首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
From various rat organs, alkaline phosphodiesterase I was liberated by the action of phosphatidylinositol-specific phospholipase C obtained from Bacillus thuringiensis. Especially, a large amount of alkaline phosphodiesterase I was released from slices of small intestine, testis, lung, and kidney, but not from pancreas and liver. The release of the enzyme induced by phospholipase C was dependent on, or proportional to, the reaction time and the concentrations of the phospholipase C and the weight of the slices of small intestine or testis. Furthermore, little enzyme was released from the homogenate of pancreas. These results suggest an important role of phosphatidylinositol in the binding of alkaline phosphodiesterase I to the plasma membranes of rat small intestine and pancreas. The alkaline phosphodiesterase I released from slices of rat small intestine and testis had a molecular weight of about 240,000, and was activated by Mg2+ and Ca2+ but inhibited by EDTA. The enzyme hydrolyzed the phosphodiester linkage of p-nitrophenyl-thymidine 5'-monophosphate at pH 8.9, having the Km values of 0.36 mM (small intestine) and 0.25 mM (testis). The intestinal enzyme differed from the testis enzyme in pI values, thermostability, and Arrhenius plot having a single breakpoint.  相似文献   

2.
Ectoenzyme release from rat liver and kidney by phosphatidylinositol (PI)-specific phospholipase C of Bacillus thuringiensis was studied. Alkaline phosphatase and 5'-nucleotidase were released from rat kidney slices to extents of up to 60% and 30%, respectively. Release of alkaline phosphatase was observed at lower amounts of PI-specific phospholipase C than that of 5'-nucleotidase. Both enzymes were more easily released from microsomal fractions or free cells. From kidney cells, alkaline phosphatase was released without cell lysis, and more than 80% release of alkaline phosphatase was observed at 3.8% hydrolysis of PI. Isoelectric focusing profiles of alkaline phosphatase released by PI-specific phospholipase C were significantly different from the control in the cases of both rat liver and kidney. Lubrol-solubilized alkaline phosphatase was eluted at the void volume of a Toyopearl HW-55 column, while the enzyme obtained by further treatment with PI-specific phospholipase C was eluted in the lower-molecular-weight region corresponding to 100,000-110,000 daltons. Furthermore, Lubrol-solubilized phosphatase became more thermostable on treatment with PI-specific phospholipase C.  相似文献   

3.
A phosphatidylinositol phosphodiesterase from the culture broth of Bacillus cereus, was purified to a homogeneous state as indicated by polyacrylamide gel electrophoresis, by ammonium sulfate precipitation and chromatography with DEAE-cellulose and CM-Sephadex. The enzyme (molecular weight: 29000 +/- 1000) was maximally active at pH 7.2-7.5, AND NOT INFLUENCED BY EDTA, ophenanthroline, monoiodoacetate, p-chloromercuribenzoate or reduced glutathione. The enzyme specifically hydrolyzed phosphatidylinositol, but did not act on phosphatidylcholine, phosphatidylethanolamine and sphingomyelin, under the conditions examined. The products from phosphatidylinositol of enzyme reaction were diacylglycerols and a mixture of myoinositol 1- and 1, 2-cyclic phosphates, suggesting that the enzyme was a phosphatidylinositol-specific phospholipase C. The enzyme released alkaline phosphatase quantitatively from rat kidney slices. A kinetic analysis was made on the release of alkaline phosphatase. The results suggest that phosphatidylinositol-specific phospholipase C can specifically act on plasma membrane of rat kidney slices.  相似文献   

4.
When isolated hepatocytes are incubated with phosphatidylinositol-specific phospholipase C, three cell-surface enzymes show markedly different behaviour. Most of the alkaline phosphatase is released at very low values of phosphatidylinositol hydrolysis, whereas further phosphatidylinositol hydrolysis releases only a maximum of about one-third of the 5'-nucleotidase. Alkaline phosphodiesterase I is not released. If cells containing phosphatidyl[3H]inositol are similarly treated, then the released [3H]inositol is in the form of inositol phosphate: no evidence has been obtained for any covalent association between released [3H]inositol and alkaline phosphatase.  相似文献   

5.
Separation of rat muscle aminopeptidases.   总被引:4,自引:2,他引:2       下载免费PDF全文
By means of chromatography on DEAE-Sephadex, two arylamidases (hydrolysing L-arginine 2-naphthylamide) and three dipeptidyl peptidases (hydrolysing dipeptide 2-naphthylamides) were distinguished in extracts of rat muscle. However, the arylamidase from the larger peak also hydrolysed the dipeptide 2-naphthylamides. Glycyl-L-arginine amide, an alternative substrate for dipeptidyl peptidase I, was not hydrolysed by arylamidase. L-Leucine amide was hydrolysed by an enzyme, presumed to be leucine aminopeptidase, from a separate peak, but was also hydrolysed by arylamidase. Arylamidase, dipeptidyl peptidase III and most of the leucine aminopeptidase could be extracted from the muscle with a neutral salt solution, but dipeptidyl peptidase I was extracted only in the presence of Triton X-100; dipeptidyl peptidase II showed an intermediate extraction behaviour.  相似文献   

6.
  • 1.1. Aminopeptidase N was selectively released from larval midgut of silkworm, Bombyx mori, by phosphatidylinositol-specific phospholipase C, and purified to a homogeneous state by ion exchange, gel filtration. Con A-Sepharose and 4-aminobenzyl phosphonic acid-agarose column chromatographies.
  • 2.2. The purified aminopeptidase N preparation showed 190.8 U/mg of specific activity. Its molecular weight was estimated to be around 100 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis.
  • 3.3. Purified aminopeptidase N molecule preferentially hydrolyzed Leu-, Ala- and Met-p-nitroanilide as substrates. Especially, Leu-p-nitroanilide proved to be the best substrate for aminopeptidase N from larval midgut of silkworm.
  • 4.4. By treatment with phosphatidylinositol-specific phospholipase C, two other hydrolases, alkaline phosphatase and alkaline phosphodiesterase I, were also solubilized from silkworm midgut.
  相似文献   

7.
The larval midgut epithelial cell of the silkworm, Bombyx mori, has two forms of alkaline phosphatase and trehalase, soluble and membrane-bound. Alkaline phosphatase and trehalase of the latter form are found in the brush border membrane and the basolateral membrane, respectively. In this work we studied the membrane anchors of these membrane-bound enzymes. Alkaline phosphatase was solubilized by phosphatidyl-inositol-specific phospholipase C, but not by papain. Conversely, trehalase was released from the membrane by papain, but not by phosphatidylinositol-specific phospholipase C. Both enzymes were solubilized in an amphiphilic form with 0.5% Triton X-100 plus 0.5% sodium deoxycholate (pH 7.0). The detergent-solubilized alkaline phosphatase and trehalase were converted to hydrophilic form on incubation with phosphatidylinositol-specific phospholipase C and papain, respectively. The effects of papain on solubilization and conversion of trehalase were completely inhibited by leupeptin. These results suggest that, in the silkworm larvae, alkaline phosphatase is anchored in the brush-border membrane via a glycosyl-phosphatidylinositol, while trehalase is associated with the basolateral membrane through a hydrophobic segment of the polypeptide.  相似文献   

8.
1. A method for the preparation of brush border from rabbit kidneys is described. Contamination by other organelles was checked by electron microscopy and by the assay of marker enzymes and was low. 2. Seven enzymes, all hydrolases, were substantially enriched in the brush-border preparation and are considered to be primarily located in this structure. They are: alkaline phosphatase, maltase, trehalase, aminopeptidase A, aminopeptidase M, gamma-glutamyl transpeptidase and a neutral peptidase assayed by its ability to hydrolyse [(125)I]iodoinsulin B chain. 3. Adenosine triphosphatases were also present in the preparation, but showed lower enrichments. 4. Alkaline phosphatase was the most active phosphatase present in the preparation. The weak hydrolysis of AMP may well have been due to this enzyme rather than a specific 5'-nucleotidase. 5. The two disaccharidases in brush border were distinguished by the relative heat-stability of trehalase compared with that of maltase. 6. The individuality of the four peptidases was established by several means. The neutral peptidase and aminopeptidase M, both of which can attack insulin B chain, differed not only in response to inhibitors and activators but also in the inhibitory effect of a guinea-pig antiserum raised to rabbit aminopeptidase M. This antiserum inhibited both the purified and the brush-border activities of aminopeptidase M. The neutral peptidase and gamma-glutamyl transpeptidase were unaffected but aminopeptidase A was weakly inhibited. The characteristic responses to Ca(2+) and serine with borate served to distinguish aminopeptidase A and gamma-glutamyl transpeptidase from other peptidases. 7. No dipeptidases, tripeptidases or carboxypeptidases were identified as brush-border enzymes. 8. Incubation of brush border with papain released almost all the aminopeptidase M activity but only about half the activities of maltase, gamma-glutamyl transpeptidase and aminopeptidase A. No release of alkaline phosphatase, trehalase or the neutral peptidase was observed.  相似文献   

9.
The release of plasma membrane ecto-enzymes by a phosphatidylinositol-specific phospholipase C from Staphylococcus aureus was investigated. There was no effect on l-leucyl-β-naphthylamidase, alkaline phosphodiesterase I and Ca2+- or Mg2+-ATPase, but substantial proportions of the alkaline phosphatase and 5′-nucleotidase were released. There was no simultaneous release of phospholipid and the solubilized enzymes were not excluded from Sepharose 6-B. It was therefore concluded that release was not a secondary consequence of membrane vesiculation but occurred as a result of the disruption of specific interactions involving the phosphatidylinositol molecule.  相似文献   

10.
We have previously demonstrated that 5'-nucleotidase, known as a plasma membrane enzyme, is also distributed both in rat liver tritosomal membranes and contents (J. Biochem. 101, 1077-1085, 1987). When the lysosomal membranes isolated from rat livers were incubated with phosphatidylinositol-specific phospholipase C purified from B. thuringiensis, about 70% of 5'-nucleotidase activity was released from the membranes. Judging from the result by phase separation with Triton X-114, the enzyme solubilized by the phospholipase C digestion showed a hydrophilic nature such as that of the tritosomal contents. Immunoblot analysis showed that the molecular weight of 5'-nucleotidase released from the lysosomal membranes by the phospholipase C digestion was almost identical with that of the enzymes from the Tritosomal contents. The above results showed that the phosphatidylinositol-specific phospholipase C-like enzyme in the lysosomes may be responsible for the conversion of the lysosomal membrane-bound 5'-nucleotidase to the soluble form present in the lysosomal matrix.  相似文献   

11.
Leucine aminopeptidase as an echo-enzyme of polymorphonuclear neutrophils   总被引:1,自引:0,他引:1  
Intact polymorphonuclear neutrophils were modified chemically by a poorly permeable reagent, diazotized sulfanilic acid, and the changes in the activity of 5'-nucleotidase, alkaline phosphodiesterase, and leucine aminopeptidase were examined. Among three plasma membrane enzymes, 5'-nucleotidase activity was hardly detected in the human neutrophils. The activity of alkaline phosphodiesterase was observed in all the neutrophils examined, but was not inhibited by diazotized sulfanilic acid in the guinea-pig neutrophils. On the other hand, the activity of leucine aminopeptidase was not only found but also inhibited by diazotized sulfanilic acid without the inhibition of lactate dehydrogenase, a cytosol enzyme, in all the neutrophils, suggesting that leucine aminopeptidase is located generally on the plasma membrane as an ecto-enzyme in the neutrophils.  相似文献   

12.
Intact polymorphonuclear neutrophils were modified chemically by a poorly permeable reagent, diazotized sulfanilic acid, and the changes in the activity of 5′-nucleotidase, alkaline phosphodiesterase, and leucine aminopeptidase were examined. Among three plasma membrane enzymes, 5′-nucleotidase activity was hardly detected in the human neutrophils. The activity of alkaline phosphodiesterase was observed in all the neutrophils examined, but was not inhibited by diazotized sulfanilic acid in the guinea-pig neutrophils. On the other hand, the activity of leucine aminopeptidase was not only found but also inhibited by diazotized sulfanilic acid without the inhibition of lactate dehydrogenase, a cytosol enzyme, in all the neutrophils, suggesting that leucine aminopeptidase is located generally on the plasma membrane as an ecto-enzyme in the neutrophils.  相似文献   

13.
Alkaline phosphatase was solubilized from plasma membrane of rat liver with butanol-ol, bile acids or sodium deoxycholate, and electrophoretically compared with a soluble form in serum which was derived from the liver. The three enzyme preparations from the plasma membrane migrated at the same position on polyacrylamide-gel electrophoresis in the presence of either Triton X-100 or sodium dodecyl sulphate. The mobility of them, however, was distinctly different from that of the serum-soluble form of the liver-derived alkaline phosphatase. On the other hand, phosphatidylinositol-specific phospholipase C isolated from Bacillus cereus was used to release alkaline phosphatase from plasma membrane. The released alkaline phosphatase was demonstrated to have the same mobility as the serum-soluble form on polyacrylamide-gel electrophoresis in the presence or absence of detergents. The phospholipase C also converted the butan-1-ol-extracted membrane form into the serum-soluble form. The results suggest that release of alkaline phosphatase from the liver into serum is not simply caused by a detergent effect of bile salts, but involves an enzymic hydrolysis of phosphatidylinositol, with which alkaline phosphatase may strongly interact in the membrane.  相似文献   

14.
Wistar rat organs and tissues were investigated after acute and chronic uremia using enzyme cytochemical means whereby special attention was paid to plasma membrane and lysosomal proteases. Heart muscle, pancreas, spleen, stomach, duodenum, jejunum, colon and skeletal muscle did not show any clear-cut indications of alterations. After acute uremia activities of dipeptidyl peptidase IV, glutamyl aminopeptidase and microsomal alanyl aminopeptidase were decreased in the extraorbital gland and that of dipeptidyl peptidase IV in the submandibular gland. The thymus showed an increased staining for glutamyl aminopeptidase and lysosomal proteases. An activity increase of dipeptidyl peptidase IV, acid phosphatase and beta-N-acetyl-D-glucosaminidase occurred in bronchial lavage cells among which the alveolar macrophages predominated. In addition, their number was comparatively higher. Non-specific esterase activity was lowered in these cells. Alkaline phosphatase activity was drastically enhanced at the biliary pole of hepatocytes. Following chronic uremia all effects were less pronounced except for the lavage cells which were positive for glutamyl aminopeptidase, microsomal alanyl aminopeptidase and gamma-glutamyl transpeptidase and showed increased staining for lysosomal proteases, glycosidases and nonspecific phosphatases.  相似文献   

15.
1. Liver plasma membranes originating from the sinusoidal, lateral and canalicular surface domains of hepatocytes were covalently labelled with sulpho-N-hydroxysuccinamide-biotin. After solubilization in Triton X-114, treatment with a phosphatidylinositol-specific phospholipase C (PI-PLC), two-phase partitioning and 125I-streptavidin labelling of the proteins resolved by PAGE, six major polypeptides (molecular masses 110, 85, 70, 55, 38 and 35 kDa) were shown to be anchored in bile canalicular membrane vesicles by a glycosyl-phosphatidylinositol (G-PI) 'tail'. 2. Permeabilized 'early' and 'late' endocytic vesicles isolated from liver were also examined. Two polypeptides (110 and 35 kDa) were shown to be anchored by a G-PI tail in 'late' endocytic vesicles. 3. Analysis of marker enzymes in bile-canalicular vesicles treated with PI-PLC showed that 5'-nucleotidase and alkaline phosphatase, but not leucine aminopeptidase and ecto-Ca2(+)-ATPase activities were released from the membrane. A low release and recovery of alkaline phosphodiesterase activity was noted. The cleavage from the membrane of 5'-nucleotidase as a 70 kDa polypeptide was confirmed by Western blotting using an antibody to this enzyme. 4. Antibodies raised to proteins released from bile-canalicular vesicles by PI-PLC treatment, and purified by partitioning in aqueous and Triton X-114 phases, localized to the bile canaliculi in thin liver sections. Antibodies to proteins not hydrolysed by this treatment stained by immunofluorescence the sinusoidal and canalicular surface regions of hepatocytes. 5. Antibodies generated to proteins cleaved by PI-PLC treatment of canalicular vesicles were shown to identify, by Western blotting, a major 110 kDa polypeptide in these vesicles. Two polypeptides (55 and 38 kDa) were detected in MDCK and HepG-2 cultured cells. 6. Since two of the six G-PI-anchored proteins targeted to the bile-canalicular plasma membrane were also detected in 'late' endocytic vesicles, the results suggest that a junction where exocytic and endocytic traffic routes meet occurs in a 'late' endocytic compartment.  相似文献   

16.
Aminopeptidase P (EC 3.4.11.9) was solubilized from pig kidney membranes with bacterial phosphatidylinositol-specific phospholipase C (PI-PLC) and then purified by a combination of anion-exchange and hydrophobic-interaction chromatographies. Contaminating peptidase activities were removed by selective affinity chromatography. The purified enzyme was apparently homogeneous on SDS/PAGE with an Mr of 91,000. Enzymic deglycosylation revealed that aminopeptidase P is a glycoprotein, with up to 25% by weight of the protein being due to the presence of N-linked sugars. The phospholipase-solubilized aminopeptidase P was recognized by an antiserum to the cross-reacting determinant (CRD) characteristic of the glycosyl-phosphatidylinositol anchor. This recognition was abolished by mild acid treatment or deamination with HNO2, indicating that the CRD was due exclusively to the inositol 1,2-cyclic phosphate ring epitope generated by the action of PI-PLC. The activity of aminopeptidase P was inhibited by chelating agents and was stimulated by Mn2+ or Co2+ ions, confirming the metallo-enzyme nature of this peptidase. Selective inhibitors of other aminopeptidases (actinonin, amastatin, bestatin and puromycin) had little or no inhibitory effect.  相似文献   

17.
Purification and properties of rat brain dipeptidyl aminopeptidase   总被引:2,自引:0,他引:2  
Dipeptidyl aminopeptidase, which hydrolyzes the 7-(Gly-Pro)-4-methylcoumarinamide, has been purified from the brains of 3 week-old rats. It was purified about 2,600-fold by column chromatography on CM-cellulose, hydroxyapatite and Gly-Pro AH-Sepharose. This enzyme hydrolyzed Lys-Ala-beta-naphthylamide well with an optimum pH of 5.5. It was inhibited by diisopropyl fluorophosphate, phenyl-methanesulfonyl fluoride, some cations, and puromycin, but was not inhibited by p-chloromercuribenzoate, N-ethylmaleimide, dithiothreitol, EDTA, iodoacetic acid, and bacitracin, indicating that rat brain dipeptidyl aminopeptidase is a serine protease. This enzyme showed a molecular weight of 220,000 by gel filtration and of 51,000 by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The properties of purified rat brain dipeptidyl aminopeptidase were similar to those of bovine pituitary dipeptidyl peptidase II, but the molecular weight and substrate specificity of these enzymes were different.  相似文献   

18.
The release of plasma membrane ecto-enzymes by a phosphatidylinositol-specific phospholipase C from Staphylococcus aureus was investigated. There was no effect on L-leucyl-beta-naphthylamidase, alkaline phosphodeisterase I and Ca2+- or MG2+-ATPase, but substantial proportions of the alkaline phosphatase and 5-nucleotidase were released. There was no simultaneous release of phospholipid and the solubilized enzymes were not exluded from Sepharose 6-B. It was therefore concluded that release was not a secondary consequence of membrane vesiculation but occurred as a result of the disruption of specific interactions involving the phosphatidylinositol molecule.  相似文献   

19.
Alkaline phosphatase and 5'-nucleotidase are covalently linked to phosphatidylinositol in bovine fat globule membrane, as demonstrated by their release following treatment with phospholipase C specific for phosphatidylinositol. The failure of this treatment to liberate phosphodiesterase I may indicate that it has a variant linkage resistant to release. In a test of exposure at the membrane surface, alkaline phosphatase and phosphodiesterase I, but not 5'-nucleotidase, were released from fat globule membrane by treatment with proteinase K. These apparent differences in accessibilities of membrane surface proteins suggest that attachment to phosphatidylinositol does not necessarily impart greater exposure to proteins with which it is linked.  相似文献   

20.
1. Alkaline phosphatase is covalently bound to bovine mammary microsomal membranes and milk fat globule membranes through linkage to phosphatidylinositol as demonstrated by the release of alkaline phosphatase following treatment with phosphatidylinositol-specific phospholipase C. 2. The release of alkaline phosphatase from the pellet to the supernatant was demonstrated by enzyme assays and electrophoresis. 3. Electrophoresis of the solubilized enzymes showed that the alkaline phosphatase of the microsomal membranes contained several isozymes, while only one band with alkaline phosphatase activity was seen in the fat globule membrane. 4. Levamisole and homoarginine were potent inhibitors of the alkaline phosphatase activities in both membrane preparations and in bovine liver alkaline phosphatase, but not in calf intestinal alkaline phosphatase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号