首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
1. The expression of brain-derived neurotrophic factor (BDNF) mRNA is induced by neuronal activity through increased intracellular calcium. As BDNF also increases intracellular calcium levels through trkB activation, we have examined here whether BDNF also regulates the synthesis of its own mRNA.2. Neurotrophin mRNA expression was induced with kainic acid administration in transgenic mice overexpressing the dominant-negative form of BDNF receptor trkB and wild-type littermates.3. Kainate strongly induced BDNF mRNA expression in both genotypes, but the upregulation was significantly lower in transgenic mice.4. These data suggest that the synthesis of BDNF mRNA is at least partly mediated by BDNF release and the activation of trkB receptors. The present findings further suggest that the BDNF signaling system in brain is regulated by positive feedback.  相似文献   

3.
In patients with subacute sclerosing panencephalitis (SSPE), which is associated with persistent measles virus (MV) infection in the brain, little infectious virus can be recovered despite the presence of viral RNA and protein. Based on studies of brain tissue from SSPE patients and our work with MV-infected NSE-CD46(+) mice, which express the measles receptor CD46 on neurons, several lines of evidence suggest that the mechanism of viral spread in the central nervous system differs from that in nonneuronal cells. To examine this alternate mechanism of viral spread, as well as the basis for the loss of normal transmission mechanisms, infection and spread of MV Edmonston was evaluated in primary CD46(+) neurons from transgenic mice and differentiated human NT2 neurons. As expected, unlike that between fibroblasts, viral spread between neurons occurred in the absence of syncytium formation and with minimal extracellular virus. Electron microscopy analysis showed that viral budding did not occur from the neuronal surface, although nucleocapsids were present in the cytoplasm and aligned at the cell membrane. We observed many examples of nucleocapsids present in the neuronal processes and aligned at presynaptic neuronal membranes. Cocultures of CD46(+) and CD46(-) neurons showed that cell contact but not CD46 expression is required for MV spread between neurons. Collectively, these results suggest that the neuronal environment prevents the normal mechanisms of MV spread between neurons at the level of viral assembly but allows an alternate, CD46-independent mechanism of viral transmission, possibly through the synapse.  相似文献   

4.
5.
6.
The Escherichia coli lacZ gene has frequently been used as a reporter in cell lineage analysis, in determining the elements regulating spatial and temporal gene expression, and in enhancer/gene trap detection of developmentally regulated genes. However, it is uncertain whether lacZ expression affects eukaryotic cell growth and development. By using a gene trap, we previously isolated the promoter, Ayu1, which is active in ES cells and in several tissues including the gonads. We used this promoter and the nuclear location signal of the SV40 large T gene to locate β-galactosidase either in the cytoplasm or the nucleus. Transgenic lines containing β-galactosidase in the cytoplasm of a wide variety of cell types did not transmit the transgene to their offspring. In contrast, transgenic mice, containing β-galactosidase in the nucleus, did transmit the transgene successfully. Interestingly, lacZ expression in the brain was more restricted when β-galactosidase activity was detected in the cytoplasm. These data suggested that cytoplasmic β-galactosidase affects certain developmental processes or gametogenesis resulting in transmission distortion of the transgene, and that this effect can be reduced by targeting β-galactosidase to the nucleus. We also found that Ayu1-driven lacZ expression in the duodenum of adult transgenic mice was sexually dimorphic, being positive in females and negative in males.  相似文献   

7.
Adipose tissue expresses components of the renin-angiotensin system (RAS). Angiotensin converting enzyme (ACE2), a new component of the RAS, catabolizes the vasoconstrictor peptide ANG II to form the vasodilator angiotensin 1-7 [ANG-(1-7)]. We examined whether adipocytes express ACE2 and its regulation by manipulation of the RAS and by high-fat (HF) feeding. ACE2 mRNA expression increased (threefold) during differentiation of 3T3-L1 adipocytes and was not regulated by manipulation of the RAS. Male C57BL/6 mice were fed low- (LF) or high-fat (HF) diets for 1 wk or 4 mo. At 1 wk of HF feeding, adipose expression of angiotensinogen (twofold) and ACE2 (threefold) increased, but systemic angiotensin peptide concentrations and blood pressure were not altered. At 4 mo of HF feeding, adipose mRNA expression of angiotensinogen (twofold) and ACE2 (threefold) continued to be elevated, and liver angiotensinogen expression increased (twofold). However, adipose tissue from HF mice did not exhibit elevated ACE2 protein or activity. Increased expression of ADAM17, a protease responsible for ACE2 shedding, coincided with reductions in ACE2 activity in 3T3-L1 adipocytes, and an ADAM17 inhibitor decreased media ACE2 activity. Moreover, ADAM17 mRNA expression was increased in adipose tissue from 4-mo HF-fed mice, and plasma ACE2 activity increased. However, HF mice exhibited marked increases in plasma angiotensin peptide concentrations (LF: 2,141 +/- 253; HF: 6,829 +/- 1,075 pg/ml) and elevated blood pressure. These results demonstrate that adipocytes express ACE2 that is dysregulated in HF-fed mice with elevated blood pressure compared with LF controls.  相似文献   

8.
The neurotropic rabies virus (RABV) has developed several evasive strategies, including immunoevasion, to successfully infect the nervous system (NS) and trigger a fatal encephalomyelitis. Here we show that expression of LGP2, a protein known as either a positive or negative regulator of the RIG-I-mediated innate immune response, is restricted in the NS. We used a new transgenic mouse model (LGP2 TG) overexpressing LGP2 to impair the innate immune response to RABV and thus revealed the role of the RIG-I-mediated innate immune response in RABV pathogenesis. After infection, LGP2 TG mice exhibited reduced expression of inflammatory/chemoattractive molecules, beta interferon (IFN-β), and IFN-stimulated genes in their NS compared to wild-type (WT) mice, demonstrating the inhibitory function of LGP2 in the innate immune response to RABV. Surprisingly, LGP2 TG mice showed more viral clearance in the brain and lower morbidity than WT mice, indicating that the host innate immune response, paradoxically, favors RABV neuroinvasiveness and morbidity. LGP2 TG mice exhibited similar neutralizing antibodies and microglia activation to those of WT mice but showed a reduction of infiltrating CD4(+) T cells and less disappearance of infiltrating CD8(+) T cells. This occurred concomitantly with reduced neural expression of the IFN-inducible protein B7-H1, an immunoevasive protein involved in the elimination of infiltrated CD8(+) T cells. Our study shows that the host innate immune response favors the infiltration of T cells and, at the same time, promotes CD8(+) T cell elimination. Thus, to a certain extent, RABV exploits the innate immune response to develop its immunoevasive strategy.  相似文献   

9.
The relationships between airway epithelial Cl(-) secretion-Na(+) absorption balance, airway surface liquid (ASL) homeostasis, and lung disease were investigated in selected transgenic mice. 1) To determine if transgenic overexpression of wild-type (WT) human CFTR (hCFTR) accelerated Cl(-) secretion and regulated Na(+) absorption in murine airways, we utilized a Clara cell secretory protein (CCSP)-specific promoter to generate mice expressing airway-specific hCFTR. Ussing chamber studies revealed significantly (~2.5-fold) elevated basal Cl(-) secretory currents in CCSP-hCFTR transgenic mouse airways. Endogenous murine airway Na(+) absorption was not regulated by hCFTR, and these mice exhibited no lung disease. 2) We tested whether hCFTR, transgenically expressed on a transgenic mouse background overexpressing the β-subunit of the epithelial Na(+) channel (β-ENaC), restored ion transport balance and ASL volume homeostasis and ameliorated lung disease. Both transgenes were active in CCSP-hCFTR/β-ENaC transgenic mouse airways, which exhibited an elevated basal Cl(-) secretion and Na(+) hyperabsorption. However, the airway disease characteristic of β-ENaC mice persisted. Confocal studies of ASL volume homeostasis in cultured tracheal cells revealed ASL autoregulation to a height of ~6 μm in WT and CCSP-hCFTR cultures, whereas ASL was reduced to <4 μm in β-ENaC and CCSP-hCFTR/β-ENaC cultures. We conclude that 1) hCFTR overexpression increases basal Cl(-) secretion but does not regulate Na(+) transport in WT mice and 2) transgenic hCFTR produces increased Cl(-) secretion, but not regulation of Na(+) channels, in β-ENaC mouse airways and does not ameliorate β-ENaC mouse lung disease.  相似文献   

10.
目的观察ABRA(Actin binding Rho activator)在成年大鼠大脑皮质和海马中的表达。方法制备成年大鼠脑的冰冻切片,采用共聚焦免疫荧光技术和免疫荧光强度测量检测ABRA在大鼠大脑皮质和海马区的表达。结果 ABRA在神经元的胞核、胞浆、突起内可见,其中胞核着色最强。在大脑皮质,ABRA阳性的神经元胞体和突起广泛分布于皮质的分子层、外颗粒层、外锥体细胞层、内颗粒层、内锥体细胞层、多形细胞层,其免疫荧光强度分别为129.22±16.94、125.39±29.83、117.67±22.50、105.85±17.65、103.90±18.00、100.23±20.38,ABRA阳性细胞率分别为0.51±0.01、0.69±0.02、0.64±0.03、0.58±0.05、0.65±0.09、0.63±0.01。在海马,ABRA均匀分布于海马各部,阳性神经元集中于锥体细胞层,而其阳性突起弥散分布于海马分子层和多形层。海马锥体细胞层、分子层、多形层免疫荧光强度分别为141.19±35.48、53.19±10.38、43.32±9.59,ABRA阳性细胞率分别为0.62±0.04、0.27±0.07、0.25±0.03。结论 ABRA广泛表达于大鼠大脑皮质和海马各层,提示ABRA可能在大鼠这些部位的神经细胞功能活动方面起重要作用。  相似文献   

11.
12.
Aldosterone acts upon mineralocorticoid receptors in the brain to increase blood pressure and sympathetic nerve activity, but the mechanisms are still poorly understood. We hypothesized that aldosterone increases sympathetic nerve activity by upregulating the renin-angiotensin system (RAS) and oxidative stress in the brain, as it does in peripheral tissues. In Sprague-Dawley rats, aldosterone (Aldo) or vehicle (Veh) was infused for 1 wk via an intracerebroventricular (ICV) cannula, while RU-28318 (selective mineralocorticoid receptor antagonist), Tempol (superoxide dismutase mimetic), losartan [angiotensin II type 1 receptor (AT(1)R) antagonist], or Veh was infused simultaneously via a second ICV cannula. After 1 wk of ICV Aldo, plasma norepinephrine was increased and mean arterial pressure was slightly elevated, but heart rate was unchanged. These effects were ameliorated by ICV infusion of RU-28318, Tempol or losartan. Aldo increased expression of AT(1)R and angiotensin-converting enzyme (ACE) mRNA in hypothalamic tissue. RU-28318 minimized and Tempol prevented the increase in AT(1)R mRNA; RU-28318 prevented the increase in ACE mRNA. Losartan had no effect on AT(1)R or ACE mRNA. Immunohistochemistry revealed Aldo-induced increases in dihydroethidium staining (indicating oxidative stress) and Fra-like activity (indicating neuronal excitation) in neurons of the hypothalamic paraventricular nucleus (PVN). RU-28318 prevented the increases in superoxide and Fra-like activity in PVN; Tempol and losartan minimized these effects. Acute ICV infusions of sarthran (AT(1)R antagonist) or Tempol produced greater sympathoinhibition in Aldo-treated than in Veh-treated rats. Thus aldosterone upregulates key elements of brain RAS and induces oxidative stress in the hypothalamus. Aldosterone may increase sympathetic nerve activity by these mechanisms.  相似文献   

13.
14.
15.
Cellular retinoic acid binding protein I (CRABP-I) plays a role in retinoic acid (RA) metabolism or transport. This report shows specific neuronal expression of CRABP-I in adult transgenic mouse brain using CRABP-I promotor-driven lac-Z and neuron- and astrocyte-markers. Double staining indicates that CRABP-I is expressed in neurons and large cells (>12 microm) but to much lesser degree the astrocytes. CRABP-I-lac-Z(+) neurons were distributed throughout the brain, but in a very discreet pattern in each brain region. CRABP-I expression in specific populations of brain neurons suggests that RA is extensively metabolized in mature brains, mostly in neurons. Additionally, the genetic basis of its specific expression in these brain areas is located in the 5' regulatory region of this gene.  相似文献   

16.
Angiotensin-converting enzyme (ACE) plays a central role in the renin-angiotensin system. Whereas ACE is responsible for the production of angiotensin II, it is also important in the elimination of bradykinin. Constitutively, the biological function of bradykinin is mediated through the bradykinin B(2) receptor. ACE knockout mice have a complicated phenotype including very low blood pressure. To investigate the role of bradykinin in the expression of the ACE knockout phenotype, we bred B(2) receptor knockout mice with ACE knockout mice, thus generating a line of mice deficient in both the B(2) receptor and ACE. Surprisingly, these mice did not differ from ACE knockout mice in blood pressure, urine concentrating ability, renal pathology, and hematocrit. Thus abnormalities of bradykinin accumulation do not play an important role in the ACE knockout phenotype. Rather, this phenotype appears due to the defective production of angiotensin II.  相似文献   

17.
18.
The transgenic Tsukuba hypertensive mouse (THM), which expresses the human renin and angiotensinogen genes, develops hypertension secondary to increased renin-angiotensin system activity. The aim of the present study was to assess expression of the renin, cyclooxygenase-2 (COX-2), and neuronal nitric oxide synthase (nNOS) proteins in THM kidneys by immunohistochemical stainings. Renin expression was decreased in the THM kidneys when compared to kidneys from heterozygotes or control mice. Although no differences were observed in nNOS expression, overexpression of the COX-2 protein was observed in the macula densa cells in THM kidneys.  相似文献   

19.
Impaired wound healing in the elderly presents a major clinical challenge. Understanding the cellular mechanisms behind age-related impaired healing is vital for developing new wound therapies. Here we show that the actin-remodelling protein, Flightless I (FliI) is a contributing factor to the poor healing observed in elderly skin and that gender plays a major role in this process. Using young and aged, wild-type and FliI overexpressing mice we found that aging significantly elevated FliI expression in the epidermis and wound matrix. Aging exacerbated the negative effect of FliI on wound repair and wounds in aged FliI transgenic mice were larger with delayed reepithelialisation. When the effect of gender was further analysed, despite increased FliI expression in young and aged male and female mice, female FliI transgenic mice had the most severe wound healing phenotype suggesting that male mice were refractory to FliI gene expression. Of potential importance, males, but not females, up-regulated transforming growth factor-β1 and this was most pronounced in aged male FliI overexpressing wounds. As FliI also functions as a co-activator of the estrogen nuclear receptor, increasing concentrations of β-estradiol were added to skin fibroblasts and keratinocytes and significantly enhanced FliI expression and translocation of FliI from the cytoplasm to the nucleus was observed. FliI further inhibited estrogen-mediated collagen I secretion suggesting a mechanism via which FliI may directly affect provisional matrix synthesis. In summary, FliI is a contributing factor to impaired healing and strategies aimed at decreasing FliI levels in elderly skin may improve wound repair.  相似文献   

20.
In order to understand the importance of various cis-acting elements in regulating VP gene expression, transgenic mice regulated by VP constructs were produced containing 3.8 kb of the 5' flanking region and all the exons and introns in the mouse VP gene, which was fused at the end of exon 3 to an SV40 T antigen (Tag). In the transgenic mice by the pVPSV.IGR3.6 construct, all the six transgenic mice died at the age of 2-6 weeks. In the transgenic mice by pVPSV.IGR2.1, 21% of them had brain tumors at 5 weeks and 100% of the mice had brain tumors after 24 weeks. Histological analysis of the transgenic mice revealed primitive neuroectodermal tumors (PNET) in the brain and lymphoma in the spleen and lymph nodes. The phenotype differences between the two transgenic mice suggest that tissue-specific expression might be regulated by cis-acting elements in the 1.5-kb of the 3(') flanking region, which are not contained in pVPSV.IGR2.1. In conclusion, pVPSV.IGR2.1 mice will be a valuable mouse model system for investigating PNET tumorigenesis in the brain and lymphoma in the lymph nodes and spleen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号