首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
During limb skeletal muscle formation, committed muscle cells proliferate and differentiate in the presence of extracellular signals that stimulate or repress each process. Proteoglycans are extracellular matrix organizers and modulators of growth factor activities, regulating muscle differentiation in vitro. Previously, we characterized proteoglycan expression during early limb muscle formation and showed a spatiotemporal relation between the onset of myogenesis and the expression of decorin, an important muscle extracellular matrix component and potent regulator of TGF-beta activity. To evaluate decorin's role during in vivo differentiation in committed muscle cells, we grafted wild type and decorin-null myoblasts onto chick limb buds. The absence of decorin enhanced the migration and distribution of myoblasts in the limb, correlating with the inhibition of skeletal muscle differentiation. Both phenotypes were reverted by de novo decorin expression. In vitro, we determined that both decorin core protein and its glycosaminoglycan chain were required to reverse the migration phenotype. Results presented here suggest that the enhanced migration observed in decorin-null myoblasts may not be dependent on chemotactic growth factor signaling nor the differentiation status of the cells. Decorin may be involved in the establishment and/or coordination of a critical myoblast density, through inhibition of migration, that permits normal muscle differentiation during embryonic myogenesis.  相似文献   

2.
It is possible that connective tissue growth factor (CTGF) serves as either an independent regulator or a downstream effector of transforming growth factor-beta (TGF-beta) on the proteoglycan synthesis in vascular endothelial cells. Since TGF-beta regulates endothelial proteoglycan synthesis in a cell density-dependent manner, dense and sparse cultures of bovine aortic endothelial cells were metabolically labeled with [(35)S]sulfate or (35)S-labeled amino acids in the presence of CTGF, and the labeled proteoglycans were characterized by biochemical techniques. The results indicate that CTGF suppresses the synthesis of biglycan but newly induced that of decorin in the cells when the cell density is low; in addition, no change was observed in the hydrodynamic size and the glycosaminoglycan chain length of these two small chondroitin/dermatan sulfate proteoglycans. The regulation of endothelial proteoglycan synthesis by CTGF is completely different from that by TGF-beta, suggesting that CTGF is not a downstream effector of TGF-beta but an independent regulator in vascular endothelial cells with respect to the proteoglycan synthesis.  相似文献   

3.
Summary The regeneration of skeletal muscle fibers of the adult chicken was examined after a focal injury brought about with a liquid-nitrogen cooled brass rod. Immunofluorescence microscopy with antibodies specific for troponin (TN) components (T, I, and C) from adult chicken breast and ventricular muscles showed the presence of different fiber types in both the anterior and posterior latissimus dorsi muscles. New fibers produced in the regions adjacent to the site of injury in both muscles exhibited the same immunoreactivities as those previously seen in embryonic skeletal muscles. As differentiation proceeded, regenerating cells lost their embryonic antigenicities and recovered their characteristic adult reactivities. These results indicate that, during regeneration from cold injury, skeletal muscles apparently pass again through an embryonic stage during which they synthesize embryonic-like TN isoforms.  相似文献   

4.
To determine the change in muscle oxygenation in response to progressively increasing work rate exercise, muscle oxyhemoglobin + oxymyoglobin saturation was measured transcutaneously with near infrared spectroscopy in the vastus lateralis muscle during cycle ergometry. Studies were done in 11 subjects while gas exchange was measured breath-by-breath. As work rate was increased, tissue oxygenation initially either remained constant near resting levels or, more usually, decreased. Near the work rate and metabolic rate where significant lactic acidosis was detected by excess CO2 production (lactic acidosis threshold, LAT), muscle oxygenation decreased more steeply. As maximum oxygen uptake ( ) was approached, the rate of desaturation slowed. In 8 of the 11 subjects, tissue O2 saturation reached a minimum which was sustained for 1–3 min before was reached. The LAT correlated with both the (r = 0.95,P < 0.0001) and the work rate (r = 0.94,P < 0.0001) at which the rate of tissue O2 desaturation accelerated. These results describe a consistent pattern in the rate of decrease in muscle oxygenation, slowly decreasing over the lower work rate range, decreasing more rapidly in the work rate range of the LAT and then slowing at about 80% of , approaching or reaching a minimum saturation at .  相似文献   

5.
The expression of delta isoforms of calcium-calmodulin/dependent protein kinase II (CaMKII) has been reported in mammalian skeletal muscle; however, their functions in this tissue are largely unknown. This study was conducted to determine if deltaCaMKII expression was altered during regeneration of skeletal muscle fibers in two distinct models. In the first model, necrosis and regeneration were induced in quadriceps of normal mice by intramuscular administration of 50% glycerol. Immunostaining and confocal microscopy revealed that deltaCaMKII expression was clearly enhanced in fibers showing centralized nuclei. The second model was the mdx mouse, which undergoes enhanced muscle necrosis and regeneration due to a mutation in the dystrophin gene. sern blot analysis of hind leg extracts from 4 to 6 week old mdx mice revealed that deltaCaMKII content was decreased when compared to age-matched control mice. This loss in delta kinase content was seen in myofibrillar and membrane fractions and was in contrast to unchanged deltaCaMKII levels in cardiac and brain extracts from dystrophic mice. Confocal microscopy of mdx quadriceps and tibialis muscle showed that deltaCaMKII expression was uniformly decreased in most fibers from dystrophic mice; however, enhanced kinase expression was observed in regenerating muscle fibers. These data support a fundamental role for deltaCaMKII in the regeneration process of muscle fibers in normal and mdx skeletal muscle and may have important implications in the reparative process following muscle death.  相似文献   

6.
7.
骨骼肌良好的再生能力是由于肌卫星细胞的存在,然而肌卫星细胞的数量仅占骨骼肌细胞数量的1%~ 5%,当肌肉损伤时,仅依靠这些卫星细胞还不足以促进骨骼肌修复与再生,并且这种再生能力会随着年龄的增大而衰减,并不能修复损伤严重的骨骼肌。骨髓间充质干细胞(BMSC)因其多向分化潜能,旁分泌潜能,免疫调节能力及容易获取等特点广泛用于损伤骨骼肌的修复与再生。但在某种程度上,仅仅采用BMSC治疗损伤的骨骼肌仍不能达到满意的效果。因此,大量研究采用药物、生物材料、细胞及细胞因子对BMSC进行预处理不仅可改善它的移植率,还可显著促进其向骨骼肌分化,从而最大限度的发掘骨骼肌间充质干细胞的成肌分化潜能以促进骨骼肌的修复。因此,本篇综述旨在概括BMSC成肌分化在骨骼肌再生中的应用。  相似文献   

8.
Osteopontin is a multifunctional matricellular protein that is expressed by many cell types. Through cell-matrix and cell-cell interactions the molecule elicits a number of responses from a broad range of target cells via its interaction with integrins and the hyaluronan receptor CD44. In many tissues osteopontin has been found to be involved in important physiological and pathological processes, including tissue repair, inflammation and fibrosis. Post-natal skeletal muscle is a highly differentiated and specialised tissue that retains a remarkable capacity for regeneration following injury. Regeneration of skeletal muscle requires the co-ordinated activity of inflammatory cells that infiltrate injured muscle and are responsible for initiating muscle fibre degeneration and phagocytosis of necrotic tissue, and muscle precursor cells that regenerate the injured muscle fibres. This review focuses on the current evidence that osteopontin plays multiple roles in skeletal muscle, with particular emphasis on its role in regeneration and fibrosis following injury, and in determining the severity of myopathic diseases such as Duchenne muscular dystrophy.  相似文献   

9.
10.
Hind-limb unloaded (HU) mouse is a well-recognized model of muscle atrophy; however, the molecular changes in the skeletal muscle during unloading are poorly characterized. We have used Raman spectroscopy to evaluate the structure and behavior of signature molecules involved in regulating muscle structural and functional health. The Raman spectroscopic analysis of gastrocnemius muscles was compared between 16-18 weeks old HU c57Bl/6J mice and ground-based controls. The spectra showed that the signals for asparagine and glutamine were reduced in HU mice, possibly indicating increased catabolism. The peaks for hydroxyproline and proline were split, pointing towards molecular breakdown and reduced tendon repair. We also report a consistently increased intensity in> 1300 cm-1 range in the Raman spectra along with a shift towards higher frequencies in the HU mice, indicating activation of sarcoplasmic reticulum (SR) stress during HU.  相似文献   

11.
Summary Embryonic development of the avian iris muscle was studied by light and electron microscopy in order to clarify the origin of the iridial skeletal muscle cells. In normal development of the domestic duck, chick, and quail, the muscle bundles appearing in the iris at stage 35 consisted solely of smooth muscle cells. Undifferentiated cells appeared at stage 36, and finally skeletal muscle cells were observed at stage 37. This sequence suggests that stromal mesenchymal cells migrate into the muscle bundles to become skeletal muscle cells.Tissue culture of whole indes removed from duck embryos at stages 30 through 34 produced skeletal muscle cells while culture of isolated iridial epithelia removed at stages 31 and 32 did not. Removal of the midbrain region of duck embryos at stage 10 frequently produced severe disorganization of the eye concomitant with craniofacial deformities typical of a neural crest mesenchymal defect. These severely disorganized eyes were devoid of iridial skeletal muscle cells. These results also suggest mesenchymal origin of iridial skeletal muscle cells.  相似文献   

12.
In response to skeletal muscle injury, distinct cellular pathways are activated to repair the damaged tissue. Activation and restriction of these pathways must be temporally coordinated in a precise sequence as regeneration progresses if muscle integrity and homeostasis are to be restored. However, if tissue injury persists, as in severe muscular dystrophies, the repair process becomes uncontrolled leading to the substitution of myofibers by a non-functional mass of fibrotic tissue. In this review, we provide an overview of how muscle responds to damage and aging, with special emphasis on the cellular effectors and the regulatory and inflammatory pathways that can shift normal muscle repair to fibrosis development.  相似文献   

13.
The spatio-temporal expression of gap junction connexins (Cx) was investigated and correlated with the progression of cell cycle control in regenerating soleus muscle of Wistar rats. Notexin caused a selective myonecrosis followed by the complete recapitulation of muscle differentiation in vivo, including the activation, commitment, proliferation, differentiation and fusion of myogenic cells. In regenerating skeletal muscle, only Cx43 protein, out of Cx-s 26, –32, –37, –40, –43 and –45, was detected in desmin positive cells. Early expression of Cx43 in the proliferating single myogenic progenitors was followed by a progressive upregulation in interacting myoblasts until syncytial fusion, and then by a rapid decline in multinucleate myotubes. The significant upregulation of Cx43 gap junctions in aligned myoblasts preceding fusion was accompanied by the widespread nuclear expression of cyclin-dependent kinase inhibitors p21waf1/Cip1 and p27kip1 and the complete loss of Ki67 protein. The synchronized exit of myoblasts from the cell cycle following extensive gap junction formation suggests a role for Cx43 channels in the regulation of cell cycle control. The potential of Cx43 channels to stimulate p21waf1/Cip1 and p27kip1 is known. In the muscle, proving the involvement of Cx43 in either a direct or a bystander cell cycle regulation requires functional investigations.  相似文献   

14.
Sustained cell proliferation in denervated skeletal muscle of mice   总被引:1,自引:0,他引:1  
Summary Cellular proliferation in skeletal muscle was measured throughout the first 4 weeks after denervation. Twenty four mice had one leg denervated, and 4 groups of 6 of these mice were injected with tritiated thymidine once daily for 7 days, either during the first, second, third or fourth week after denervation. Autoradiographic labelling of muscle and connective tissue nuclei in denervated muscles was compared with innervated muscles from the opposite innervated legs of the same mice. Labelling of connective tissue and muscle (myonuclear and satellite cell) nuclei was significantly higher in denervated muscles, compared with innervated muscles on the unoperated side. There were no significant differences among labelling of nuclei in muscles denervated for 1, 2, 3 or 4 weeks. However, connective tissue labelling after 1 week of denervation was significantly higher than at later times. This study shows that nuclei of muscle and connective tissue cells proliferate and turnover at high levels for at least one month after denervation.  相似文献   

15.
16.
Skeletal muscle regeneration implies the coordination of myogenesis with the recruitment of myeloid cells and extracellular matrix (ECM) remodelling. Currently, there are no specific biomarkers to diagnose the severity and prognosis of muscle lesions. In order to investigate the gene expression profile of extracellular matrix and adhesion molecules, as premises of homo‐ or heterocellular cooperation and milestones for skeletal muscle regeneration, we performed a gene expression analysis for genes involved in cellular cooperation, migration and ECM remodelling in a mouse model of acute crush injury. The results obtained at two early time‐points post‐injury were compared to a GSE5413 data set from two other trauma models. Third day post‐injury, when inflammatory cells invaded, genes associated with cell‐matrix interactions and migration were up‐regulated. After day 5, as myoblast migration and differentiation started, genes for basement membrane constituents were found down‐regulated, whereas genes for ECM molecules, macrophage, myoblast adhesion, and migration receptors were up‐regulated. However, the profile and the induction time varied according to the experimental model, with only few genes being constantly up‐regulated. Gene up‐regulation was higher, delayed and more diverse following more severe trauma. Moreover, one of the most up‐regulated genes was periostin, suggestive for severe muscle damage and unfavourable architecture restoration.  相似文献   

17.
Skeletal muscle interstitium is crucial for regulation of blood flow, passage of substances from capillaries to myocytes and muscle regeneration. We show here, probably, for the first time, the presence of telocytes (TCs), a peculiar type of interstitial (stromal) cells, in rat, mouse and human skeletal muscle. TC features include (as already described in other tissues) a small cell body and very long and thin cell prolongations-telopodes (Tps) with moniliform appearance, dichotomous branching and 3D-network distribution. Transmission electron microscopy (TEM) revealed close vicinity of Tps with nerve endings, capillaries, satellite cells and myocytes, suggesting a TC role in intercellular signalling (via shed vesicles or exosomes). In situ immunolabelling showed that skeletal muscle TCs express c-kit, caveolin-1 and secrete VEGF. The same phenotypic profile was demonstrated in cell cultures. These markers and TEM data differentiate TCs from both satellite cells (e.g. TCs are Pax7 negative) and fibroblasts (which are c-kit negative). We also described non-satellite (resident) progenitor cell niche. In culture, TCs (but not satellite cells) emerge from muscle explants and form networks suggesting a key role in muscle regeneration and repair, at least after trauma.  相似文献   

18.
Androgen reduces fat mass, although the underlying mechanisms are unknown. Here, we examined the effect of testosterone on heat production and mitochondrial biogenesis. Testosterone-treated mice exhibited elevated heat production. Treatment with testosterone increased the expression level of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α), ATP5B and Cox4 in skeletal muscle, but not that in brown adipose tissue and liver. mRNA levels of genes involved in mitochondrial biogenesis were elevated in skeletal muscle isolated from testosterone-treated male mice, but were down-regulated in androgen receptor deficient mice. These results demonstrated that the testosterone-induced increase in energy expenditure is derived from elevated mitochondrial biogenesis in skeletal muscle.  相似文献   

19.
Sca-1 (Stem Cell Antigen-1) is a member of the Ly-6 family proteins that functions in cell growth, differentiation, and self-renewal in multiple tissues. In skeletal muscle Sca-1 negatively regulates myoblast proliferation and differentiation, and may function in the maintenance of progenitor cells. We investigated the role of Sca-1 in skeletal muscle regeneration and show here that Sca-1 expression is upregulated in a subset of myogenic cells upon muscle injury. We demonstrate that extract from crushed muscle upregulates Sca-1 expression in myoblasts in vitro, and that this effect is reversible and independent of cell proliferation. Sca-1−/− mice exhibit defects in muscle regeneration, with the development of fibrosis following injury. Sca-1−/− muscle displays reduced activity of matrix metalloproteinases, critical regulators of extracellular matrix remodeling. Interestingly, we show that the number of satellite cells is similar in wild-type and Sca-1−/− muscle, suggesting that in satellite cells Sca-1 does not play a role in self-renewal. We hypothesize that Sca-1 upregulates, directly or indirectly, the activity of matrix metalloproteinases, leading to matrix breakdown and efficient muscle regeneration. Further elucidation of the role of Sca-1 in matrix remodeling may aid in the development of novel therapeutic strategies for the treatment of fibrotic diseases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号