首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Small leucine-rich proteoglycans (SLRPs) have a number of biological functions and some of them are thought to regulate collagen mineralizaton in bone and tooth. We have previously identified and immunolocalized two members of the SLRPs family, decorin and biglycan, in bovine tooth/periodontium. To investigate their potential roles in tooth development, we examined the mRNA expression patterns of decorin, biglycan and type I collagen in newborn (day 19) mice tooth germs by in situ hybridization. At this developmental stage, the first maxillary and mandibular molars include stages before and after secretion of the predentin matrix, respectively. The expression of decorin mRNA coincided with that of type I collagen mRNA and was mostly observed in secretory odontoblasts, while the biglycan mRNA was expressed throughout the tooth germ, including pre-secretory odontoblasts/ameloblasts, dental papilla and stellate reticulum. However, its signal in secretory odontoblasts was not as evident as that of decorin. In mandibular incisors, where a significant amount of predentin matrix and a small amount of enamel matrix were already secreted, a similar differential expression pattern was observed. In secretory ameloblasts the biglycan mRNA expression was apparent, while that of decorin was not. These differential expression patterns suggest the distinct roles of biglycan and decorin in the process of tooth development.  相似文献   

2.
Fibrosis is a common pathological feature observed in muscles of patients with Duchenne muscular dystrophy (DMD). Biglycan and decorin are small chondroitin/dermatan sulfate proteoglycans in the muscle extracellular matrix (ECM) that belong to the family of structurally related proteoglycans called small leucine-rich repeat proteins. Decorin is considered an anti-fibrotic agent, preventing the process by blocking TGF-beta activity. There is no information about their expression in DMD patients. We found an increased amount of both proteoglycans in the ECM of skeletal muscle biopsies obtained from DMD patients. Both biglycan and decorin were augmented in the perimysium of muscle tissue, but only decorin increased in the endomysium as seen by immunohistochemical analyses. Fibroblasts were isolated from explants obtained from muscle of DMD patients and the incorporation of radioactive sulfate showed an increased synthesis of both decorin and biglycan in cultured fibroblasts compared to controls. The size of decorin and biglycan synthesized by DMD and control fibroblasts seems to be similar in size and anion charge. These findings show that decorin and biglycan are increased in DMD skeletal muscle and suggest that fibroblasts would be, at least, one source for these proteoglycans likely playing a role in the muscle response to dystrophic cell damage.  相似文献   

3.
The onset and progression of skeletal muscle regeneration are controlled by a complex set of interactions between muscle precursor cells and their environment. Satellite cells constitute the main source of muscle precursor cells for growth and repair. After skeletal muscle injury, cell-derived signals induce their re-entry into the cell cycle and their migration into the damaged zone, where they proliferate and differentiate into mature myofibers. The surrounding extracellular matrix (ECM) together with inhibitory growth factors, such as transforming growth factor-beta (TGF-beta), also likely play an important role in growth control and muscle differentiation. Decorin, biglycan and betaglycan are proteoglycans that bind TGF-beta during skeletal muscle differentiation. In this paper, we show that the binding of TGF-beta to the receptors TGF-betaRI and-betaRII diminished in a satellite cell-derived cell line during differentiation, in spite of an increase expression of both receptors. In contrast, during the differentiation of decorin-null myoblasts (Dcn null), which lack decorin expression, the binding of TGF-beta to TGF-betaRI and -betaRII increased concomitantly with receptors levels. Both the addition and re-expression of decorin, in these myoblasts, diminished the binding of TGF-beta to its transducing receptors. Similar results were obtained when biglycan was added or over-expressed in Dcn null myoblasts. The binding of TGF-beta to TGF-betaRIII, alternatively known as betaglycan, was also augmented in Dcn null myoblasts and diminished by decorin, biglycan and betaglycan. These results suggest that decorin, biglycan and betaglycan compete for the binding of TGF-beta to its transducing receptors. Transfection studies with the TGF-beta-dependent promoter of the plasminogen activator inhibitor-1, coupled with luciferase, revealed that the addition of each proteoglycan diminished TGF-beta-dependent activity, for both TGF-beta1 and -beta2. The modulation of TGF-beta signaling by ECM proteoglycans diminishing the bio-availability of TGF-beta for its transducing receptors appears to be a feasible mechanism for the attenuation of this inhibitory growth factor during skeletal muscle formation.  相似文献   

4.
Evidence for a functional role for extracellular matrix (ECM) proteins in adipose tissue is demonstrated in dynamic changes in expression of ECM genes during adipocyte differentiation and in obesity. Components of the ECM may regulate adipose cell number expansion by restricting pre-adipocyte proliferation, regulating apoptosis and inhibiting adipogenesis. Although pre-adipocytes express multiple proteoglycans, their role in pre-adipocyte proliferation up to now has remained unknown. The study described here was conducted to characterize roles of small leucine-rich proteoglycans (SLRPs) in adipocyte proliferation. Pre-adipocytes were seeded on plates coated with biglycan and decorin and were allowed to differentiate. In addition, pre-adipocytes were incubated on plates coated with biglycan, decorin, or fibronectin and measurements were made of cell proliferation and apoptosis. We are able to report that SLRPs decorin and biglycan did not affect differentiation of our 3T3-L1 cells; however, biglycan and decorin did reduce proliferation of pre-adipocytes, partly by induction of apoptosis. Furthermore, anti-proliferative capabilities of decorin and biglycan were nullified with removal of GAG side-chains suggesting that the chains played key roles in anti-proliferative effects of the SLRPs. We also found that co-treatment of decorin or biglycan with the proteoglycan fibronectin restored normal proliferation, an indication that multiple ECM proteins may act in concert to regulate overall proliferation rates of pre-adipocytes. These studies indicate that SLRPs may compose a regulatory factor in adipose tissue expansion, through hyperplasia.  相似文献   

5.
Small leucine‐rich proteoglycans (SLRPs), such as decorin and biglycan, regulate the assembly and turnover of collagenous matrix. The aim of the study was to analyse the effect of chronic rosuvastatin treatment on decorin, biglycan and the collagen matrix in ApoE‐deficient mice. Twenty‐week‐old male ApoE‐deficient mice received normal chow or 20 mg rosuvastatin/kg × day for 32 weeks. Subsequently, matrix composition was analysed by histochemistry and immunostaining at the aortic root and in innominate arteries of ApoE deficient mice as well as in human carotid endarterectomy specimens. Immunoblotting of proteoglycans was performed from aortic extracts of ApoE‐deficient mice. Immunohistochemistry and immunoblotting revealed strongly increased decorin and biglycan deposition in atherosclerotic plaques at the aortic root and in innominate arteries. In contrast, versican and perlecan expression was not changed by rosu‐vastatin. Furthermore, matrix metalloproteinase 2 and gelatinolytic activity were decreased in response to rosuvastatin and a condensed collagen‐rich matrix was formed. In carotid endarterectomy specimens of statin‐treated patients increased decorin and biglycan accumulation was detected as well. Drug treatment did not change low‐density lipoprotein (LDL) plasma levels in ApoE‐deficient mice and did not significantly affect lipid retention at the aortic root level as demonstrated by oil‐red O staining and immunohistochemistry of LDL. Long‐term treatment with rosuvastatin caused pronounced remodelling of atherosclerotic plaque matrix characterized specifically by enrichment with SLRPs and formation of a condensed collagen matrix. Therefore, decorin and biglycan might represent novel targets of statin treatment that contribute to a stable plaque phenotype.  相似文献   

6.
Small leucine-rich proteoglycans (SLRPs), for example, decorin, biglycan, fibromodulin, and lumican, are extracellular matrix organizers and binding partners of TGF-b. Decorin is also involved in growth control and angiogenesis. Hence, these proteoglycans are likely of importance in the pathogenesis of diabetic glomerulosclerosis. In normal kidney, SLRPs were preferentially expressed in the tubulointerstitium. Weak expression occurred in the mesangial matrix. Biglycan was expressed by glomerular endothelial cells and, together with fibromodulin, by distal tubular cells and in collecting ducts. In all stages of diabetic nephropathy, there was a marked up-regulation of the proteoglycans in tubulointerstitium and glomeruli. Decorin and lumican became expressed in tubuli. However, in glomeruli, overexpression was not mirrored by local proteoglycan accumulation except in advanced nephropathy. In severe glomerulosclerosis, increased decorin concentrations were found in plasma and urine, and urinary TGF-b/decorin complexes could be demonstrated indirectly. The failure to detect an increased glomerular proteoglycan quantity during the development of nephropathy could be explained by assuming that they are secreted into the mesangial matrix, but cleared via the vasculature or the urinary tract, in part as complexes with TGF-b. They could thereby counteract the vicious circle being characterized by increased TGF-b production and increased matrix deposition in diabetic nephropathy.  相似文献   

7.
Biglycan is a Class I Small Leucine Rich Proteoglycans (SLRP) that is localized on human chromosome Xq28-ter. The conserved nature of its intron-exon structure and protein coding sequence compared to decorin (another Class I SLRP) indicates the two genes may have arisen from gene duplication. Biglycan contains two chondroitin sulfate glycosaminoglycan (GAG) chains attached near its NH2 terminus making it different from decorin that has only one GAG chain. To determine the functions of biglycan in vivo, transgenic mice were developed that were deficient in the production of the protein (knockout). These mice acquire diminished bone mass progressively with age. Double tetracycline-calcein labeling revealed that the biglycan deficient mice are defective in their capacity to form bone. Based on this observation, we tested the hypothesis that the osteoporosis-like phenotype is due to defects in cells critical to the process of bone formation. Our data shows that biglycan deficient mice have diminished capacity to produce marrow stromal cells, the bone cell precursors, and that this deficiency increases with age. The cells also have reduced response to tranforming growth factor- (TGF-), reduced collagen synthesis and relatively more apoptosis than cells from normal littermates. In addition, calvaria cells isolated from biglycan deficient mice have reduced expression of late differentiation markers such as bone sialoprotein and osteocalcin and diminished ability to accumulate calcium judged by alizerin red staining. We propose that any one of these defects in osteogenic cells alone, or in combination, could contribute to the osteoporosis observed in the biglycan knockout mice. Other data suggests there is a functional relationship between biglycan and bone morphogenic protein-2/4 (BMP 2/4) action in controlling skeletal cell differentiation. In order to test the hypothesis that functional compensation can occur between SLRPs, we created mice deficient in biglycan and decorin. Decorin deficient mice have normal bone mass while the double biglycan/decorin knockout mice have more severe osteopenia than the single biglycan indicating redundancy in SLRP function in bone tissue. To further determine whether compensation could occur between different classes of SLRPs, mice were generated that are deficient in both biglycan (class I) and fibromodulin, a class II SLRP highly expressed in mineralizing tissue. These doubly deficient mice had an impaired gait, ectopic calcification of tendons and premature osteoarthritis. Transmission electron microscopy analysis showed that like the decorin and biglycan knockouts, they have severely disturbed collagen fibril structures. Biomechanical analysis of the affected tendons showed they were weaker compared to control animals leading to the conclusion that instability of the joints could be the primary cause of all the skeletal defects observed in the fibromodulin/biglycan knockout mice. These studies present important new animal models for musculoskeletal diseases and provide the opportunity to characterize the network of signals that control tissue integrity and function through SLRP activity. Published in 2003.  相似文献   

8.
Chemokines have been suggested to play a role during development of left ventricular failure, but little is known about their role during right ventricular (RV) remodeling and dysfunction. We have previously shown that the chemokine (C-X-C motif) ligand 13 (CXCL13) regulates small leucine-rich proteoglycans (SLRPs). We hypothesized that chemokines are upregulated in the pressure-overloaded RV, and that they regulate SLRPs. Mice with RV pressure overload following pulmonary banding (PB) had a significant increase in RV weight and an increase in liver weight after 1 wk. Microarray analysis (Affymetrix) of RV tissue from mice with PB revealed that CXCL10, CXCL6, chemokine (C-X3-C motif) ligand 1 (CX3CL1), chemokine (C-C motif) ligand 5 (CCL5), CXCL16, and CCL2 were the most upregulated chemokines. Stimulation of cardiac fibroblasts with these same chemokines showed that CXCL16 increased the expression of the four SLRPs: decorin, lumican, biglycan, and fibromodulin. CCL5 increased the same SLRPs, except decorin, whereas CX3CL1 increased the expression of decorin and lumican. CXCL16, CX3CL1, and CCL5 were also shown to increase the levels of glycosylated decorin and lumican in the medium after stimulation of fibroblasts. In the pressure-overloaded RV tissue, Western blotting revealed an increase in the total protein level of lumican and a glycosylated form of decorin with a higher molecular weight compared with control mice. Both mice with PB and patients with pulmonary stenosis had significantly increased circulating levels of CXCL16 compared with healthy controls measured by enzyme immunoassay. In conclusion, we have found that chemokines are upregulated in the pressure-overloaded RV and that CXCL16, CX3CL1, and CCL5 regulate expression and posttranslational modifications of SLRPs in cardiac fibroblasts. In the pressure-overloaded RV, protein levels of lumican were increased, and a glycosylated form of decorin with a high molecular weight appeared.  相似文献   

9.
Knowledge on fish matrix biology is important to ensure optimal fish -quality, -growth and -health in aquaculture. The aquaculture industry face major challenges related to matrix biology, such as inflammations and malformations. Atlantic cod skeletal muscle was investigated for collagen I, decorin, biglycan, and lumican expression and distribution by real-time PCR, immunohistochemical staining and Western blotting. Immunohistochemical staining and Western immunoblotting were also performed using antibodies against glycosaminoglycan side chains of these proteoglycans, in addition to fibromodulin. Real-time PCR showed highest mRNA expression of lumican and collagen I. Collagen I and proteoglycan immunohistochemical staining revealed distinct thread-like structures in the myocommata, with the exception of fibromodulin, which stained in dense structures embedded in the myocommata. Chondroitinase AC-generated epitopes stained more limited than cABC-generated epitopes, indicating a stronger presence of dermatan sulfate than chondroitin sulfate in cod muscle. Lumican and keratan sulfate distribution patterns were strong and ubiquitous in endomysia and myocommata. Western blots revealed similar SLRPs sizes in cod as are known from mammals. Staining of chondroitin/dermatan sulfate epitopes in Western blots were similar in molecular size to those of decorin and biglycan, whereas staining of keratan sulfate epitopes coincided with expected molecular sizes of lumican and fibromodulin. In conclusion, lumican was a major proteoglycan in cod muscle with ubiquitous distribution overlapping with keratan sulfate. Other leucine-rich proteoglycans were also present in cod muscle, and Western blot using antibodies developed for mammalian species showed cross reactivity with fish, demonstrating similar structures and molecular weights as in mammals.  相似文献   

10.
Osteoarthritis (OA), the commonest form of arthritis and a major cause of morbidity, is characterized by progressive degeneration of the articular cartilage. Along with increased production and activation of degradative enzymes, altered synthesis of cartilage matrix molecules and growth factors by resident chondrocytes is believed to play a central role in this pathological process. We used an ovine meniscectomy model of OA to evaluate changes in chondrocyte expression of types I, II and III collagen; aggrecan; the small leucine-rich proteoglycans (SLRPs) biglycan, decorin, lumican and fibromodulin; transforming growth factor-β; and connective tissue growth factor. Changes were evaluated separately in the medial and lateral tibial plateaux, and were confirmed for selected molecules using immunohistochemistry and Western blotting. Significant changes in mRNA levels were confined to the lateral compartment, where active cartilage degeneration was observed. In this region there was significant upregulation in expession of types I, II and III collagen, aggrecan, biglycan and lumican, concomitant with downregulation of decorin and connective tissue growth factor. The increases in type I and III collagen mRNA were accompanied by increased immunostaining for these proteins in cartilage. The upregulated lumican expression in degenerative cartilage was associated with increased lumican core protein deficient in keratan sulphate side-chains. Furthermore, there was evidence of significant fragmentation of SLRPs in both normal and arthritic tissue, with specific catabolites of biglycan and fibromodulin identified only in the cartilage from meniscectomized joints. This study highlights the focal nature of the degenerative changes that occur in OA cartilage and suggests that altered synthesis and proteolysis of SLRPs may play an important role in cartilage destruction in arthritis.  相似文献   

11.
In mice, embryo implantation induces profound changes in the endometrium. These changes include redifferentiation of endometrial fibroblasts and extensive remodeling of extracellular matrix components. We have previously shown that, during this process, there is an impressive increase in the thickness of collagen fibrils present in decidualised areas that surround the implantation site, while collagen fibrils in non-decidualised areas and in the interimplantation site remain thin. In vitro and in vivo experiments have identified small leucine rich proteoglycans (SLRPs) as regulators of collagen fibrillogenesis. In a previous study, we demonstrated a difference between the pre-implantation and the post-implantation expression and distribution of four SLRPs types in uterine tissues. The present study, utilising immunocytochemical electron microscopy, shows that biglycan is associated with the presence of thick collagen fibrils in decidualised regions of the endometrium and that decorin is associated exclusively with thin collagen fibrils in non-decidualised endometrial areas. These results strongly indicate that biglycan plays a role in collagen fibrillogenesis and probably participates in the determination of collagen fibril thickness in the mouse decidua.  相似文献   

12.
Collagen has found use as a scaffold material for tissue engineering as well as a coating material for implants with a view to enhancing osseointegration through mimicry of the bone extracellular matrix in vivo. The aim of this study was to compare the collagen types I, II, and III with regard to their ability to bind the small leucine-rich proteoglycans (SLRPs) decorin and biglycan during fibrillogenesis in vitro in phosphate buffer. In addition, the influence of SLRPs on the proportion of collagen molecules incorporated into fibrils during fibrillogenesis in vitro at high and low ionic strength was investigated, as were their effects on the morphology of collagen fibrils and the speed of fibrillogenesis. Considerably more biglycan than decorin was bound by all three collagen types. Collagen II bound significantly more SLRPs in fibrils than collagen I and III. Decorin and biglycan decreased the proportion of collagen molecules of all three collagen types incorporated into fibrils in similar fashion. Biglycan affected neither fibril diameter nor the speed of fibrillogenesis. Decorin reduced the fibril diameter of all three collagen types. The differences in SLRP-binding ability between collagen types could be of significance when selecting collagen type and/or SLRPs as scaffold materials for tissue engineering or implant coatings.  相似文献   

13.
Ameye L  Young MF 《Glycobiology》2002,12(9):107R-116R
Small leucine-rich proteoglycans (SLRPs) are extracellular molecules that bind to TGFbetas and collagens and other matrix molecules. In vitro, SLRPs were shown to regulate collagen fibrillogenesis, a process essential in development, tissue repair, and metastasis. To better understand their functions in vivo, mice deficient in one or two of the four most prominent and widely expressed SLRPs (biglycan, decorin, fibromodulin, and lumican) were recently generated. All four SLRP deficiencies result in the formation of abnormal collagen fibrils. Taken together, the collagen phenotypes demonstrate a cooperative, sequential, timely orchestrated action of the SLRPs that altogether shape the architecture and mechanical properties of the collagen matrix. In addition, SLRP-deficient mice develop a wide array of diseases (osteoporosis, osteoarthritis, muscular dystrophy, Ehlers-Danlos syndrome, and corneal diseases), most of them resulting primarily from an abnormal collagen fibrillogenesis. The development of these diseases by SLRP-deficient mice suggests that mutations in SLRPs may be part of undiagnosed predisposing genetic factors for these diseases. Although the distinct phenotypes developed by the different singly deficient mice point to distinct in vivo function for each SLRP, the analysis of the double-deficient mice also demonstrates the existence of rescuing/compensation mechanisms, indicating some functional overlap within the SLRP family.  相似文献   

14.
A major and early feature of cartilage degeneration is proteoglycan breakdown. Matrix metalloprotease (MMP)-13 plays an important role in cartilage degradation in osteoarthritis (OA). This MMP, in addition to initiating collagen fibre cleavage, acts on several proteoglycans. One of the proteoglycan families, termed small leucine-rich proteoglycans (SLRPs), was found to be involved in collagen fibril formation/interaction, with some members playing a role in the OA process. We investigated the ability of MMP-13 to cleave members of two classes of SLRPs: biglycan and decorin; and fibromodulin and lumican. SLRPs were isolated from human normal and OA cartilage using guanidinium chloride (4 mol/l) extraction. Digestion products were examined using Western blotting. The identities of the MMP-13 degradation products of biglycan and decorin (using specific substrates) were determined following electrophoresis and microsequencing. We found that the SLRPs studied were cleaved to differing extents by human MMP-13. Although only minimal cleavage of decorin and lumican was observed, cleavage of fibromodulin and biglycan was extensive, suggesting that both molecules are preferential substrates. In contrast to biglycan, decorin and lumican, which yielded a degradation pattern similar for both normal and OA cartilage, fibromodulin had a higher level of degradation with increased cartilage damage. Microsequencing revealed a novel major cleavage site (... G177/V178) for biglycan and a potential cleavage site for decorin upon exposure to MMP-13. We showed, for the first time, that MMP-13 can degrade members from two classes of the SLRP family, and identified the site at which biglycan is cleaved by MMP-13. MMP-13 induced SLRP degradation may represent an early critical event, which may in turn affect the collagen network by exposing the MMP-13 cleavage site in this macromolecule. Awareness of SLRP degradation products, especially those of biglycan and fibromodulin, may assist in early detection of OA cartilage degradation.  相似文献   

15.
A major and early feature of cartilage degeneration is proteoglycan breakdown. Matrix metalloprotease (MMP)-13 plays an important role in cartilage degradation in osteoarthritis (OA). This MMP, in addition to initiating collagen fibre cleavage, acts on several proteoglycans. One of the proteoglycan families, termed small leucine-rich proteoglycans (SLRPs), was found to be involved in collagen fibril formation/interaction, with some members playing a role in the OA process. We investigated the ability of MMP-13 to cleave members of two classes of SLRPs: biglycan and decorin; and fibromodulin and lumican. SLRPs were isolated from human normal and OA cartilage using guanidinium chloride (4 mol/l) extraction. Digestion products were examined using Western blotting. The identities of the MMP-13 degradation products of biglycan and decorin (using specific substrates) were determined following electrophoresis and microsequencing. We found that the SLRPs studied were cleaved to differing extents by human MMP-13. Although only minimal cleavage of decorin and lumican was observed, cleavage of fibromodulin and biglycan was extensive, suggesting that both molecules are preferential substrates. In contrast to biglycan, decorin and lumican, which yielded a degradation pattern similar for both normal and OA cartilage, fibromodulin had a higher level of degradation with increased cartilage damage. Microsequencing revealed a novel major cleavage site (... G177/V178) for biglycan and a potential cleavage site for decorin upon exposure to MMP-13. We showed, for the first time, that MMP-13 can degrade members from two classes of the SLRP family, and identified the site at which biglycan is cleaved by MMP-13. MMP-13 induced SLRP degradation may represent an early critical event, which may in turn affect the collagen network by exposing the MMP-13 cleavage site in this macromolecule. Awareness of SLRP degradation products, especially those of biglycan and fibromodulin, may assist in early detection of OA cartilage degradation.  相似文献   

16.
Recombinant human beta ig-h3 was found to bind 125I-labeled small leucine-rich proteoglycans (SLRPs), biglycan, and decorin, in co-immunoprecipitation experiments. In each instance the binding could be blocked by an excess of the unlabeled proteoglycan, confirming the specificity of the interaction. Scatchard analysis showed that biglycan bound beta ig-h3 more avidly than decorin with Kd values estimated as 5.88 x 10(-8) and 1.02 x 10(-7) M, respectively. In reciprocal blocking experiments both proteoglycans inhibited the others binding to beta ig-h3 indicating that they may share the same binding site or that the two binding sites are in close proximity on the beta ig-h3 molecule. Since beta ig-h3 and the SLRPs are known to be associated with the amino-terminal region of collagen VI in tissue microfibrils, the effects of including collagen VI in the incubations were investigated. Co-immunoprecipitation of 125I-labeled biglycan incubated with equimolar mixtures of beta ig-h3 and pepsin-collagen VI was increased 6-fold over beta ig-h3 alone and 3-fold over collagen VI alone. Similar increases were also observed for decorin. The findings indicate that beta ig-h3 participates in a ternary complex with collagen VI and SLRPs. Static light scattering techniques were used to show that beta ig-h3 rapidly forms very high molecular weight complexes with both native and pepsin-collagen VI, either alone or with the SLRPs. Indeed beta ig-h3 was shown to form a complex with collagen VI and biglycan, which appeared to be much more extensive than that formed by beta ig-h3 with collagen VI and decorin or those formed between the collagen and beta ig-h3, biglycan, or decorin alone. Biglycan core protein was shown to inhibit the extent of complexing of beta ig-h3 with native and pepsin-collagen VI suggesting that the glycosaminoglycan side chains of the proteoglycan were important for the formation of the large ternary complexes. Further studies showed that the direct interaction between beta ig-h3 and biglycan and between biglycan and collagen VI were also important for the formation of these complexes. The globular domains of collagen VI also appeared to have an influence on the interaction of the three components. Overall the results indicate that beta ig-h3 can differentially modulate the aggregation of collagen VI with biglycan and decorin. Thus this interplay is likely to be important in tissues such as cornea where such complexes are considered to occur.  相似文献   

17.
Recent studies have shown that myostatin, first identified as a negative regulator of skeletal muscle growth, may also be involved in the formation of fibrosis within skeletal muscle. In this study, we further explored the potential role of myostatin in skeletal muscle fibrosis, as well as its interaction with both transforming growth factor-beta1 and decorin. We discovered that myostatin stimulated fibroblast proliferation in vitro and induced its differentiation into myofibroblasts. We further found that transforming growth factor-beta1 stimulated myostatin expression, and conversely, myostatin stimulated transforming growth factor-beta1 secretion in C2C12 myoblasts. Decorin, a small leucine-rich proteoglycan, was found to neutralize the effects of myostatin in both fibroblasts and myoblasts. Moreover, decorin up-regulated the expression of follistatin, an antagonist of myostatin. The results of in vivo experiments showed that myostatin knock-out mice developed significantly less fibrosis and displayed better skeletal muscle regeneration when compared with wild-type mice at 2 and 4 weeks following gastrocnemius muscle laceration injury. In wild-type mice, we found that transforming growth factor-beta1 and myostatin co-localize in myofibers in the early stages of injury. Recombinant myostatin protein stimulated myofibers to express transforming growth factor-beta1 in skeletal muscles at early time points following injection. In summary, these findings define a fibrogenic property of myostatin and suggest the existence of co-regulatory relationships between transforming growth factor-beta1, myostatin, and decorin.  相似文献   

18.
Mdx mice uniquely recover from degenerative dystrophic lesions through an intense myoproliferative response. The onset and progression of this process are controlled by a complex set of interactions between myoblasts and their environment. The presence of the extracellular matrix is essential for normal myogenesis. Proteoglycans are abundant components of the extracellular matrix. The synthesis of proteoglycans in mdx mice during skeletal muscle regeneration was evaluated. Incorporation of radioactive sulfate demonstrated a significant increase in the synthesis of several types of proteoglycans in mdx animals compared to age-matched controls. The size and charge of proteoglycans synthesized by the mdx mice remained unchanged. In particular, one of the up-regulated proteoglycans, the small chondroitin/dermatan sulfate proteoglycan decorin which is known to bind and to sequester transforming growth factor-beta, was investigated. Immunocytolocalization and in situ hybridization studies showed that decorin mainly accumulated in the endomysium, i.e. around individual skeletal muscle fibers from M. tibialis anterior and diaphragm.  相似文献   

19.
We have discovered a new member of the class I small leucine-rich repeat proteoglycan (SLRP) family which is distinct from the other class I SLRPs since it possesses a unique stretch of aspartate residues at its N terminus. For this reason, we called the molecule asporin. The deduced amino acid sequence is about 50% identical (and 70% similar) to decorin and biglycan. However, asporin does not contain a serine/glycine dipeptide sequence required for the assembly of O-linked glycosaminoglycans and is probably not a proteoglycan. The tissue expression of asporin partially overlaps with the expression of decorin and biglycan. During mouse embryonic development, asporin mRNA expression was detected primarily in the skeleton and other specialized connective tissues; very little asporin message was detected in the major parenchymal organs. The mouse asporin gene structure is similar to that of biglycan and decorin with 8 exons. The asporin gene is localized to human chromosome 9q22-9q21.3 where asporin is part of a SLRP gene cluster that includes extracellular matrix protein 2, osteoadherin, and osteoglycin. Further analysis shows that, with the exception of biglycan, all known SLRP genes reside in three gene clusters.  相似文献   

20.
Aquaculture requires feed that ensures rapid growth and healthy fish. Higher inclusion of plant ingredients is desirable, as marine resources are limited. In this study we investigated the effects of higher starch inclusion in feed on muscular extracellular matrix and interleukin expression in farmed cod. Starch was replaced by complex fibers in the low-starch diet to keep total carbohydrate inclusion similar. Blood glucose and fructosamine levels were elevated in the high-starch group. The group fed a high-starch diet showed up-regulation on mRNA level of proteoglycans biglycan and decorin. ELISA confirmed the real-time PCR results on protein level for biglycan and also showed increase of lumican. For decorin the protein levels were decreased in the high-starch group, in contrast to real-time PCR results. Disaccharide analyses using HPLC showed reduction of glycosaminoglycans. Further, there was up-regulation of interleukin-1β and -10 on mRNA level in muscle. This study shows that the muscular extracellular matrix composition is affected by diet, and that a high-starch diet results in increased expression of pro-inflammatory genes similar to diabetes in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号