首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synopsis Marine fish species with planktonic larval stages experience high and variable pre-adult mortality, and in accordance with general life-history theory have evolved iteroparity to reduce the uncertainty in reproductive success of individuals. In this paper we use a Monte Carlo model to explore the influence of spawning style and adult survival of clupeoids on the spawning success of individual fish during their life span, when early stage survival is determined according to different spectra of environmental variability. In these simulations the variation in reproductive success was governed first by the number of batches of eggs spawned by each adult fish over its lifespan (as determined by its pattern of spawning and the adult survival rate), and secondly by the patterning of environmental variability affecting early stage survival. We consider that the life history styles of the clupeoids are based on co-evolved traits in which the different patterns of iteroparity represent different solutions for coping with the variable nature of early-stage survival. When these life history traits are compared on time scales appropriate to each species, they are therefore unlikely to provide the correlation between brood strength variation and the life span of adults proposed in Murphy's (1968) contribution to this aspect of life history theory.  相似文献   

2.
Environmental uncertainty alone can select for delayed reproduction; however, its relative role in the evolution of delayed reproduction across life histories is not known. Along a life-history spectrum from low-survival/high-fertility species to high-survival/low-fertility species, we show that the latter are more likely to evolve delayed reproduction if fertility varies over time. By contrast, if survival varies over time, low-survival life histories are more likely to evolve delays. If there is variation in both survival and fertility, and if this variation is positively associated, the evolutionarily stable reproductive delay is decreased (relative to independent variation in survival and fertility). Conversely, if variation in survival and fertility is negatively associated, the evolutionarily stable reproductive delay is increased. We further show that environmental uncertainty can drive the evolution of delayed reproduction in an iteroparous organism but only in the special case where juvenile survival is greater than adult survival. For common iteroparous life histories (adult survival > juvenile survival), environmental uncertainty does not select for delayed reproduction. Thus, any benefits that delayed reproduction might have on reproduction or survival could be especially important in explaining the common observation of delayed reproduction in many vertebrates and perennial plants.  相似文献   

3.
The amount of effort organisms should put into reproducing at any given time has been a matter of debate for many years. Early models suggested a simple rule of thumb: iteroparity should be favored when juvenile survival is relatively variable and semelparity when adult survival is relatively variable. When more mathematically complex models were developed, these simple conclusions were found to be special cases. Variability can select toward iteroparity or semelparity depending on a number of factors irrespective of relative adult/juvenile survival (e.g, the density-independent models of Orzack and Tuljapurkar). Using new techniques, we estimate the ESS reproductive effort for stage-structured models in density-dependent and stochastic conditions. We find that variability causes significant changes in reproductive effort, these changes are often small (± 10% of determinstic ESS effort, but up to 50% change in some instances), and the amount that effort increases or decreases depends on many factors (e.g., the deterministic population dynamics, the vital rates affected by density, the amount of variation, the correlations between the vital rates, the distribution from which the variation is drawn, and the deterministic ESS effort). In a variable environment, semelparity is the ESS in only 3.5% of cases; iteroparity is the rule.  相似文献   

4.
Deterministic seasonality can explain the evolution of alternative life history phenotypes (i.e., life history polyphenism) expressed in different generations emerging within the same year. However, the influence of stochastic variation on the expression of such life history polyphenisms in seasonal environments is insufficiently understood. Here, we use insects as a model and explore (1) the effects of stochastic variation in seasonality and (2) the life cycle on the degree of life history differentiation among the alternative developmental pathways of direct development and diapause (overwintering), and (3) the evolution of phenology. With numerical simulation, we determine the values of development (growth) time, growth rate, body size, reproductive effort, adult life span, and fecundity in both the overwintering and directly developing generations that maximize geometric mean fitness. The results suggest that natural selection favors the expression of alternative life histories in the alternative developmental pathways even when there is stochastic variation in seasonality, but that trait differentiation is affected by the developmental stage that overwinters. Increasing environmental unpredictability induced a switch to a bet‐hedging type of life history strategy, which is consistent with general life history theory. Bet‐hedging appeared in our study system as reduced expression of the direct development phenotype, with associated changes in life history phenotypes, because the fitness value of direct development is highly variable in uncertain environments. Our main result is that seasonality itself is a key factor promoting the evolution of seasonally polyphenic life histories but that environmental stochasticity may modulate the expression of life history phenotypes.  相似文献   

5.
High-quality developmental environments often improve individual performance into adulthood, but allocating toward early life traits, such as growth, development rate and reproduction, may lead to trade-offs with late-life performance. It is, therefore, uncertain how a rich developmental environment will affect the ageing process (senescence), particularly in wild insects. To investigate the effects of early life environmental quality on insect life-history traits, including senescence, we reared larval antler flies (Protopiophila litigata) on four diets of varying nutrient concentration, then recorded survival and mating success of adult males released in the wild. Declining diet quality was associated with slower development, but had no effect on other life-history traits once development time was accounted for. Fast-developing males were larger and lived longer, but experienced more rapid senescence in survival and lower average mating rate compared to slow developers. Ultimately, larval diet, development time and body size did not predict lifetime mating success. Thus, a rich environment led to a mixture of apparent benefits and costs, mediated by development time. Our results indicate that ‘silver spoon'' effects can be complex and that development time mediates the response of adult life-history traits to early life environmental quality.  相似文献   

6.
The ability to store energy enables organisms to deal with temporarily harsh and uncertain conditions. Empirical studies have demonstrated that organisms adapted to fluctuating energy availability plastically adjust their storage strategies. So far, however, theoretical studies have investigated general storage strategies only in constant or deterministically varying environments. In this study, we analyze how the ability to store energy influences optimal energy allocation to storage, reproduction, and maintenance in environments in which energy availability varies stochastically. We find that allocation to storage is evolutionarily optimal when environmental energy availability is intermediate and energy stores are not yet too full. In environments with low variability and low predictability of energy availability, it is not optimal to store energy. As environments become more variable or more predictable, energy allocation to storage is increasingly favored. By varying environmental variability, environmental predictability, and the cost of survival, we obtain a variety of different optimal life-history strategies, from highly iteroparous to semelparous, which differ significantly in their storage patterns. Our results demonstrate that in a stochastically varying environment simultaneous allocation to reproduction, maintenance, and storage can be optimal, which contrasts with previous findings obtained for deterministic environments.  相似文献   

7.
Parental care is of fundamental importance to understanding reproductive strategies and allocation decisions. Here, we explore how parental care strategies evolve in variable environments. Using a set of life-history trait trade-offs, we explore the relative costs and benefits of parental care in stochastic environments. Specifically, we consider the cases in which environmental variability results in varying adult death rates, egg death rates, reproductive rate and carrying capacity. Using a measure of fitness appropriate for stochastic environments, we find that parental care has the potential to evolve over a wide range of life-history characteristics when the environment is variable. A variable environment that affects adult or egg death rates can either increase or decrease the fitness of care relative to that in a constant environment, depending on the specific costs of care. Variability that affects carrying capacity or adult reproductive rate has negligible effects on the fitness associated with care. Increasing parental care across different life-history stages can increase fitness gains in variable environments. Costly investment in care is expected to affect the overall fitness benefits, the fitness optimum and rate of evolution of parental care. In general, we find that environmental variability, the life-history traits affected by such variability and the specific costs of care interact to determine whether care will be favoured in a variable environment and what levels of care will be selected.  相似文献   

8.
Calow  P.  Read  D. A. 《Hydrobiologia》1986,132(1):263-272
Semelparity and iteroparity are unevenly distributed among the families of the Paludicola and this implies that there have been taxonomic restrictions on life-history evolution. Species differ in their investments in reproduction and high levels can be related, causally, to reduced life-spans; i.e. semelparous species invest more in reproduction than iteroparous species. However, there does not appear to be any fundamental reason why the extent and timing of these investments should not be open to modification by natural selection.A major morphological difference between the predominantly semelparous Dendrocoelidae and the predominantly iteroparous Dugesiidae and Planariidae is the presence of an anterior adhesive organ; dendrocoelids have one, but members of the other families do not. A plausible scenario can be formulated relating this structure, causally, to enhanced juvenile survivorship which, in turn, favors the semelparous life history.  相似文献   

9.
1.?The effects of environment experienced during early development on phenotype as an adult has started to gain vast amounts of interest in various taxa. Some evidence on long-term effects of juvenile environment is available, but replicated experimental studies in wild animals are still lacking. 2.?Here we report the first replicated experiment in wild mammals which examines the long-term effects of juvenile and adult environments on individual fitness (reproduction, survival and health). The early development of bank vole (Myodes glareolus) individuals took place in either food-supplemented or un-supplemented outdoor enclosures. After the summer, adult individuals were reciprocally changed to either a similar or opposite resource environment to overwinter. 3.?Adult environment had an overriding effect on reproductive success of females so that females overwintering in food-supplemented enclosures had a higher probability of breeding and advanced the initiation of breeding. However, the characteristics of their litters were determined by juvenile environment: females initially grown in food-supplemented conditions subsequently produced larger litters with bigger pups and a male-biased sex ratio. 4.?In males, individuals growing in un-supplemented conditions had the highest survival irrespective of adult environment during winter, whereas in females, neither the juvenile nor adult environments affected their survival significantly. The physiological condition of voles in spring, as determined by haematological parameters, was also differentially affected by juvenile (plasma proteins and male testosterone) and adult (haematocrit) environments. 5.?Our results suggest that (i) life-history trajectories of voles are not strictly specialized to a certain environment and (ii) the plastic life-history responses to present conditions can actually be caused by delayed effects of the juvenile environment. More generally, the results are important for understanding the mechanisms of delayed life-history effects as well as recognizing their population dynamic consequences.  相似文献   

10.
Interactive effects of two or more life-history traits on fitness have the potential to create suites of coadapted traits. Propagule (egg or seed) size is one such trait that is believed to have undergone coadaptation with other traits. Phylogenetic analyses of salmonid fishes have revealed an association between large eggs and semelparity, leading to the question of which came first. It has been hypothesized that an increased egg size would have increased juvenile relative to adult survival, favoring a subsequent increase in reproductive effort and eventually semelparity. Others have suggested that this is insufficient to cause a shift in parity, implying to the contrary that semelparity gave rise to larger eggs. In a previous study we showed that environmental unpredictability might select for production of larger propagules. Here we use simulations to directly model how propagule size evolves in response to environmental unpredictability with varying degrees of iteroparity. Our results demonstrate that environmental unpredictability causes pronounced propagule size divergence between iteroparous and purely semelparous species in taxa with a fixed age at maturity (e.g., pure annual species). However, even rare incidents of repeat breeding are sufficient to reduce selection for larger propagules substantially and thus divergence. Furthermore, introducing variation in age at maturity within propagule size genotypes has evolutionary effects similar to that of repeat breeding. Environmental unpredictability is thus unlikely to provide a general alternative explanation for the observed egg size divergence between iteroparous and semelparous salmonids.  相似文献   

11.
The selective pressures involved in the evolution of semelparity and its associated life-history traits are largely unknown. We used species-level analyses, independent contrasts, and reconstruction of ancestral states to study the evolution of body length, fecundity, egg weight, gonadosomatic index, and parity (semelparity vs. degree of iteroparity) in females of 12 species of salmonid fishes. According to both species-level analysis and independent contrasts analysis, body length was positively correlated with fecundity, egg weight, and gonadosomatic index, and semelparous species exhibited a significantly steeper slope for the regression of egg weight on body length than did iteroparous species. Percent repeat breeding (degree of iteroparity) was negatively correlated with gonadosomatic index using independent contrasts analysis. Semelparous species had significantly larger eggs by species-level analysis, and the egg weight contrast for the branch on which semelparity was inferred to have originated was significantly larger than the other egg weight contrasts, corresponding to a remarkable increase in egg weight. Reconstruction of ancestral states showed that egg weight and body length apparently increased with the origin of semelparity, but fecundity and gonadosomatic index remained more or less constant or decreased. Thus, the strong evolutionary linkages between body size, fecundity, and gonadosomatic index were broken during the transition from iteroparity to semelparity. These findings suggest that long-distance migrations, which increase adult mortality between breeding episodes, may have been necessary for the origin of semelparity in Pacific salmon, but that increased egg weight, leading to increased juvenile survivorship, was crucial in driving the transition. Our analyses support the life-history hypotheses that a lower degree of repeat breeding is linked to higher reproductive investment per breeding episode, and that semelparity evolves under a combination of relatively high juvenile survivorship and relatively low adult survivorship.  相似文献   

12.
Liu W  Deng RF  Liu WP  Wang ZM  Ye WH  Wang LY  Cao HL  Shen H 《PloS one》2011,6(11):e27238
Phenotypic plasticity is common in many taxa, and it may increase an organism's fitness in heterogeneous environments. However, in some cases, the frequency of environmental changes can be faster than the ability of the individual to produce new adaptive phenotypes. The importance of such a time delay in terms of individual fitness and species adaptability has not been well studied. Here, we studied gender plasticity of Alternanthera philoxeroides to address this issue through a reciprocal transplant experiment. We observed that the genders of A. philoxeroides were plastic and reversible between monoclinous and pistillody depending on habitats, the offspring maintained the maternal genders in the first year but changed from year 2 to 5, and there was a cubic relationship between the rate of population gender changes and environmental variations. This relationship indicates that the species must overcome a threshold of environmental variations to switch its developmental path ways between the two genders. This threshold and the maternal gender stability cause a significant delay of gender changes in new environments. At the same time, they result in and maintain the two distinct habitat dependent gender phenotypes. We also observed that there was a significant and adaptive life-history differentiation between monoclinous and pistillody individuals and the gender phenotypes were developmentally linked with the life-history traits. Therefore, the gender phenotypes are adaptive. Low seed production, seed germination failure and matching phenotypes to habitats by gender plasticity indicate that the adaptive phenotypic diversity in A. philoxeroides may not be the result of ecological selection, but of gender plasticity. The delay of the adaptive gender phenotype realization in changing environments can maintain the differentiation between gender systems and their associated life-history traits, which may be an important component in evolution of novel traits and taxonomic diversity.  相似文献   

13.
In variable environments, it is probable that environmental conditions in the past can influence demographic performance now. Cohort effects occur when these delayed life-history effects are synchronized among groups of individuals in a population. Here we show how plasticity in density-dependent demographic traits throughout the life cycle can lead to cohort effects and that there can be substantial population dynamic consequences of these effects. We show experimentally that density and food conditions early in development can influence subsequent juvenile life-history traits. We also show that conditions early in development can interact with conditions at maturity to shape future adult performance. In fact, conditions such as food availability and density at maturity, like conditions early in development, can generate cohort effects in mature stages. Based on these data, and on current theory about the effects of plasticity generated by historical environments, we make predictions about the consequences of such changes on density-dependent demography and on mite population dynamics. We use a stochastic cohort effects model to generate a range of population dynamics. In accordance with the theory, we find the predicted changes in the strength of density dependence and associated changes in population dynamics and population variability.  相似文献   

14.
Crustacean embryonic and larval systems offer a unique and valuable tool for furthering our understanding of both developmental processes and physiological regulatory mechanisms. The diverse array of developmental patterns exhibited by crustaceans allows species choice to be based on the specific questions being investigated, where defined larval forms are chosen based on their developmental pattern, degree of maturation or regulatory capabilities. However, this great diversity in developmental patterns, as well as crustacean diversity, can also confound ones ability to define or identify species for investigation. These issues are addressed and suggestions put forth to clarify some of the problems. The complexity and overlapping nature of adult cardio-regulatory systems makes teasing them apart difficult. Embryonic and larval systems exhibit varying degrees of regulatory complexity depending on developmental stage and ontogenetic pattern. This can allow complex adult regulatory systems to be teased apart temporally, as the developing animal builds regulatory pathways. Equally important is the nature of crustacean larvae; many undergo dramatic metamorphoses in cases where the larvae have adaptations to environments different to those of the adult. During environmental transitions physiological adaptations to immediate change should take precedence over long-term adult adaptations. It is therefore possible to look at physiological responses as a function of developmental/environmental adaptation, independent of adult functions.  相似文献   

15.
In many organisms survival depends on body size. We investigate the implications of size-selective mortality on life-history evolution by introducing and analysing a new and particularly flexible life-history model with the following key features: the lengths of growth and reproductive periods in successive reproductive cycles can vary evolutionarily, the model does not constrain evolution to patterns of either determinate or indeterminate growth, and lifetime number and sizes of broods are the outcomes of evolutionarily optimal life-history decisions. We find that small changes in environmental conditions can lead to abrupt transitions in optimal life histories when size-dependent mortality is sufficiently strong. Such discontinuous switching results from antagonistic selection pressures and occurs between strategies of early maturation with short reproductive periods and late maturation with long reproductive cycles. When mortality is size-selective and the size-independent component is not too high, selection favours prolonged juvenile growth, thereby allowing individuals to reach a mortality refuge at large body size before the onset of reproduction. When either component of mortality is then increased, the mortality refuge first becomes unattractive and eventually closes up altogether, resulting in short juvenile growth and frequent reproduction. Our results suggest a new mechanism for the evolution of life-history dimorphisms.  相似文献   

16.
Many field measurements of viability and sexual selection on body size indicate that large size is favoured. However, life-history theory predicts that body size may be optimized and that patterns of selection may often be stabilizing rather than directional. One reason for this discrepancy may be that field estimates of selection tend to focus on limited components of fitness and may not fully measure life-history trade-offs. We use an 8-year, demographic field study to examine both sexual selection and lifetime selection on body size of a coral reef fish (the bicolour damselfish, Stegastes partitus). Selection via reproductive success of adults was very strong (standardized selection differential=1.04). However, this effect was balanced by trade-offs between large adult size and reduced cumulative survival during the juvenile phase. When we measured lifetime fitness (net reproductive rate), selection was strongly stabilizing and only weakly directional, consistent with predictions from life-history theory.  相似文献   

17.
The endocrine system is the key mediator of environmental and developmental (internal) information, and is likely to be involved in altering the performance of animals when selection has favored phenotypic plasticity. The endocrine control of performance should be especially pronounced in animals that undergo a developmental shift in niche, such as occurs in migratory species. By way of example, I review the developmental and environmental control of the preparatory changes for seawater entry of juvenile salmon (known as smolting) and its hormonal regulation. There is a size threshold for smolt development in juvenile Atlantic salmon that results in greater sensitivity of the growth hormone and cortisol axes to changes in daylength. These hormones, in turn, have broad effects on survival, ion homeostasis, growth and swimming performance during entry into seawater. Migratory niche shifts and metamorphic events are extreme examples of the role of hormones in animal performance and represent one end of a continuum. A framework for predicting when hormones will be involved in performance of animals is presented. Endocrine involvement in performance will be more substantial when (1) selection differentials on traits underlying performance are high and temporally discontinuous over an animal's lifetime, (2) the energetic and fitness costs of maintaining performance plasticity are less than those of constant performance, (3) cues for altering performance are reliable indicators of critical environmental conditions, require neurosensory input, and minimize effects of lag, and (4) the need for coordination of organs, tissues and cells to achieve increased performance is greater. By examining these impacts of selection, endocrinologists have an opportunity to contribute to the understanding of performance, phenotypic plasticity, and the evolution of life-history traits.  相似文献   

18.
Detecting adaptation involves comparing the performance of populations evolving in different environments. This detection may be confounded by effects due to the environment experienced by organisms prior to the test. We tested whether such confounding effects occur, using spider-mite selection lines on two novel hosts and one ancestral host, after 15 generations of selection. Mites were either sampled directly from the selection lines or subjected to a common juvenile or to a common maternal environment, mimicking the most frequent environmental manipulations. These environments strongly affected all life-history traits. Moreover, the detection of adaptation and correlated responses on the ancestral host was inconsistent among environments in almost 20% of the cases. Indeed, we did not detect responses unambiguously for any life-history trait. This inconsistency was due to differential environmental effects on lines from different selection regimes. Therefore, the detection of adaptation requires a careful control of these environmental effects.  相似文献   

19.
Research on the evolution of life histories addresses the topic of fitness trade-offs between semelparity (reproducing once in a lifetime) and iteroparity (repeated reproductive bouts per lifetime). Bulmer (1994) derived the relationship v+P(A)<1 (P(A) is the adult survival;vb(S) and b(S) are the offspring numbers for iteroparous and semelparous breeding strategies, respectively), under which a resident semelparous population cannot be invaded by an iteroparous mutant when the underlying population dynamics are stable. We took Bulmer's population dynamics, and added noise in juvenile and adult survival and in offspring numbers. Long-term coexistence of the two strategies is possible in much of the parameter region ofv +P(A)<1 when noise occurs simultaneously in all three components, or (more restricted) when it affects juvenile and adult survival or adult survival and offspring numbers. Iteroparity cannot persist when the environmental variability involves juvenile survival and offspring numbers, or when the noise acts on the three components separately.  相似文献   

20.
Tropical birds lay smaller clutches than birds breeding in temperate regions and care for their young for longer. We develop a model in which birds choose when and how often to breed and their clutch size, depending on their foraging ability and the food availability. The food supply is density dependent. Seasonal environments necessarily have a high food peak in summer; in winter, food levels drop below those characteristic of constant environments. A bird that cannot balance its energy needs during a week dies of starvation. If adult predation is negligible, birds in low seasonal environments are constrained by low food during breeding seasons, whereas birds in high seasonal environments die during the winter. Low food seasonality selects for small clutch sizes, long parental care times, greater age at first breeding, and high juvenile survival. The inclusion of adult predation has no major effect on any life-history variables. However, increased nest predation reduces clutch size. The same trends with seasonality are also found in a version of the model that includes a condition variable. Our results show that seasonal changes in food supply are sufficient to explain the observed trends in clutch size, care times, and age at first breeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号