首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yang H  Wu C  Zhao S  Guo J 《FEBS letters》2004,578(3):236-238
Present work reported a novel domain--D8C (domain with conserved eight cysteines in liver-specific ZP domain-containing protein, glycoprotein 2 (GP-2) and uromodulin (UMOD)), present in liver-specific LZP, UMOD, GP-2 and some uncharacterized proteins, most of which are membrane proteins, extracellular proteins or nuclear membrane proteins. D8C contains eight well-conserved cysteine residues, which were predicted to form four pairs of disulfide bridges. D8C is composed mainly of beta-strands. Mutation in the D8C at Cys217 in human UMOD is associated with familial juvenile hyperuricaemic nephropathy, which might be due to the disruption of the disulfide bridge. Identification of D8C would further the understandings of related proteins.  相似文献   

2.
The rat renal Na/P i cotransporter type IIa (rat NaPi IIa) is a 637 amino acid protein containing 12 cysteine residues. We examined the effect of different cysteine modifying methanethiosulfonate (MTS)-reagents and the disulfide bond reducing agent tris(2-carboxyethyl)phosphine (TCEP) on the transport activity of wild-type and 12 single cysteine substitution mutants of rat NaPi IIa expressed in Xenopus laevis oocytes. The transport activity of the wild-type protein was resistant to three membrane impermeant MTS-reagents (MTSEA, MTSET and MTSES). In contrast, membrane permeant methyl methanethiosulfonate (MMTS) and TCEP inhibited the transport activity of both the wild-type, as well as all the single mutant proteins. This indicated the existence of more than one functionally important cysteine residue, not accessible extracellularly, and at least 2 disulfide bridges. To identify the disulfide bridges, three double mutants lacking 2 of the 3 cysteine residues predicted to be extracellular in different combinations were examined. This led to the identification of one disulfide bridge between C306 and C334; reconsideration of the topological model predictions suggested a second disulfide bridge between C225 and C520. Evaluation of a fourth double mutant indicated that at least one of two disulfide bridges (C306 and C334; C225 and C520) has to be formed to allow the surface expression of a functional cotransporter. A revised secondary structure is proposed which includes two partially repeated motifs that are connected by disulfide bridges formed between cysteine pairs C306-C334 and C225-C520. Received: 13 December 1999/Revised: 31 March 2000  相似文献   

3.
Metallocarboxypeptidase inhibitors are proteins with possible applications in biomedicine given their properties as anticoagulant and antitumoral factors. They are small, eukaryotic polypeptides comprising several disulfide bridges, which makes them hard to express in inexpensive bacterial hosts. In this work, three of them were produced in high-cell-density cultures of Escherichia coli: PCI (39 residues and three bridges), LCI (66 residues and four bridges) and TCI (75 residues and six bridges). The genes coding for the mentioned inhibitors were cloned in an arabinose-inducible plasmid fused to the signal peptide of DsbA in order to have them secreted and grant the formation of the bridges. The trigger-factor defective strain KTD101 was used as the expression host. The resulting recombinant strains were cultured in fed-batch mode employing minimal media and an exponential feed profile, keeping the specific growth rate at μ = 0.1 h−1 by limitation of the fed carbon source (glycerol). Between 380 and 540 mg l−1 of active inhibitors were obtained in both the periplasmic extracts and extracellular media of the cultures. Later on, excretion was enhanced using a cell permeabilization treatment, allowing the recovery of over 80% of the products from the extracellular fraction. Protein yields were found to be inversely proportional to cysteine content of the inhibitor, whereas protein excretion rates were inversely proportional to the protein size. Overall, these results offer insight into the secretory production of active disulfide-bridged proteins in high-cell-density cultures of E. coli.  相似文献   

4.
On the disulphide bonds of rhodopsins.   总被引:3,自引:0,他引:3       下载免费PDF全文
Carboxymethylation using 14C- or 3H-labelled iodoacetic acid has been used to identify the cysteine residues in bovine rhodopsin involved in the formation of the two intramolecular disulphide bridges. Iodo[2-14C]acetic acid was used to modify 5.8-5.9 residues of cysteine under non-reducing conditions. After dialysis and reduction of disulphide bridges by 2-mercaptoethanol, iodo[2-3H]acetic acid was employed to covalently modify 3.3-3.6 residues of cysteine. Peptide purification and sequencing has unambiguously shown that cysteine residues 322 and 323 are only carboxymethylated after reduction of disulphide bridges. Indirect evidence presented, now coupled with the earlier finding [Findlay & Pappin (1986) Biochem. J. 238, 625-642] suggests that the other disulphide bridge is formed between cysteine residues 110 and 187. A comparison is made of all the sequences of mammalian rhodopsins and colour pigments and attention is drawn to the fact that whereas Cys-322 and Cys-323 are conserved only in three rhodopsins (bovine, ovine and human), the residues corresponding to Cys-110 and Cys-187 are found in all the visual proteins (from rods as well as human cones).  相似文献   

5.
The sulfinic acid analog of aspartic acid, cysteine sulfinic acid, introduces a sulfur atom that perturbs the acidity and oxidation properties of aspartic acid. Cysteine sulfinic acids are often introduced in peptides and proteins by oxidation of cysteine, but this method is limited as all cysteine residues are oxidized and cysteine residues are often oxidized to sulfonic acids. To provide the foundation for the specific incorporation of cysteine sulfinic acids in peptides and proteins, we synthesized a 9-fluorenylmethyloxycarbonyl (Fmoc) benzothiazole sulfone analog. Oxidation conditions to generate the sulfone were examined and oxidation of the Fmoc-protected sulfide (3) with NbC in hydrogen peroxide provided the corresponding sulfone (4) in the highest yield and purity. Reduction with sodium borohydride generated the cysteine sulfinic acid (5) suggesting this approach may be an efficient method to incorporate a cysteine sulfinic acid in biomolecules. A model tripeptide bearing a cysteine sulfinic acid was synthesized using this approach. Future studies are aimed at using this method to incorporate cysteine sulfinic acids in peptide hormones and proteins for use in the study of biological function.  相似文献   

6.
In the present study, we isolated, synthesized and NMR structurally characterized a novel conopeptide Im10A consisting of 11 amino acids (NTICCEGCMCY-NH2) from Conus imperialis. Unlike other conopeptides with four cysteine residues, Im10A had only two residues in loop 1 and one residue in loop 2 (CC-loop1-C-loop2-C), which formed a stable disulfide connectivity “I-IV, II- III” (framework X) with a type I β-turn. Interestingly, Im10A exhibited 50.7% analgesic activity on rat partial sciatic nerve ligation (PNL) at 2 h after Im10A administration. However, 10 μM Im10A exhibited no apparent effect on neuronal nicotinic acetylcholine receptor, and it did not target DRG voltage-dependent sodium, potassium and calcium ion channels and opioid receptor. To our knowledge, Im10A had the most concentrated disulfide bridges among conopeptides with four cysteine residues. This finding provided a new motif for the future development of biomimetic compounds.  相似文献   

7.

Background  

Pathogenic yersiniae (Y. pestis, Y. pseudotuberculosis, Y. enterocolitica) share a virulence plasmid encoding a type three secretion system (T3SS). This T3SS comprises more than 40 constituents. Among these are the transport substrates called Yops (Yersinia outer proteins), the specific Yop chaperones (Sycs), and the Ysc (Yop secretion) proteins which form the transport machinery. The effectors YopO and YopP are encoded on an operon together with SycO, the chaperone of YopO. The characterization of SycO is the focus of this study.  相似文献   

8.
5'-Nucleotidase from bull seminal plasma is inhibited by dithiothreitol and dithioerythritol. These reactives proved to dissociate the dimeric glycoprotein 5'-nucleotidase of Mr 160 000 into two subunits of apparent Mr 80 000, indicating that the subunits are held together by interchain disulfide bridges. HPLC determinations of cysteic acid and carboxymethylcysteine protein derivatives resulted in 50 +/- 3 half-cystine plus cysteine residues, while 1.9 +/- 0.4 free cysteine residues were estimated by HPLC analysis. The enzyme is inhibited by EDTA and EGTA, and the inhibition appears to be of the non-competitive type for both the chelating agents. Experiments for the enzyme activity recovery by MgCl2 and CaCl2 additions, after the EDTA and EGTA treatments in the presence of 8 M urea, are reported.  相似文献   

9.

Background  

α-Conotoxins have exciting therapeutic potential based on their high selectivity and affinity for nicotinic acetylcholine receptors. The spacing between the cysteine residues in α-conotoxins is variable, leading to the classification of sub-families. BuIA is the only α-conotoxin containing a 4/4 cysteine spacing and thus it is of significant interest to examine the structure of this conotoxin.  相似文献   

10.
Marinostatin is a unique protein protease inhibitor containing two ester linkages. We have purified a 12-residue marinostatin [MST(1-12), (1)FATMRYPSDSDE(12)] and determined the residues involved in the formation of the ester linkages and the solution structure by (1)H NMR spectroscopy and restrained molecular dynamics calculation. The two ester linkages of MST(1-12) are formed between hydroxyl and carboxyl groups, Thr(3)-Asp(9) and Ser(8)-Asp(11), indicating that MST(1-12) has two cyclic regions which are fused at the residues of Ser(8) and Asp(9). A strong NOE cross-peak between Tyr(6) H(alpha) and Pro(7) H(alpha) was observed, indicating that the Pro(7) residue takes a cis-conformation. Well-converged structures and hydrogen-deuterium experiments of MST(1-12) showed that the backbone NH proton of the P1'residue, Arg(5), is hydrogen-bonded to the carbonyl oxygen of the ester linkage between Thr(3) and Asp(9). To reveal the significance of the ester linkages, a marinostatin analogue, MST-2SS ((1)FACMRYPCCSCE(12)) with two disulfide bridges of Cys(3)-Cys(9) and Cys(8)-Cys(11), was also synthesized. The inhibitory activity of MST-2SS was as strong as that of MST(1-12), and the Pro(7) residue of MST-2SS also takes a cis-conformation. However, the exchange rate of the Arg(5) NH proton of MST-2SS was about 100 times faster than that of MST(1-12), and the structure calculation of MST-2SS was not converged on account of the small number of NOEs, indicating that MST-2SS takes a more flexible structure. The hydrogen acceptability of the ester linkage formed by the P2 position residue, Thr(3), is crucial for suppressing the fluctuation of the reactive site and sustaining the inhibitory activity, which enables marinostatin to be one of the smallest protease inhibitors in nature.  相似文献   

11.

Background  

FK506 binding proteins (FKBPs) and cyclophilins (CYPs) are abundant and ubiquitous proteins belonging to the peptidyl-prolyl cis/trans isomerase (PPIase) superfamily, which regulate much of metabolism through a chaperone or an isomerization of proline residues during protein folding. They are collectively referred to as immunophilin (IMM), being present in almost all cellular organs. In particular, a number of IMMs relate to environmental stresses.  相似文献   

12.

Background  

CJ9-gD is a novel dominant-negative recombinant herpes simplex virus type 1 (HSV-1) that is completely replication-defective, cannot establish detectable latent infection in vivo, and expresses high levels of the major HSV-1 antigen glycoprotein D immediately following infection. In the present study, CJ9-gD was evaluated as a vaccine against HSV-2 genital infection in guinea pigs.  相似文献   

13.
The cystine knot three-dimensional structure is found in many extracellular molecules and is conserved among divergent species. The identification of proteins with a cystine knot structure is difficult by commonly used pairwise alignments because the sequence homology among these proteins is low. Taking advantage of complete genome sequences in diverse organisms, we used a complementary approach of pattern searches and pairwise alignments to screen the predicted protein sequences of five model species (human, fly, worm, slime mold, and yeast) and retrieved proteins with low sequence homology but containing a typical cystine knot signature. Sequence comparison between proteins known to have a cystine knot three-dimensional structure (transforming growth factor-beta, glycoprotein hormone, and platelet-derived growth factor subfamily members) identified new crucial amino acid residues (two hydrophilic amino acid residues flanking cysteine 5 of the cystine knot). In addition to the well known members of the cystine knot superfamily, novel subfamilies of proteins (mucins, norrie disease protein, von Willebrand factor, bone morphogenetic protein antagonists, and slit-like proteins) were identified as putative cystine knot-containing proteins. Phylogenetic analysis revealed the ancient evolution of these proteins and the relationship between hormones [e.g. transforming growth factor-beta (TGFbeta)] and extracellular matrix proteins (e.g. mucins). They are absent in the unicellular yeast genome but present in nematode, fly, and higher species, indicating that the cystine knot structure evolved in extracellular signaling molecules of multicellular organisms. All data retrieved by this study can be viewed at http://hormone.stanford.edu/.  相似文献   

14.
S100A3, a member of the EF-hand-type Ca2+-binding S100 protein family, is unique in its exceptionally high cysteine content and Zn2+ affinity. We produced human S100A3 protein and its mutants in insect cells using a baculovirus expression system. The purified wild-type S100A3 and the pseudo-citrullinated form (R51A) were crystallized with ammonium sulfate in N,N-bis(2-hydroxyethyl)glycine buffer and, specifically for postrefolding treatment, with Ca2+/Zn2+ supplementation. We identified two previously undocumented disulfide bridges in the crystal structure of properly folded S100A3: one disulfide bridge is between Cys30 in the N-terminal pseudo-EF-hand and Cys68 in the C-terminal EF-hand (SS1), and another disulfide bridge attaches Cys99 in the C-terminal coil structure to Cys81 in helix IV (SS2). Mutational disruption of SS1 (C30A + C68A) abolished the Ca2+ binding property of S100A3 and retarded the citrullination of Arg51 by peptidylarginine deiminase type III (PAD3), while SS2 disruption inversely increased both Ca2+ affinity and PAD3 reactivity in vitro. Similar backbone structures of wild type, R51A, and C30A + C68A indicated that neither Arg51 conversion by PAD3 nor SS1 alters the overall dimer conformation. Comparative inspection of atomic coordinates refined to 2.15−1.40 Å resolution shows that SS1 renders the C-terminal classical Ca2+-binding loop flexible, which are essential for its Ca2+ binding properties, whereas SS2 structurally shelters Arg51 in the metal-free form. We propose a model of the tetrahedral coordination of a Zn2+ by (Cys)3His residues that is compatible with SS2 formation in S100A3.  相似文献   

15.
Protein structures are stabilized by both local and long-range interactions. In this work, we analyzed the importance of long-range interactions in (α/β)8 barrel proteins in terms of residue distances. We found that the residues occurring in the range of 21–30 residues apart contribute more toward long-range contacts. Indeed, about 50% of successive strands in these proteins are found to occur at a sequential distance of 21–30 residues. The aromatic amino acid residues Phe, Trp, and Tyr prefer the 4–10 range and all other residues prefer the 21–30 range. Hydrophobic-hydrophobic resideu pairs are the most preferred ones for long-range interactions and they may play a key role in the folding and stabilization of (α/β)8 barrel proteins.  相似文献   

16.
The two major proteins from the phloem exudate of Cucurbita maxima (pumpkin), PP1 and PP2, were stable in the absence of reducing agents after modification of their accessible cysteine residues with iodoacetamide. This permitted their purification without precautions to prevent oxidation. PP2, a lectin specific for oligomers of N-acetyl-D-glucosamine, was shown by sedimentation-equilibrium ultracentrifugation to be a dimer of Mr of 48000. Neither dithiothreitol nor tri-(N-acetyl-D-glucosamine) altered this value. The constituent polypeptides were linked by two buried disulphide bridges. PP2 behaved aberrantly on gel-filtration on both Sephadex and Bio-Gel unless tri-(N-acetyl-D-glucosamine) was added to the elution buffer; the Mr was then measured as 46000. Other proteins which bind oligomers of N-acetyl-D-glucosamine are also retarded on gel-filtration. Soluble phloem filaments were prepared by collection of exudate into deaerated buffer containing iodoacetamide but no reducing agent. Oxidative gellation of the filaments was prevented by rapid modification of their many accessible cysteine residues, and is assumed to have maintained the degree of polymerisation found in vivo. Those disulphide bridges which were present allowed the incorporation of approximately 60% of the PP1 and 80% of the PP2 into polymeric material. It is concluded that PP1 and PP2 are both structural proteins present in the filaments observable in vivo. PP2 had an elongated binding-site for oligomers of N-acetyl-D-glucosamine. It is suggested that this lectin immobilises bacteria and fungi to the cross-linked filaments which seal wounded phloem sieve-tubes, and thus maintains sterility.  相似文献   

17.
The mature fusion (F) glycoprotein of the paramyxovirus family consists of two disulfide-linked subunits, the N-terminal F2 and the C-terminal F1 subunits, and contains 10 cysteine residues which are highly conserved at specific positions. The high level of conservation strongly suggests that they are indeed disulfide linked and play important roles in the folding and functioning of the molecule. However, it has not even been clarified which cysteine residues link the F2 and F1 subunits. This report describes our assignment of the disulfide bridges in purified Sendai virus F glycoprotein by fragmentation of the polypeptide and isolation of cystine-containing peptides and determination of their N-terminal sequences. The data demonstrate that all of the 10 cysteine residues participate in disulfide bridges and that Cys-70, the only cysteine in F2, and Cys-199, the most upstream cysteine in F1, form the interchain bond. Of the remaining eight cysteine residues clustered near the transmembrane domain of F1, the specific bridges identified are Cys-338 to Cys-347 and Cys-362 to Cys-370. Although no exact pairings between the subsequent four residues were defined, it seems likely that the most downstream, Cys-424, is linked to Cys-394, Cys-399, or Cys-401. Thus, we conclude that the cysteine-rich domain indeed contributes to the formation of a bunched structure containing at least two tandem cystine loops.  相似文献   

18.

Background  

S100 proteins, a multigenic family of non-ubiquitous cytoplasmic Ca2+-binding proteins, have been linked to human pathologies in recent years. Dysregulated expression of S100 proteins, including S100A9, has been reported in the epidermis as a response to stress and in association with neoplastic disorders. Recently, we characterized a regulatory element within the S100A9 promotor, referred to as MRE that drives the S100A9 gene expression in a cell type-specific, activation- and differentiation-dependent manner (Kerkhoff et al. (2002) J. Biol. Chem. 277, 41879–41887).  相似文献   

19.
A protein acting as a powerful inhibitor of plant pectin methylesterase was isolated from kiwi (Actinidia chinensis) fruit. The complete amino-acid sequence of the pectin methylesterase inhibitor (PMEI) was determined by direct protein analysis. The sequence comprises 152 amino-acid residues, accounting for a molecular mass of 16 277 Da. The far-UV CD spectrum indicated a predominant alpha-helix conformation in the secondary structure. The protein has five cysteine residues but neither tryptophan nor methionine. Analysis of fragments obtained after digestion of the protein alkylated without previous reduction identified two disulfide bridges connecting Cys9 with Cys18, and Cys74 with Cys114; Cys140 bears a free thiol group. A database search pointed out a similarity between PMEI and plant invertase inhibitors. In particular, the four Cys residues, which in PMEI are involved in the disulfide bridges, are conserved. This allows us to infer that also in the homologous proteins, whose primary structure was deduced only by cDNA sequencing, those cysteine residues are engaged in two disulfide bridges, and constitute a common structural motif. The comparison of the sequence of these inhibitors confirms the existence of a novel class of proteins with moderate but significant sequence conservation, comprising plant proteins acting as inhibitors of sugar metabolism enzymes, and probably involved in various steps of plant development.  相似文献   

20.

Background  

Streptococcus suis serotype 2 (SS2) is a zoonotic agent that causes death and disease in both humans and swine. A better understanding of SS2-host molecular interactions is crucial for understanding SS2 pathogenesis and immunology. Conventional genetic and biochemical approaches used to study SS2 virulence factors are unable to take into account the complex and dynamic environmental stimuli associated with the infection process. In this study, in vivo-induced antigen technology (IVIAT), an immunoscreening technique, was used to identify the immunogenic bacterial proteins that are induced or upregulated in vivo during SS2 infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号