首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
受人类活动和气候变化的影响,湖泊湖滨带退化速度显著加快。植物功能性状的方法可以量化植物特征,预测植物对外界环境干扰的反应,有助于理解退化湖滨带湿地植物应对环境变化所表现出的适应机制,对湖泊湖滨湿地生态系统植被的恢复与重建具有重要意义。在内蒙古高原典型湖泊湖滨湿地选取芦苇(Phragmites australis)、赖草(Leymus secalinus)、毛茛(Ranunculus japonicus)、鹅绒委陵菜(Potentilla anserina)、碱蓬(Suaeda glauca)、盐角草(Salicornia europaea)和拂子茅(Calamagrostis epigeios)7种优势植物的叶片和根系作为研究对象,对不同湿地植物的11种功能性状变化规律及其与环境因子的关系进行研究。旨在探究环境变化影响下湖滨带湿地植物的物种分布和功能性状的差异,以及湿地植物在不同湖滨带湿地生境下的适应策略。在评估植物功能性状差异基础上,采用环境矩阵连接性状矩阵(RLQ)结合第四角分析(Fourth-Corner)的方法分析环境因子对植物功能性状的影响。结果表明,内蒙古湖滨带湿地中7种优势植物为了适应不同的环境的影响,植物的功能性状均产生不同程度的种间与种内变异,在湖滨带湿地中植物的植株高度、叶片碳含量、叶片氮含量、叶片碳氮比、比根长、根组织密度、根氮含量对环境变化的响应比较敏感,土壤pH与叶片干物质含量呈显著负相关;土壤盐分与植株高度、叶片碳含量和叶碳氮比显著负相关,与叶片氮含量、根组织密度显著正相关;土壤的总氮含量与植株高度显著正相关,与比根长显著负相关;土壤碳氮比与植株高度和叶片碳含量显著负相关,与植物比根长显著正相关;土壤容重与根氮含量显著负相关。研究表明内蒙古高原湖滨带湿地植物的功能性状受环境的作用强烈,植物采取了不同的性状策略来适应环境。  相似文献   

2.
Arbuscular mycorrhizal (AM) and dark septate endophytic (DSE) fungi are ubiquitous in grass roots, but their colonizations may vary according to latitudinal gradient and site conditions. We investigated how vegetation zone (boreal vs. subarctic), humus thickness, and site openness affect root fungal colonizations of the grass Avenella flexuosa. More precisely, we hypothesized that AM and DSE fungal colonizations would have different responses to environmental conditions such that AM fungi could be more common in boreal zone, whereas we expected DSE fungi to be more affected by the amount of humus. We found site openness to affect AM and DSE fungi in a contrasting manner, in interaction with the vegetation zone. AM colonization was high at open coastal dunes, whereas DSE fungi were more common at forested sites, in the boreal zone. Humus thickness affected AM fungi negatively and DSE fungi positively. To conclude, the observed AM and DSE fungal colonization patterns were largely contrasting. AM fungi were favored in seashore conditions characterized by thin humus layer, whereas DSE fungi were favored in conditions of higher humus availability.  相似文献   

3.
We investigated fungal species-specific responses of ectomycorrhizal (ECM) Scots pine (Pinus sylvestris) seedlings on growth and nutrient acquisition together with mycelial development under ambient and elevated CO2. Each seedling was associated with one of the following ECM species: Hebeloma cylindrosporum, Laccaria bicolor, Suillus bovinus, S. luteus, Piloderma croceum, Paxillus involutus, Boletus badius, or non-mycorrhizal, under ambient, and elevated CO2 (350 or 700 μl l−1 CO2); each treatment contained six replicates. The trial lasted 156 days. During the final 28 days, the seedlings were labeled with 14CO2. We measured hyphal length, plant biomass, 14C allocation, and plant nitrogen and phosphorus concentration. Almost all parameters were significantly affected by fungal species and/or CO2. There were very few significant interactions. Elevated CO2 decreased shoot-to-root ratio, most strongly so in species with the largest extraradical mycelium. Under elevated CO2, ECM root growth increased significantly more than hyphal growth. Extraradical hyphal length was significantly negatively correlated with shoot biomass, shoot N content, and total plant N uptake. Root dry weight was significantly negatively correlated with root N and P concentration. Fungal sink strength for N strongly affected plant growth through N immobilization. Mycorrhizal fungal-induced progressive nitrogen limitation (PNL) has the potential to generate negative feedback with plant growth under elevated CO2. Responsible Editor: Herbert Johannes Kronzucker  相似文献   

4.
Giesler  Reiner  Satoh  Fuyuki  Ilstedt  Ulrik  Nordgren  Anders 《Ecosystems》2004,7(2):208-217
Soil microorganisms play an important role in the mobilization of phosphorus (P), and these activities may be beneficial for plant P utilization. We investigated the effects on microbial P availability of different combinations of aluminum and iron (Al + Fe) concentrations and different P pools in humus soils from boreal forest ecosystems. We measured respiration rates in laboratory incubations before and after additions of glucose plus (NH4)2SO4 (Glu+N), with or without a small dose of KH2PO4. Glu+N was added in excess so that the availability of the inherent soil P would be growth-limiting for the microorganisms. The exponential increases observed in microbial growth after substrate additions (Glu+N) was slower for humus soils with high Al+Fe concentrations than for humus soils with low Al+Fe concentrations. Adding a small dose of KH2PO4 to humus soils with high Al+Fe concentrations did, however, increase the exponential growth, measured as the slope of the log-transformed respiration rates, by more than 200%. By contrast, the average increase in exponential growth was only 6% in humus soils with low Al+Fe concentrations. Almost eight times more carbon dioxide (CO2) was evolved between the substrate additions and the point at which the respiration rate reached 1 mg CO2 h–1 for soils with high Al+Fe concentrations compared to humus soils with low Al+Fe concentrations. The amount of CO2 evolved was positively related to the Al+Fe concentration of the humus soils (r 2 = 0.86, P < 0.001), whereas the slope was negatively related to Al+Fe concentration (r 2 = 0.70, P < 0.001). Easily available P forms were negatively related to the Al+Fe concentration, whereas organic P showed a strong positive relationship to Al+Fe (r 2 = 0.85, P < 0.001), suggesting that other forms of P, as well as inorganic P, are affected by the increased sorption capacity. The results indicate that P mobilization by microorganisms is affected by the presence of sorption sites in the humus layer, and that this capacity for sorption may relate not only to phosphate but also to organic P compounds.  相似文献   

5.
Plant zonation patterns across New England salt marshes have been investigated for years, but how nutrient availability differs between zones has received little attention. We investigated how N availability, P availability, and plant N status varied across Juncus gerardii, Spartina patens, and mixed forb zones of a Northern New England high salt marsh. We also investigated relationships between several edaphic factors and community production and diversity across the high marsh. P availability, soil salinity, and soil moisture were higher in the mixed forb zone than in the two graminoid zones. NH+ 4-N availability was highest in the J. gerardii zone, but NO 3-N availability and mid season net N mineralization rates did not vary among zones. Plant tissue N concentrations were highest in the mixed forb zone and lowest in the S. patens zone, reflecting plant physiologies more so than soil N availability. Community production was highest in the J. gerardii zone and was positively correlated with N availability and negatively correlated with soil moisture. Plant species diversity was highest in the mixed forb zone and was positively correlated with P availability and soil salinity. Thus, nutrient availability, plant N status, and plant species diversity varied across zones of this high marsh. Further investigation is needed to ascertain if soil nutrient availability influences or is a result of the production and diversity differences that exist between vegetation zones of New England high salt marshes.  相似文献   

6.
Soil extracellular enzymes are the proximal drivers of decomposition. However, the relative influence of climate, soil nutrients and edaphic factors compared to microbial community composition on extracellular enzyme activities (EEA) is poorly resolved. Determining the relative effects of these factors on soil EEA is critical since changes in climate and microbial species composition may have large impacts on decomposition. We measured EEA from five sites during the growing season in March and 17 sites during the dry season in July throughout southern California and simultaneously collected data on climate, soil nutrients, soil edaphic factors and fungal community composition. The concentration of carbon and nitrogen in the soil and soil pH were most related to hydrolytic EEA. Conversely, oxidative EEA was mostly related to mean annual precipitation. Fungal community composition was not correlated with EEA at the species, genus, family or order levels. The hyphal length of fungi was correlated with EEA during the growing season while relative abundance of taxa within fungal phyla, in particular Chytridiomycota, was correlated with the EEA of beta-glucosidase, cellobiohydrolase, acid phosphatase and beta-xylosidase in the dry season. Overall, in the dry season, 35.3 % of the variation in all enzyme activities was accounted for by abiotic variables, while fungal composition accounted for 27.4 %. Because global change is expected to alter precipitation regimes and increase nitrogen deposition in soils, EEA may be affected, with consequences for decomposition.  相似文献   

7.
We investigated the functional significance of extraradical mycorrhizal networks produced by geographically different isolates of the arbuscular mycorrhizal fungal (AMF) species Glomus mosseae and Glomus intraradices. A two-dimensional experimental system was used to visualize and quantify intact extraradical mycelium (ERM) spreading from Medicago sativa roots. Growth, phosphorus (P) and nitrogen (N) nutrition were assessed in M. sativa plants grown in microcosms. The AMF isolates were characterized by differences in extent and interconnectedness of ERM. Phenotypic fungal variables, such as total hyphal length, hyphal density, hyphal length per mm of total or colonized root length, were positively correlated with M. sativa growth response variables, such as total shoot biomass and plant P content. The utilization of an experimental system in which size, growth rate, viability and interconnectedness of ERM extending from mycorrhizal roots are easily quantified under realistic conditions allows the simultaneous evaluation of different isolates and provides data with a predictive value for selection of efficient AMF.  相似文献   

8.
Samples of water were taken from a polluted zone of the Gallinas River and analyzed as to numbers of total bacteria, coliforms, and fecal streptococci. Environmental factors measured were temperature, pH and concentrations of detergent, nitrate plus nitrite nitrogen, sulfate, chloride, bicarbonate, and phosphate. Thirty-two observations were made from 12 March through 22 July 1971. Stepwise multiple linear regression analyses of the data were carried out by computer to determine which of the environmental factors were significantly correlated with numbers of bacteria present. A multiple linear regression equation was constructed for each bacteriological parameter as a function of significant variables only. Log total bacteria was correlated positively with bicarbonate, phosphate, and detergent concentrations. Log coliforms was correlated positively with phosphate and sulfate concentrations and negatively with chloride concentration. Log fecal streptococci was correlated positively with bicarbonate and chloride concentrations.  相似文献   

9.
陈凯  肖能文  王备新  李俊生 《生态学报》2012,32(6):1970-1978
为了解石油开采对湿地生态系统的影响,2009年10月调查了黄河三角洲东营湿地34个样点的水体物理化学属性和大型底栖无脊椎动物群落结构。共获得3门6纲12目41科70属84个大型底栖无脊椎动物分类单元。Shannon-Wiener多样性指数(r=-0.446,P=0.02)和TN显著负相关,BI指数与理化指标无显著相关性;软体动物分类单元数与盐度(r=-0.422,P=0.028)显著负相关,与pH值(r=0.435,P=0.023)显著正相关;软体动物个体百分数同样与盐度(r=-0.395,P=0.041)呈显著负相关,与pH值(r=0.565,P=0.002)呈极显著正相关;寡毛类分类单元数与TN(r=0.524,P=0.005)极显著正相关。水体石油含量与生物指数无显著相关性。典范对应分析(CCA)显示,TN、pH、盐度是影响东营湿地底栖动物群落结构的主要环境变量,水体石油污染并不是主要的胁迫因子。寡毛类和软体动物是该地区对环境变化的主要指示生物类群。Shannon-Wiener多样性指数水质生物评价结果显示,溢洪河支流、广利河上游、挑河上游、东张水库属于清洁;轻污点位有9个,其余点位为中污或重污。  相似文献   

10.
【目的】解析污染条件下河流生物区系的演替过程及机制,可以为生物多样性减少提供诊断,为生物多样性保护和水生生态系统的生态安全提供科学支撑。【方法】以对污染具有指示作用的轮虫类群为研究对象,选择覆盖京津冀地区的、受到人类活动干扰的北三河水系为研究区域,分别对该区域富营养化相关水质参数和轮虫群落组成进行分析,在解析污染物排放导致的河流水体水质差异和轮虫群落组成差异的基础上,阐明导致轮虫群落演替的关键污染因子。【结果】水体水质指标的分析结果表明,西部河流与东部诸河具有明显不同的环境条件,其氮、磷指标(包括总氮、溶解性总氮、总磷、溶解性总磷及活性磷)浓度显著增加。轮虫群落的分析结果表明,与东部诸河相比,西部河流的物种数目、生物个体数、物种丰度及香农威纳指数均显著降低,且群落组成显著差异。群落-环境相关分析显示,总氮、溶解性总氮、总磷、溶解性总磷、活性磷以及氨氮是导致群落显著差异的关键环境因子。【结论】北三河水系西部河流的氮、磷含量显著高于东北部河流;在环境条件改变的前提下,北三河水系西部河流比东部河流物种丰度、生物量均显著减少,同时群落组成也显著改变,高耐污型物种出现。氮、磷元素的输入是导致轮虫群落演替的关键环境因子。  相似文献   

11.
The relationship between environmental variables, community composition and the sensitivity of periphyton on artificial substrata to the herbicide atrazine (EC50 values obtained by concentration-effect curves of photosynthesis to atrazine) was studied for 20 stream and river sites on a latitudinal across Europe (Sweden, The Netherlands, Spain). Sensitivity to atrazine was higher in Swedish than in the Spanish or Dutch sites. Direct gradient analyses were used to relate diatom taxa and algal groups with environmental variables. A first redundancy analysis (RDA) based on diatom taxa showed a pollution gradient (atrazine and nutrient concentration) associated to diatom taxa that are indicators of different degrees of pollution. A second RDA based on algal groups showed that diatom-dominated communities corresponded both to sites at higher altitudes and less industrialized areas and to sites with higher atrazine concentration; Cyanobacteria were the most common in industrial areas, whereas Chlorophyceae dominated in sites with high water temperature and alkalinity. Linear regression analyses were applied to find the relationship between the ordination axes obtained and the EC50 values. First axes of both RDA showed significant or marginally significant relationship with atrazine sensitivity. Regression analyses for the Spanish sites indicated that the sensitivity to atrazine was related with light conditions (EC50 was positively correlated with light) and the percentage of different algal groups (EC50 was positively correlated with the percentage of diatoms and negatively correlated with the percentage of green algae). The results indicating that differences in sensitivity are related to environmental variables such as light, nutrients or atrazine concentration, permitted us to identify biological indicators of sensitivity to atrazine in lotic systems: Bacillariophyceae-dominated periphyton communities were more tolerant than Chlorophyceae and Chrysophyceae-dominated communities. In addition, diatom taxa found to be tolerant to atrazine in this study have been considered in the literature to be tolerant to organic pollution. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
Liu C Q  Lu J J  Li H P 《农业工程》2007,27(9):3663-3669
The landward changes of soil enzyme activities and physico-chemical properties of the surface sediment in Chongming Dongtan of the Yangtze River Estuary, were studied. Along the elevation gradient or succession series, the contents of total phosphorus (TP), total nitrogen (TN) and organic matter (OM) in the sediment increased, but the average grain size (AGS) of the sediment and the content of the dissolved inorganic phosphorus (DIP) decreased. The activity of alkaline phosphatase increased gradually along the elevation gradient, and was positively correlated with the values of TP, TN and OM (P<0.05), but negatively to AGS and DIP (P<0.05). It was correlated with a mechanism of substrate inductivity and product inhibition. Catalase activity had the similar trend of gradual increase along the elevation gradient, enhancing the fertility of the soil and the oxidative process of OM in the sediment. Along the succession series, from the tidal flat to the bulrush (Scirpus mariqueter) zone, and then to the reed (Phragmites australis) zone, the activity of sucrase only changed insignificantly, but there was a higher activity in the bulrush zone than in other zones. The activity of proteinase decreased from the tidal flat to the reed zone, and the activity was negatively correlated with OM and TN (P<0.05), but positively with DIP (P<0.05). Through the succession zones a decrease in the number of diatoms resulted in a decline in the concentration of protein, which influenced the proteinase activity, suggesting that the proteinase in the sediment was produced by diatoms.  相似文献   

13.
The landward changes of soil enzyme activities and physico-chemical properties of the surface sediment in Chongming Dongtan of the Yangtze River Estuary, were studied. Along the elevation gradient or succession series, the contents of total phosphorus (TP), total nitrogen (TN) and organic matter (OM) in the sediment increased, but the average grain size (AGS) of the sediment and the content of the dissolved inorganic phosphorus (DIP) decreased. The activity of alkaline phosphatase increased gradually along the elevation gradient, and was positively correlated with the values of TP, TN and OM (P<0.05), but negatively to AGS and DIP (P<0.05). It was correlated with a mechanism of substrate inductivity and product inhibition. Catalase activity had the similar trend of gradual increase along the elevation gradient, enhancing the fertility of the soil and the oxidative process of OM in the sediment. Along the succession series, from the tidal flat to the bulrush (Scirpus mariqueter) zone, and then to the reed (Phragmites australis) zone, the activity of sucrase only changed insignificantly, but there was a higher activity in the bulrush zone than in other zones. The activity of proteinase decreased from the tidal flat to the reed zone, and the activity was negatively correlated with OM and TN (P<0.05), but positively with DIP (P<0.05). Through the succession zones a decrease in the number of diatoms resulted in a decline in the concentration of protein, which influenced the proteinase activity, suggesting that the proteinase in the sediment was produced by diatoms.  相似文献   

14.
中国温带草地土壤硫的分布特征及其与环境因子的关系   总被引:3,自引:0,他引:3  
刘潇潇  王钧  曾辉 《生态学报》2016,36(24):7919-7928
以内蒙古和青藏高原的6种主要草地类型为研究对象,分析了不同类型草地表层土壤硫(S)的分布特征及其与环境因子的关系。结果表明:1)青藏高原草原表层土壤(0—10 cm)的全硫含量(430.8 mg/kg)显著高于内蒙古草原(181.4 mg/kg;P0.01)。土壤硫素一般以有机硫的形式存在,具有植物有效性的土壤无机硫所占比例较少,内蒙古土壤这一比例为14.7%,青藏高原为24.5%。2)土壤硫的含量与土壤C、N的分布格局关系紧密,呈显著正相关关系;与土壤p H呈负相关关系。内蒙古与青藏高原研究区土壤的C/S和N/S值较低,这表明硫可能成为对草原生产力起限制性作用的营养元素。3)内蒙古草原表层土壤全硫、水溶性硫、吸附性硫均与年均温呈显著负相关(P0.05);土壤硫与年均降水呈显著正相关关系(P0.05)。青藏高原草地土壤硫中,除水溶性硫与年均降水呈显著正相关关系外,其余土壤硫含量均未与气候因子呈现显著相关关系。  相似文献   

15.
The aim of this study was to understand the effects of lime and gypsum on nitrogen and carbon turnover of the soil. A pot experiment was conducted in parallel with a field experiment which was set up in 1989 in a declining forest of the French Ardennes. A dystric cambisol, associated with a moder and mull humus separately, was used to study changes in the soil chemistry as a result of added lime and gypsum top-dressing.The lime was applied to the surface of an acid mull humus of an oak (Quercus petraea) stand and of a moder humus of a spruce (Picea abies) stand. A quantity of 2.8 t ha-1 equivalent CaO was supplied as CaCO3, CaCO3+MgO and CaSO4.2H2O. The experiment was installed in an open-air nursery for 20 months, during which the organic carbon and nitrogen in the solution were analysed monthly. They were analysed in the solid phase after 20 months. At the end of this period the changes in the soil and leachate depended mainly on the type of the material added.The leachate was enriched with nitrogen from the third month of the experiment under lime treatments and in the control. The same pattern was found under the two humus types but the magnitude was higher in soil with a mull humus. The nitrogen was mostly leached as NO3 --N in the carbonate treatments and in the control, whereas it was predominantly NH4 +-N under gypsum. The NO3 --N was 50% higher than NH4 +-N in the control and CaCO3, CaCO3+MgO treatments. In the CaSO4 treatment this phenomenon was reversed. The leaching of organic carbon was greater under gypsum than under the other treatments whatever the humus.In the solid phase of the soil (organic layers) the organic carbon and nitrogen concentration decreased significantly after liming, especially in the mull humus. Consequently it induced a decrease in C:N ratio of about 18% with respect to the control.  相似文献   

16.
Organic phosphorus (P) is an important component of boreal forest humus soils, and its concentration has been found to be closely related to the concentration of iron (Fe) and aluminium (Al). We used solution and solid state 31P NMR spectroscopy on humus soils to characterize organic P along two groundwater recharge and discharge gradients in Fennoscandian boreal forest, which are also P sorption gradients due to differences in aluminium (Al) and iron (Fe) concentration in the humus. The composition of organic P changed sharply along the gradients. Phosphate diesters and their degradation products, as well as polyphosphates, were proportionally more abundant in low Al and Fe sites, whereas phosphate monoesters such as myo-, scyllo- and unknown inositol phosphates dominated in high Al and Fe soils. The concentration of inositol phosphates, but not that of diesters, was positively related to Al and Fe concentration in the humus soil. Overall, in high Al and Fe sites the composition of organic P seemed to be closely associated with stabilization processes, whereas in low Al and Fe sites it more closely reflected inputs of organic P, given the dominance of diesters which are generally assumed to constitute the bulk of organic P inputs to the soil. These gradients encompass the broad variation in soil properties detected in the wider Fennoscandian boreal forest landscape, as such our findings provide insight into the factors controlling P biogeochemistry in the region but should be of relevance to boreal forests elsewhere.  相似文献   

17.
漓江水陆交错带不同植被类型的土壤酶活性   总被引:10,自引:0,他引:10  
杨文彬  耿玉清  王冬梅 《生态学报》2015,35(14):4604-4612
水陆交错带是内陆水生生态系统与陆地生态系统之间的功能界面区,其包含了高地到低地直到水体的区域,是土壤有机质源、汇和转换器。土壤中有机物的分解以及营养物质的转化不仅影响到植物的生长,也对水体质量产生间接影响。土壤酶几乎参与土壤中有机物质的分解与合成的全过程,直接或间接影响着土壤一系列的生物化学反应,对生态系统的物质循环产生重要影响。不少学者围绕农田土壤、林地土壤以及湿地土壤探讨了不同植被下酶活性的变异。水陆交错带植被种类丰富,周期性的淹水条件加剧了土壤性质变异的复杂性。但目前水陆交错带不同植被类型土壤酶活性差异的研究不多。以漓江水陆交错带土壤为研究对象,对苔藓、草本和灌丛3种植被类型下的土壤溶解性化学成分、4种土壤水解酶即糖苷酶、几丁质酶、亮氨酸氨基肽酶和磷酸酶以及2种氧化还原酶即酚氧化酶和过氧化物酶的活性,以及土壤性质与酶活性之间的关系进行了研究。结果表明,苔藓植被下土壤的糖苷酶和酚氧化酶活性显著高于草本和灌丛,草本植被下土壤的过氧化物酶活性显著高于苔藓和灌丛,灌丛植被下土壤几丁质酶活性显著高于苔藓和草本,但不同植被类型的土壤亮氨酸氨基肽酶活性无显著差异。相关分析表明,土壤水分含量与糖苷酶和酚氧化酶活性呈显著正相关,而与几丁质酶和碱性磷酸酶活性呈显著负相关。土壤有机碳和易氧化碳均与糖苷酶和酚氧化酶活性呈极显著负相关,与几丁质酶活性呈显著正相关。土壤溶解性有机碳与亮氨酸氨基肽酶和酚氧化酶呈显著正相关。综合认为,水陆交错带不同种类土壤酶在不同植被类型间的差异有别,土壤水分含量和土壤有机碳显著影响土壤酶活性的变化。不同植被类型土壤酶活性的差异不仅与植被类型有关,与水陆交错带微地形以及土壤性质的空间异质性也有密切关系,需运用长期控制试验手段开展研究。  相似文献   

18.
The nitrogen (N) content of wood is usually suboptimal for fungal colonization. During decomposition of wood, an increasing fraction of the N becomes incorporated into fungal mycelium. Between 5 and 50% of the N in wood-degrading mycelium may be incorporated into chitin. Chitinolytic enzymes render this N available for re-utilization. Here, the activities of chitinolytic enzymes produced by wood-rotting fungi during degradation of spruce (Picea abies) wood were quantified in situ using fluorogenic 4-methylumbelliferyl substrates. A new method was developed that enables spatial quantification of enzyme activities on solid surfaces. All of the three tested fungi produced endochitinases, chitobiosidases and N-acetylhexosaminidases during colonization of wood. N-acetylhexosaminidase activity, and in some cases also chitobiosidase and endochitinase activities, were higher during secondary overgrowth of another fungus than during primary colonization of noncolonized wood. The results suggest that wood-degrading fungi degrade their own cell walls as well as the hyphae of earlier colonizers. Recycling of cell wall material within single mycelia and between fungal individuals during succession may lead to retention of N within woody debris.  相似文献   

19.
Nitrate, ammonium, dissolved organic N, and dissolved oxygen were measured in stream water and shallow groundwater in the riparian zones of two tropical watersheds with different soils and geomorphology. At both sites, concentrations of dissolved inorganic N (DIN; NH4 +- and NO3 -N) were low in stream water (< 110 ug/L). Markedly different patterns in DIN were observed in groundwater collected at the two sites. At the first site (Icacos watershed), DIN in upslope groundwater was dominated by NO3 -N (550 ug/L) and oxygen concentrations were high (5.2 mg/L). As groundwater moved through the floodplain and to the stream, DIN shifted to dominance by NH4 +-N (200–700 ug/L) and groundwater was often anoxic. At the second site (Bisley watershed), average concentrations of total dissolved nitrogen were considerably lower (300 ug/L) than at Icacos (600 ug/L), and the dominant form of nitrogen was DON rather than inorganic N. Concentrations of NH4 + and NO3 were similar throughout the riparian zone at Bisley, but concentrations of DON declined from upslope wells to stream water. Differences in speciation and concentration of nitrogen in groundwater collected at the two sites appear to be controlled by differences in redox conditions and accessibility of dissolved N to plant roots, which are themselves the result of geomorphological differences between the two watersheds. At the Icacos site, a deep layer of coarse sand conducts subsurface water to the stream below the rooting zone of riparian vegetation and through zones of strong horizontal redox zonation. At the Bisley site, infiltration is impeded by dense clays and saturated flow passes through the variably oxidized rooting zone. At both sites, hydrologic export of nitrogen is controlled by intense biotic activity in the riparian zone. However, geomorphology appears to strongly modify the importance of specific biotic components.  相似文献   

20.
Very few principles have been unraveled that explain the relationship between soil properties and soil biota across large spatial scales and different land-use types. Here, we seek these general relationships using data from 52 differently managed grassland and forest soils in three study regions spanning a latitudinal gradient in Germany. We hypothesize that, after extraction of variation that is explained by location and land-use type, soil properties still explain significant proportions of variation in the abundance and diversity of soil biota. If the relationships between predictors and soil organisms were analyzed individually for each predictor group, soil properties explained the highest amount of variation in soil biota abundance and diversity, followed by land-use type and sampling location. After extraction of variation that originated from location or land-use, abiotic soil properties explained significant amounts of variation in fungal, meso- and macrofauna, but not in yeast or bacterial biomass or diversity. Nitrate or nitrogen concentration and fungal biomass were positively related, but nitrate concentration was negatively related to the abundances of Collembola and mites and to the myriapod species richness across a range of forest and grassland soils. The species richness of earthworms was positively correlated with clay content of soils independent of sample location and land-use type. Our study indicates that after accounting for heterogeneity resulting from large scale differences among sampling locations and land-use types, soil properties still explain significant proportions of variation in fungal and soil fauna abundance or diversity. However, soil biota was also related to processes that act at larger spatial scales and bacteria or soil yeasts only showed weak relationships to soil properties. We therefore argue that more general relationships between soil properties and soil biota can only be derived from future studies that consider larger spatial scales and different land-use types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号