首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
L-Pipecolic acid was found to be effective in inducing floweringof Lemna paucicostata 151, 381, 441 and 6746, and of Lemna gibbaG3. When the plants were grown on half-strength Hutner's medium,L-pipecolic acid caused profuse flowering of L. paucicostata151 maintained under 9 and 10 h of light daily. In L. paucicostata441 and 6746, L-pipecolic acid had a strong flower-promotingeffect under a near critical photoperiod. In L. paucicostata381, by contrast, L-pipecolic acid had only a very small effecton flowering. In L. gibba G3 substantial promotion of floweringwas observed under continuous light. When one-twentieth-strengthHutner's medium was used as the basic medium, L-pipecolic acidstimulated flowering in all strains of Lemna examined, evenunder continuous light. When L. paucicostata 151 was grown on one-tenth-strength M mediumor one-twentieth-strength Hutner's medium, the flower-inducingactivity of L-pipecolic acid was greatly enhanced by cytokininunder continuous light. However, when this strain was grownwith 9 h of illumination daily, this synergistic effect of cytokininwas only slight. A short-term (even 1-h) treatment with L-pipecolicacid resulted in flowering, suggesting that L-pipecolic acidis involved in the induction of flowering, rather than its evocation.D-Pipecolic acid also had flower-inducing activity, but itsactivity was 50 times lower than that of the L-isomer. (Received January 23, 1992; Accepted March 9, 1992)  相似文献   

2.
The natural occurrence of L-pipecolic acid and conversion oflysine to L-pipecolic acid in Lemna paucicostata 151 were demonstrateddefinitively by GC-MS. The strong flower-inducing activity ofL-pipecolic acid has already been demonstrated. Thus, the presentstudy indicates that the effect of lysine on flowering is mediatedby L-pipecolic acid. (Received June 30, 1997; Accepted August 22, 1997)  相似文献   

3.
Extracts of flowering plants of the long-day plant Lemna gibbaG3 and the short-day plants Lemna paucicostata 151 and 381 weretested on L. paucicostata 151 for flower-inducing activity.Crude extracts failed to show any activity but after severalpurification steps three fractions with flower-inducing activitywere obtained. One fraction obtained from all three plants wasshown to contain nicotinic acid by mass spectroscopic and NMRspectroscopic analyses. These results raise the possibilitythat nicotinic acid may act to influence the flowering processin Lemna. (Received August 28, 1985; Accepted October 29, 1985)  相似文献   

4.
The flower-inducing activities of benzoic and salicylic acidsadded to the medium differ with the species (Lemna paucicostataand L. minor), and even with the strains used. The type andpH of the medium used, full or 1/10 strength M medium at pH3.8, 4.4 or 5.1, or 1/2 or 1/20 strength NH4+-free Hutner'smedium at pH 5.0, 6.0 or 7.0, also modify their activity. L.paucicostata, strain 151 is the most sensitive of the strainsused to both benzoic and salicylic acids followed by strain381. Such dramatic flowering responses were not obtained withthe other strains, but even strain 321, reportedly insensitiveto benzoic acid, could be induced to flower by adding benzoicacid to a modification of the medium. Benzoic acid is more effectivethan salicylic acid for all strains of L. paucicostata, butthe contrary is true for two L. minor strains tested. A higherpercentage of flowering is obtained in L. paucicostata in 1/2strength NH4+-free Huter'sn medium than in M medium, exceptfor strain 151. When diluted, both media enhance flowering inall L. paucicostata strains. Generally, a lower concentrationof benzoic acid or salicylic acid is enough to induce floweringwhen the pH of the medium is lower. (Received March 30, 1981; Accepted May 16, 1981)  相似文献   

5.
The flower-inducing activity of L-pipecolic acid was synergisticallyenhanced by simultaneous application of the water extracts ofLemna paucicostata and Pharbitis nil, but suppressed by thewater extracts of all other plants we examined. Simultaneousapplication of the water extract of Lemna enhanced the flower-inducingactivity of all plant water extracts. (Received June 6, 1990; Accepted July 7, 1990)  相似文献   

6.
Nicotinic acid induces flowering in Lemna paucicostata 151 and381 and Lemna gibba G3 when they are grown in one tenth-strengthM medium under continuous light. For L. paucicostata 151 and381, the simultaneous addition of IAA, GA3 or ABA to the mediumleads to an inhibition of the flower-inducing effect of nicotinicacid, while zeatin leads to a further stimulation of floweringabove that obtained by nicotinic acid alone. By contrast, inL. gibba G3 all four plant hormones inhibit the nicotinic acid-inducedstimulation of flowering. The effect of nicotinic acid on flowering in all three plantsis strongly daylength dependent when the plants are grown inhalf-strength Hutner's medium. Thus, nicotinic acid causes floweringin L. gibba G3 on continuous light but not on 9L:15D or 10L:14Dregimes. In L. paucicostata 381 nicotinic acid has a small effecton 12L:12D regime, a large effect on a 13L:11D regime and noeffect with daylengths longer than 14 hours, and in L. paucicostata151 nicotinic acid is only effective on daylengths shorter thanabout 11 hours. However, in L. paucicostata 151 and 381 treatmentwith both nicotinic acid and zeatin results in flowering undercontinuous light on half-strength Hutner's medium. Nicotinic acid is present in different Lemna but its concentrationdoes not appear to be influenced by changes in daylength. Thus,flowering clearly cannot be controlled by nicotinic acid actingalone, but the results of this study indicate that nicotinicacid could interact with other factors, possibly including oneor more of the known plant hormones, to influence the floweringprocess in Lemna. (Received August 28, 1985; Accepted October 29, 1985)  相似文献   

7.
Flower-inducing activity of lysine was examined in Lemna paucicostata151, a weakly responsive short-day plant, cultured on nitrogen-richmedium under long-day conditions (continuous light). Lemna paucicostata151 was homogenized in a solution of lysine and the homogenatewas centrifuged. The supernatant (lysine-containing extract)was added to nitrogen-rich medium after passage through a membranefilter to give various concentrations of lysine in the medium.Flowering was induced in plants grown for six days on mediumthat contained lysine at concentrations above 0.25 µM.In plants grown on medium that contained 1 µM lysine,a significant flowering response was observed on the fourthday of culture. However, the flower-inducing activity of lysinedisappeared when the lysine-containing extract was added tothe medium and the medium was then autoclaved, suggesting thatthe active principle is unstable to autoclaving. Among derivativesof lysine tested, lysine hydroxamate had the highest flower-inducingactivity and lysyl lysine had almost same activity as that oflysine. When added to the medium without homogenization withplant material, lysine and lysyl lysine had flower-inducingactivity but lysine hydroxamate did not induce flowering. (Received April 26, 1993; Accepted November 8, 1993)  相似文献   

8.
A norepinephrine solution in which intact plants of Lemna paucicostatahad been immersed for 30 min or on which intact Lemna plantshad been placed for 24 h had strong flower-inducing activityin L. paucicostata 151, but norepinephrine added to the distilledwater in which Lemna plants had been immersed had no activity. (Received May 24, 1991; Accepted July 5, 1991)  相似文献   

9.
In a previous study, heat-treated noradrenaline induced flowering of the short-day plant Lemna paucicostata Hegelmaier 151. In the present study, we found that heat-treated noradrenaline also had flower-inducing activity in short-day L. paucicostata strains 441 and 6746 and in long-day L. gibba strain G3. The flower-inducing activity in these plants was enhanced by water homogenates of eggplant (Solanum melongena L.).  相似文献   

10.
Vitamins K1 K3 and K5 induced flowering in Lemna paucicostata151, a short-day plant, cultured in 1/10 strength M medium (1/10M medium) under continuous light, and their activity was greatlyintensified by simultaneous application of benzyladenine. Themost active of these was vitamin K5 L. paucicostata 6746 ismore sensitive to vitamin K5 than strain 151, but the effectof vitamin K5 on strain 6746 was not intensified by benzyladenine.The flower-inducing activity of vitamin K5 was intensified bythe addition of benzoic acid in both strains and by the additionof copper or ferricyanide in Strain 6746, when these chemicalswere added at such low concentrations that they would scarcelyinduce flowering. In strain 6746, vitamin K5 added to 1/10 M had little effecton flowering under a subcritical photoperiod, while it clearlyinduced flowering under continuous light. In this strain, vitaminK5 added to full strength M medium, in which this plant wasmore sensitive to short photoperiods than in 1/10 M medium,did not induce flowering even under continuous light, and wasrather inhibitory under short photoperiods. (Received August 14, 1984; Accepted October 16, 1984)  相似文献   

11.
Efforts were made to isolate flower-inhibitory substances from extracts of the short-day plant Lemna paucicostata 381. Lemna paucicostata 151, which was used in the bioassay, exhibits poor flowering in response to the photoperiod, but flowers profusely in response to benzoic acid. Therefore, only those substances that inhibit benzoic acid-induced flowering were studied. Several fractions obtained by silica gel column chromatography exhibited flower-inhibitory activity when tested on L. paucicostata 151. After several purification steps, one of the active principles was identified as lutein by MS, UV and NMR spectroscopic analyses. Lutein and its isomer zeaxanthin inhibited benzoic acid-induced flowering in both L. paucicostata 151 and 381.  相似文献   

12.
Benzoic acid, known to induce flowering in Lemnaceae, was shownto be converted to four major compunds in Lemna paucicostata151. These compounds were isolated and determined to be N-benzoylaspartate, benzyl 6-O-ßdD-apiofuranosyl-ß-D-glucopyranoside,O-benzoyl isocitrate and O-benzoyl malate. (Received November 2, 1987; Accepted January 23, 1988)  相似文献   

13.
Dicoumarol, an antagonist of vitamin K, not only promoted theflower-inducing activity of vitamin K5, but also induced floweringin Lemna paucicostata when added alone to the medium. The flower-inducingactivity of dicoumarol was comparable to that of benzoic acidand could be greatly intensified by simultaneous applicationof benzyladenine as was the case with benzoic acid. Warfarin,another antagonist of vitamin K, did not induce flowering. 4-Hydroxycoumarin, a component of dicoumarol, was also active,but coumarin and 7-hydroxycoumarin were not. Dicoumarol hadonly a slight flower-inducing activity for strains 441 and 6746under continuous light, but had a strong flower-promoting effectunder a near critical photoperiod. That is, the effect of dicoumarolwas daylength-dependent. (Received April 22, 1985; Accepted August 21, 1985)  相似文献   

14.
The crude water extracts of leaves of many plant species belongingto Spermatophyta and some belonging to Bryophyta induced floweringof Lemna paucicostata 151 (PI51) under continuous light, atthe concentrations equivalent to 0.1 to 10 mg fr wt leaf per10 ml culture medium (mg fr wt/10 ml). The extract of Salvinia(Pterydophyta) added together with the extract of Lemna at aconcentration lower than that necessary to cause flowering alsoinduced flowering. The activity of the water extracts of someplants varied considerably from experiment to experiment dueto unknown factors, but the extracts of Pharbitis nil strainViolet, a sensitive short-day plant, always showed a high activity,as did the extracts of Lemna paucicostata reported previously. The extract of Pharbitis cotyledons induced flowering of P151even at 0.3 mg fr wt/10 ml, and significantly promoted floweringof L. paucicostata 441 and 6746 at 1–3 mg fr wt/10 ml.Ex-udate from the cuttings of the seedlings was also active.However, neither the activity of the water extract nor thatof the exudate could be correlated with photoperiodic floralinduction. On the other hand, the extract of leaves or cotyledonshad higher activity (on a fr wt basis) than that of other organs,and the activity of the extract of cotyledons changed with theirage roughly in parallel with their photoperiodic sensitivity. (Received April 17, 1989; Accepted August 10, 1989)  相似文献   

15.
The occurrence and endogenous level of various plant hormoneswere measured for the short-day plants Lemna paucicostata 151and 381 and the long-day plant Lemna gibba G3 to determine whetherany of them are involved in the photoperiodic control of flowering.ABA, IAA, GA1, GA29, GA34, GA53, trans- and cis-zeatin, trans-and cis-ribosyl zeatin, N6-(2-isopentenyl) adenine and N6-(2-isopentenyl)adenosine were definitely detected in each species, while GA4was only detected in L. gibba G3 and GA20 was only detectedin L. paucicostata 151. The endogenous levels of ABA and IAAwere in the range of 1–7 ng/g fr wt and were not significantlydifferent in vegetative and flowering plants. The endogenousgibberellin levels were generally higher in Lemna grown underlong-day rather than short-day conditions. The endogenous cytokininlevels were almost the same in both flowering and vegetativeplants of L. paucicostata 151 and 381. In L. gibba G3, however,the level of cis-ribosyl zeatin, N6-(2-isopentenyl) adenineand N6-(2-sopentenyl) adenosine were higher in vegetative thanin flowering plants. These results indicate that there is not necessarily a directrelation between endogenous plant hormone levels and flowering,and that the chemical basis for the photoperiodic control offlowering cannot be explained solely by changes in hormone levels.The possibility remains, however, that one or more of the planthormones has some influence of secondary importance on the floweringprocess in Lemna. (Received January 29, 1986; Accepted July 12, 1986)  相似文献   

16.
In vitro activity of nitrate reductase was studied in Lemnapaucicostata 6746 grown on modified Hoagland medium supplementedwith 1% sucrose, containing various inhibitors. Copper, silver,tungstate or cyanide which induces daylength-independent flowering,inhibited the nitrate reductase activity, but azide which doesnot induce daylength-independent flowering did not. Molybdate-deficientmedium induced flowering, and inhibited nitrate reductase activity.Lowering of nitrate level of the medium also induced daylength-independentflowering. These results suggest that the suppression of nitrate assimilationcauses daylength independent flowering in Lemna paucicostata6746, and that one of the flower-inducing actions of the copper,silver, tungstate, cyanide or the deletion of molybdate is tosuppress the nitrate assimilation. (Received June 26, 1985; Accepted October 30, 1985)  相似文献   

17.
Lemna paucicostata HEGELM. is normally a short-day plant andflowers only in the presence of a chelating agent (EDTA or EDDHA)in the medium. The plant can be induced to flower even by asingle long night treatment; the flowering percentage, however,increases with further inductive cycles. The length of the criticaldark period depends upon the chelating agent employed in themedium. It is between 10 and 12 hr in the medium containingEDTA and about 8 hr in the EDDHA-supplemented medium. Red lightinterruption in the middle of the dark period—even fora minute—is inhibitory for flowering. Attempts to identify the metal ion(s) chelated reveal that thechelating agents affect flowering by facilitating iron uptake.This is also supported by the fact that the requirement of achelating agent for flowering can be overcome with an excessof iron in the medium. Interestingly, provision of EDDHA andexcess of ferric citrate, together, can bring about floweringeven under long days. 1Originally HEGELMAIER (1) designated L. paucicostata as a separatespecies; however, THOMPSON (2) and DAUBS (3) have treated itsynonymous to L. perpusilla. More recently, based on physiologicaland chemotaxonomic studies, the distinctiveness of L. paucicostatafrom L. perpusilla has been favoured (4, 5). (Received September 8, 1969; )  相似文献   

18.
The effects of plant hormones on flowering of Lemna paucicostata151 and 381 were investigated when exogenously applied in combinationwith benzoic acid. These strains are very sensitive to benzoicacid and flower readily on application of benzoic acid. Theflower-inducing effect of benzoic acid was strongly modifiedby plant hormones: gibberellins, indole-3-acetic acid and abscisicacid were inhibitory, while cytokinins were promotive (synergistic),suggesting that the balance between endogenous levels of benzoicacid and plant hormones contributes to the regulation of floweringin Lemna. (Received October 6, 1982; Accepted December 23, 1982)  相似文献   

19.
The flowering of Lemna paucicostata 151 that is normally inducedby nitrogen-free culture was suppressed by the application ofeither of two protease inhibitors, namely, elastatinal and bestatin,to the medium. These protease inhibitors prevented the flower-inductiveprocess(es) rather than the development of flower buds, suppressingof the degradation of some proteins. The amount of free lysinein plants increased during nitrogen-free culture and lysinehad a flower-inducing effect on the plant. However, levels ofendogenous lysine did not increase when elastatinal was presentin the medium. The suppressive effect of elastatinal on flowerinduction was almost completely reversed by simultaneous applicationof lysine to the medium while the suppressive effect of bestatinwas only partially reversed by lysine. These results suggestthat induction of flowering by nitrogen deficiency is due toendogenous free lysine and that elastatinal suppresses the proteolyticprocesses by which free lysine is generated from protein(s)during nitrogen-free culture. (Received August 7, 1992; Accepted February 9, 1993)  相似文献   

20.
The occurrence of benzoic acid, a flower-inducing factor inLemna species, in L. paucicostata strains 151, 381, 321 andL. gibba G3 was established by several purification steps andfinal use of gas liquid chromatography-selected ion monitoring.Quantitative analyses of benzoic acid were made in non-floweringand flowering Lemna to determine differences in levels. Theendogenous level of benzoic acid was shown to vary dependingon culture conditions, but no positive correlation could befound between the endogenous level of benzoic acid and floweringof Lemna. (Received October 6, 1982; Accepted December 23, 1982)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号