine kinase (SPHK) is an enzyme that phosphorylates sphingosine to form sphingosine 1-phosphate (S1P). Human SPHK1 (hSPHK1) was localized predominantly in the cytoplasm when transiently expressed in Cos7 cells. In this study, we have found two functional nuclear export signal (NES) sequences in the middle region of hSPHK1. Deletion and mutagenesis studies revealed that the cytoplasmic localization of SPHK1 depends on its nuclear export, directed by the NES. Furthermore, upon treatment with leptomycin B, a specific inhibitor of the nuclear export receptor CRM1, a marked nuclear accumulation of hSPHK1 was observed, indicating that hSPHK1 shuttles between the cytoplasm and the nucleus. Our results provide the first evidence of the active nuclear export of SPHK1 and suggest it is mediated by a CRM1-dependent pathway.  相似文献   

10.
Chromosome region maintenance 1 (CRM1) exports nuclear export signal (NES) containing cargos from nucleus to cytoplasm and plays critical roles in cancer and viral infections. Biochemical and biophysical studies on this protein were often obstructed by its low purification yield and stability. With the help of PROSS server and NES protection strategy, we successfully designed three small fragments of CRM1, each made of four HEAT repeats and capable of binding to NESs in the absence of RanGTP. One of the fragments, C7, showed dramatically improved purification yield, thermostability, mechanostability, and resistance to protease digestion. We showed by isothermal titration that the protein kinase inhibitor NES binds to C7 at 1.18 μM affinity. Direct binding to C7 by several reported CRM1 inhibitors derived from plants were verified using pull‐down assays. These fragments might be useful for the development of CRM1 inhibitors towards treatment of related diseases. The strategy applied here might help to tackle similar problems encountered in different fields.  相似文献   

11.
In human cells, the mRNA export factor NXF1 resides in the nucleoplasm and at nuclear pore complexes. Karyopherin β2 or transportin recognizes a proline-tyrosine nuclear localization signal (PY-NLS) in the N-terminal tail of NXF1 and imports it into the nucleus. Here biochemical and cellular studies to understand the energetic organization of the NXF1 PY-NLS reveal unexpected redundancy in the nuclear import pathways used by NXF1. Human NXF1 can be imported via importin β, karyopherin β2, importin 4, importin 11, and importin α. Two NLS epitopes within the N-terminal tail, an N-terminal basic segment and a C-terminal R-X(2-5)-P-Y motif, provide the majority of binding energy for all five karyopherins. Mutation of both NLS epitopes abolishes binding to the karyopherins, mislocalized NXF1 to the cytoplasm, and significantly compromised its mRNA export function. The understanding of how different karyopherins recognize human NXF1, the examination of NXF1 sequences from divergent eukaryotes, and the interactions of NXF1 homologues with various karyopherins reveals the evolutionary development of redundant NLSs in NXF1 of higher eukaryotes. Redundancy of nuclear import pathways for NXF1 increases progressively from fungi to nematodes and insects to chordates, potentially paralleling the increasing complexity in mRNA export regulation and the evolution of new nuclear functions for NXF1.  相似文献   

12.
13.
14.
We previously showed that calcineurin B homologous protein 1 (CHP1) interacts with nuclear apoptosis-inducing protein kinase DRAK2, and that overexpression of DRAK2 induces the nuclear accumulation of CHP1, although CHP1 usually resides in the cytoplasm [Matsumoto et al. (2001) J. Biochem. 130, 217-225]. Here we show that CHP1 has two functional nuclear export signal (NES) sequences in its carboxyl-terminal region. Treatment of several cell lines with leptomycin B, a specific inhibitor of CRM1-dependent nuclear export, induces the nuclear accumulation of CHP1. Moreover, CHP1-GFP fusion proteins with deletions or point mutations affecting the two putative NES sequences accumulate in the nucleus to a greater extent than wild-type CHP1-GFP. Tagging glutathione S-transferase-GFP fusion protein with each NES sequence caused a shift in their intracellular localization from all over the cells to the cytoplasm. These results suggest that after CHP1 has entered the nucleus, it is exported to the cytoplasm in an NES-dependent manner.  相似文献   

15.
Protein export from the nucleus is often mediated by a Leucine-rich Nuclear Export Signal (NES). NESbase is a database of experimentally validated Leucine-rich NESs curated from literature. These signals are not annotated in databases such as SWISS-PROT, PIR or PROSITE. Each NESbase entry contains information of whether NES was shown to be necessary and/or sufficient for export, and whether the export was shown to be mediated by the export receptor CRM1. The compiled information was used to make a sequence logo of the Leucine-rich NESs, displaying the conservation of amino acids within a window of 25 residues. Surprisingly, only 36% of the sequences used for the logo fit the widely accepted NES consensus L-x(2,3)-[LIVFM]-x(2,3)-L-x-[LI]. The database is available online at http://www.cbs.dtu.dk/databases/NESbase/.  相似文献   

16.
The CMP-sialic acid synthetase (CSS) catalyzes the activation of sialic acid (Sia) to CMP-Sia which is a donor substrate of sialyltransferases. The vertebrate CSSs are usually localized in nucleus due to the nuclear localization signal (NLS) on the molecule. In this study, we first point out that a small, but significant population of the mouse CMP-sialic acid synthetase (mCSS) is also present in cytoplasm, though mostly in nucleus. As a mechanism for the localization in cytoplasm, we first identified two nuclear export signals (NESs) in mCSS, based on the localization studies of the potential NES-deleted mCSS mutants as well as the potential NES-tagged eGFP proteins. These two NESs are conserved among mammalian and fish CSSs, but not present in the bacterial or insect CSS. These results suggest that the intracellular localization of vertebrate CSSs is regulated by not only the NLS, but also the NES sequences.  相似文献   

17.
18.
Leucine-rich nuclear export signals (NESs) mediate rapid nuclear export of proteins via interaction with CRM1. This interaction is stimulated by RanGTP but remains of a relatively low affinity. In order to identify strong signals, we screened a 15-mer random peptide library for CRM1 binding, both in the presence and absence of RanGTP. Under each condition, strikingly similar signals were enriched, conforming to the NES consensus sequence. A derivative of an NES selected in the absence of RanGTP exhibits very high affinity for CRM1 in vitro and stably binds without the requirement of RanGTP. Localisation studies and RNA interference demonstrate inefficient CRM1-mediated export and accumulation of CRM1 complexed with the high-affinity NES at nucleoporin Nup358. These results provide in vivo evidence for a nuclear export reaction intermediate. They suggest that NESs have evolved to maintain low affinity for CRM1 to allow efficient export complex disassembly and release from Nup358.  相似文献   

19.
Nucleocytoplasmic trafficking of histone deacetylase 4 (HDAC4) plays an important role in regulating its function, and binding of 14-3-3 proteins is necessary for its cytoplasmic retention. Here, we report the identification of nuclear import and export sequences of HDAC4. While its N-terminal 118 residues modulate the nuclear localization, residues 244 to 279 constitute an authentic, strong nuclear localization signal. Mutational analysis of this signal revealed that three arginine-lysine clusters are necessary for its nuclear import activity. As for nuclear export, leucine-rich sequences located in the middle part of HDAC4 do not function as nuclear export signals. By contrast, a hydrophobic motif (MXXLXVXV) located at the C-terminal end serves as a nuclear export signal that is necessary for cytoplasmic retention of HDAC4. This motif is required for CRM1-mediated nuclear export of HDAC4. Furthermore, binding of 14-3-3 proteins promotes cytoplasmic localization of HDAC4 by both inhibiting its nuclear import and stimulating its nuclear export. Unlike wild-type HDAC4, a point mutant with abrogated MEF2-binding ability remains cytoplasmic upon exogenous expression of MEF2C, supporting the notion that direct MEF2 binding targets HDAC4 to the nucleus. Therefore, HDAC4 possesses intrinsic nuclear import and export signals for its dynamic nucleocytoplasmic shuttling, and association with 14-3-3 and MEF2 proteins affects such shuttling and thus directs HDAC4 to the cytoplasm and the nucleus, respectively.  相似文献   

20.
We compiled >200 nuclear export signal (NES)-containing CRM1 cargoes in a database named NESdb. We analyzed the sequences and three-dimensional structures of natural, experimentally identified NESs and of false-positive NESs that were generated from the database in order to identify properties that might distinguish the two groups of sequences. Analyses of amino acid frequencies, sequence logos, and agreement with existing NES consensus sequences revealed strong preferences for the Φ1-X(3)-Φ2-X(2)-Φ3-X-Φ4 pattern and for negatively charged amino acids in the nonhydrophobic positions of experimentally identified NESs but not of false positives. Strong preferences against certain hydrophobic amino acids in the hydrophobic positions were also revealed. These findings led to a new and more precise NES consensus. More important, three-dimensional structures are now available for 68 NESs within 56 different cargo proteins. Analyses of these structures showed that experimentally identified NESs are more likely than the false positives to adopt α-helical conformations that transition to loops at their C-termini and more likely to be surface accessible within their protein domains or be present in disordered or unobserved parts of the structures. Such distinguishing features for real NESs might be useful in future NES prediction efforts. Finally, we also tested CRM1-binding of 40 NESs that were found in the 56 structures. We found that 16 of the NES peptides did not bind CRM1, hence illustrating how NESs are easily misidentified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号