首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In certain instances of developing and adult organism, epithelial cells can change morphology and transform into mesenchynial-like type in order to move through the extracellular matrix. However, because of the multiplicity and complexity of signaling pathways that contribute to these processes, their molecular dissection has remained difficult. By using a pharmacological approach on the rat bladder carcinoma cell line NBT-II dispersion system, we have identified distinct signaling events for adhesion and motility in response to collagen, both activities depending on α2β1 integrin. Treatment of cells with PKC inhibitors markedly impaired initial attachment on collagen without affecting the capacity of cells to move, suggesting that PKC activity is required for initial adhesion strength during cell translocation. Both adhesion and motility were diminished by tyrosine kinase inhibitors herbimycin and tyrphostin whereas tyrosine phosphatase inhibitors amplified cell scattering. The collagen-induced dispersion was insensitive to genistein which we previously showed to abrogate growth factor-induced scattering, thus demonstrating inducer specificity. Finally. Ras inhibitors and expression of a dominant negative form of Ras (N 17Ras) while affecting initial cell attachment, did not prevent cell migration, and instead favored the dissociated state on collagen. The specific signaling pathways identified for adhesion and motility should help to understand the sequential processes associated with cell migration.  相似文献   

2.
FG human pancreatic carcinoma cells adhere to vitronectin using integrin alpha v beta 5 yet are unable to migrate on this ligand whereas they readily migrate on collagen in an alpha 2 beta 1-dependent manner. We report here that epidermal growth factor receptor (EGFR) activation leads to de novo alpha v beta 5-dependent FG cell migration on vitronectin. The EGFR specific tyrosine kinase inhibitor tyrphostin 25 selectively prevents EGFR autophosphorylation thereby preventing the EGF-induced FG cell migration response on vitronectin without affecting constitutive migration on collagen. Protein kinase C (PKC) activation also leads to alpha v beta 5-directed motility on vitronectin; however, this is not blocked by tyrosine kinase inhibitors. In this case, PKC activation appears to be associated with and downstream of EGFR signaling since calphostin C, an inhibitor of PKC, blocks FG cell migration on vitronectin induced by either PKC or EGF. These findings represent the first report implicating a receptor tyrosine kinase in a specific integrin mediated cell motility event independent of adhesion.  相似文献   

3.
The expression and function of discoidin domain receptor 1 (DDR1) in T cells are still poorly explored. We have recently shown that activation of primary human T cells via their T cell receptor leads to increased expression of DDR1, which promoted their migration in three-dimensional collagen. In the present study, we provide evidence that activated T cells bind collagen through DDR1. We found that the DDR1:Fc blocking molecule significantly reduced the ability of activated T cells to bind soluble biotinylated collagen. However, DDR1:Fc had no impact on the adhesion of activated T cells to collagen and overexpression of DDR1 in Jurkat T cells did not enhance their adhesion. Together, our results indicate that DDR1 can promote T cell migration without enhancing adhesion to collagen, suggesting that it can contribute to the previously described amoeboid movement of activated T cells in collagen matrices. Our results also show that CD28, in contrast to IL-2 expression, did not costimulate the expression of DDR1 in primary human T cells. Using specific inhibitors, we demonstrated that TCR-induced expression of DDR1 in T cells is regulated by the Ras/Raf/ERK MAP Kinase and PKC pathways but not by calcium/calcineurin signaling pathway or the JNK and P38 MAP Kinases. Thus, our study provides additional insights into the physiology of DDR1 in T cells and may therefore further our understanding of the regulatory mechanisms of T cell migration.  相似文献   

4.
Endothelium of the cerebral blood vessels, which constitutes the blood-brain barrier, controls adhesion and trafficking of leukocytes into the brain. Investigating signaling pathways triggered by the engagement of adhesion molecules expressed on brain endothelial cells using two rat brain endothelial cell lines (RBE4 and GP8), we report in this paper that ICAM-1 cross-linking induces a sustained tyrosine phosphorylation of the phosphatidylinositol-phospholipase C (PLC)gamma1, with a concomitant increase in both inositol phosphate production and intracellular calcium concentration. Our results suggest that PLC are responsible, via a calcium- and protein kinase C (PKC)-dependent pathway, for p60Src activation and tyrosine phosphorylation of the p60Src substrate, cortactin. PKCs are also required for tyrosine phosphorylation of the cytoskeleton-associated proteins, focal adhesion kinase and paxillin, but not for ICAM-1-coupled p130Cas phosphorylation. PKC's activation is also necessary for stress fiber formation induced by ICAM-1 cross-linking. Finally, cell pretreatment with intracellular calcium chelator or PKC inhibitors significantly diminishes transmonolayer migration of activated T lymphocytes, without affecting their adhesion to brain endothelial cells. In summary, our data demonstrate that ICAM-1 cross-linking induces calcium signaling which, via PKCs, mediates phosphorylation of actin-associated proteins and cytoskeletal rearrangement in brain endothelial cell lines. Our results also indicate that these calcium-mediated intracellular events are essential for lymphocyte migration through the blood-brain barrier.  相似文献   

5.
Identification of signaling molecules that regulate cell migration is important for understanding fundamental processes in development and the origin of various pathological conditions. The migration of Nara Bladder Tumor II (NBT-II) cells was used to determine which signaling molecules are specifically involved in the collagen-mediated locomotion. We show here that paxillin is tyrosine phosphorylated after induction of motility on collagen. Overexpression of paxillin mutants in which tyrosine 31 and/or tyrosine 118 were replaced by phenylalanine effectively impaired cell motility. Moreover, stimulation of motility by collagen preferentially enhanced the association of paxillin with the SH2 domain of the adaptor protein CrkII. Mutations in both tyrosine 31 and 118 diminished the phosphotyrosine content of paxillin and prevented the formation of the paxillin-Crk complex, suggesting that this association is necessary for collagen-mediated NBT-II cell migration. Other responses to collagen, such as cell adhesion and spreading, were not affected by these mutations. Overexpression of wild-type paxillin or Crk could bypass the migration-deficient phenotype. Both the SH2 and the SH3 domains of CrkII are shown to play a critical role in this collagen-mediated migration. These results demonstrate the important role of the paxillin-Crk complex in the collagen-induced cell motility.  相似文献   

6.
Cellular adhesion and spreading are critical components involved in the processes of cell and tissue development, and immune responses in molluscs, but at present, little is known regarding the signaling pathways involved in these basic cellular functions. In the present study, the molluscan Biomphalaria glabrata embryonic (Bge) cell line was used as an in vitro model to study the signal transduction pathways regulating molluscan cell adhesion and spreading behavior. Western blot analysis using antibodies specific to mitogen-activated protein kinase (MAPK) revealed the presence of an MAPK-like immunoreactive protein in Bge cells, that was phosphorylated upon exposure to phorbol myristate acetate (PMA). Moreover, Bge cell treatment with inhibitors of protein kinase C (PKC), Ras and MAPK kinase (Mek) suppressed PMA-induced expression of activated MAPK, suggesting that PKC-, Ras- and Mek-like molecules may be acting upstream of MAPK. Similarly, in vitro Bge cell-spreading assays were performed in conjunction with the same panel of inhibitors to determine the potential involvement of PKC, Ras and Mek in cellular adhesion/spreading. Results revealed a similar pattern of inhibition of cell-spreading behavior strongly implying that the Bge cell spreading also may be regulated through a MAPK-associated signal transduction pathway(s) involving proteins similar to PKC, Ras and Mek.  相似文献   

7.
8.
CD43 (leukosialin, sialophorin), a prominent component of the hemopoietic cell surface, has an enigmatic role in cell-cell interaction. The observation that CD43 ligation triggers homotypic aggregation of monoblastoid U937 cells has permitted analysis of this: CD43-induced aggregation was distinguishable from CD29- (also known as beta1 integrin) or CD98- (also known as 4F2, or fusion-related protein 1) induced aggregation, with different energy requirements and with partial dependence on beta2 integrins. Previous studies have focused on the role of CD43 ligation in tyrosine phosphorylation. However, in the homotypic adhesion assay, although there is initial tyrosine phosphorylation, protein tyrosine kinase inhibitors did not block aggregation. Therefore, other signaling pathways were examined. CD43 ligation induced protein tyrosine dephosphorylation, and protein tyrosine phosphatase inhibitors blocked aggregation. Activation of MAP kinases was not necessary. Cytoskeletal inhibitors amplified aggregation. Protein kinase C (PKC) inhibitors amplified aggregation, implicating PKC as a negative regulator. CD43 ligation up-regulated surface adhesion molecules and enhanced CD29- and CD98-induced aggregation. Thus, CD43 participation in cell-cell adhesion is under stringent control, involving both surface events and several different intracellular signaling pathways, acting together to regulate the process. These mechanisms add a further dimension to the potential role of CD43 in tissue immune responses.  相似文献   

9.
Based on the results from the use of selective inhibitors and activators, active protein kinase A, protein tyrosine kinase, and protein kinase C (PKC) isoforms decreased the adhesion of larval Galleria mellonella hemocytes to glass slides. The protein kinase A inhibitor at all concentrations increased granular cell adhesion only whereas protein tyrosine kinase elevated both granular and plasmatocyte attachment at the lowest concentration. Active, Ca(2+)- and lipid-dependent PKC isoforms limited plasmatocyte and granular cell adhesion whereas PKC that was inhibited by selected compounds (with differed modes of PKC inhibition) enhanced hemocyte attachment. The granular cells were more sensitive to the PKC inhibitors than were plasmatocytes. Phospholipase C and its diacylglyceride product were necessary to reduce hemocyte adhesion and maintain PKC activity. Extracellular Ca(2+), possibly transported through L-channels, was required for plasmatocyte attachment. In contrast, lowering the levels of cytosolic Ca(2+) was associated with decreased PKC activity and was required for hemocyte adhesion.  相似文献   

10.
Adhesion of fibroblasts to extracellular matrices via integrin receptors is accompanied by extensive cytoskeletal rearrangements and intracellular signaling events. The protein kinase C (PKC) family of serine/threonine kinases has been implicated in several integrin-mediated events including focal adhesion formation, cell spreading, cell migration, and cytoskeletal rearrangements. However, the mechanism by which PKC regulates integrin function is not known. To characterize the role of PKC family kinases in mediating integrin-induced signaling, we monitored the effects of PKC inhibition on fibronectin-induced signaling events in Cos7 cells using pharmacological and genetic approaches. We found that inhibition of classical and novel isoforms of PKC by down-regulation with 12-0-tetradeconoyl-phorbol-13-acetate or overexpression of dominant-negative mutants of PKC significantly reduced extracellular regulated kinase 2 (Erk2) activation by fibronectin receptors in Cos7 cells. Furthermore, overexpression of constitutively active PKCalpha, PKCdelta, or PKCepsilon was sufficient to rescue 12-0-tetradeconoyl-phorbol-13-acetate-mediated down-regulation of Erk2 activation, and all three of these PKC isoforms were activated following adhesion. PKC was required for maximal activation of mitogen-activated kinase kinase 1, Raf-1, and Ras, tyrosine phosphorylation of Shc, and Shc association with Grb2. PKC inhibition does not appear to have a generalized effect on integrin signaling, because it does not block integrin-induced focal adhesion kinase or paxillin tyrosine phosphorylation. These results indicate that PKC activity enhances Erk2 activation in response to fibronectin by stimulating the Erk/mitogen-activated protein kinase pathway at an early step upstream of Shc.  相似文献   

11.
Although type V collagen (Col V) is present in developing and mature connective tissues of glomeruli, its primary function has not been elucidated yet. The purpose of this study was to elucidate the role of Col V fibrils in glomerular cells. We isolated primary cells from porcine kidney and cultured them on Col V fibrils reconstructed from purified Col V molecules extracted from porcine cornea. Time-lapse observation showed that Col V fibrils induce dynamic movement of glomerular endothelial cells (GEC) by stimulating them to extend long filopodial protrusions and wide lamellipodia. Col V signaling mediated through β1 integrin activated phosphorylation of paxillin at tyrosine 118 (paxillin-pY118) and of focal adhesion kinase at tyrosine 861 (FAKpY861) at the cell periphery; a second Col V signal was mediated through neuroglycan 2 and activated FAKpY397. FAKpY861 was present in loose attachment points between Col V fibrils and GEC, allowing the cells to migrate easily. Activation of FAKpY397 induced incomplete focal adhesion at the centers of cells and caused cell movement. Therefore both signaling pathways facilitated cell motility, which was inhibited by the addition of antibodies to β1 integrin, NG2, and Col V. We suggest that Col V fibrils activate ‘outside-in’ signaling in GEC and induce their dynamic motility.  相似文献   

12.
Directed cell migration and cell polarity are crucial in many facets of biological processes. Cellular motility requires a complex array of signaling pathways, in which orchestrated cross-talk, a feedback loop, and multi-component signaling recur. Almost every signaling molecule requires several regulatory processes to be functionally activated, and a lack of a signaling molecule often leads to chemotaxis defects, suggesting an integral role for each component in the pathway. We outline our current understanding of the signaling event that regulates chemotaxis with an emphasis on recent findings associated with the Ras, PI3K, and target of rapamycin (TOR) pathways and the interplay of these pathways. Ras, PI3K, and TOR are known as key regulators of cellular growth. Deregulation of those pathways is associated with many human diseases, such as cancer, developmental disorders, and immunological deficiency. Recent studies in yeast, mammalian cells, and Dictyostelium discoideum reveal another critical role of Ras, PI3K, and TOR in regulating the actin cytoskeleton, cell polarity, and cellular movement. These findings shed light on the mechanism by which eukaryotic cells maintain cell polarity and directed cell movement, and also demonstrate that multiple steps in the signal transduction pathway coordinately regulate cell motility.  相似文献   

13.
We have previously shown that sphingosine 1-phosphate (S1P) stimulates motility of human umbilical vein endothelial cells (HUVECs) (O.-H. Lee et al., Biochem. Biophys. Res. Commun. 264, 743-750, 1999). To investigate the molecular mechanisms by which S1P stimulates HUVEC motility, we examined tyrosine phosphorylation of p125 focal adhesion kinase (p125(FAK)) which is important for cell migration. S1P induces a rapid increase in tyrosine phosphorylation of p125(FAK). Compared with other structurally related lipid metabolites such as sphingosine, C2-ceramide, and lysophosphatidic acid, S1P uniquely stimulated p125(FAK) tyrosine phosphorylation and migration of HUVECs. The effect of S1P on p125(FAK) tyrosine phosphorylation was markedly reduced by treatment with pertussis toxin or U73122, a phospholipase C (PLC) inhibitor. As a downstream signal of PLC, p125(FAK) tyrosine phosphorylation in response to S1P was totally blocked by depletion of the intracellular calcium pool. However, protein kinase C (PKC) inhibitor had no effect on the response to S1P. Finally, chemotaxis assays revealed that inhibition of PLC but not PKC significantly abrogated S1P-stimulated HUVEC migration. These results suggest that the G(i)-coupled receptor-mediated PLC-Ca(2+) signaling pathway may be importantly involved in S1P-stimulated focal adhesion formation and migration of endothelial cells.  相似文献   

14.
The ras proto-oncogenes, of which there are four isoforms, are molecular switches that function in signal transduction pathways to control cell differentiation, proliferation, and survival. How the Ras isoforms orchestrate cellular processes that affect behavior is poorly understood. Further, why cells express two or more Ras isoforms is unknown. Here, using a genetically defined system, we show that the presence of both wild-type KRas and NRas isoforms is required for transformation because they perform distinct nonoverlapping functions: wild-type NRas regulates adhesion, and KRas coordinates motility. Remarkably, we find that Ras isoforms achieve functional specificity by engaging different signaling pathways to affect the same cellular processes, thereby coordinating cellular outcome. Although we find that signaling from both isoforms intersects in actin and microtubule cytoskeletons, our results suggest that KRas signals through Akt and Cdc42 while NRas signals through Raf and RhoA. Our analyses suggest a previously unappreciated convergence of different Ras isoforms on the dynamics of the processes involved in transformation.  相似文献   

15.
Skin wound healing requires epithelial cell migration for re-epithelialization, wound closure, and re-establishment of normal function. We believe that one of the earliest signals to initiate wound healing is the lateral electric field generated by the wound current. Normal human epidermal keratinocytes migrate towards the negative pole, representing the center of the wound, in direct currents of a physiological strength, 100 mV/mm. Virtually nothing is known about the signal transduction mechanisms used by these cells to sense the endogenous electric field. To elucidate possible protein kinase (PK) involvement in the process, PK inhibitors were utilized. Two important findings have been described. Firstly, addition of 50 nM KT5720, an inhibitor of PKA, resulted in a 53% percent reduction in the directional response of keratinocytes in the electric field, while not significantly affecting general cell motility. The reduction was dose-dependent, there was a gradual decrease in the directional response from 5 to 50 nM. Secondly, addition of 1 microM ML-7, a myosin light chain kinase inhibitor, resulted in an approximate 31% decrease in the distance the cells migrated without affecting directional migration. The PKC inhibitors GF109203X at 4 microM and H-7 at 20 microM and W-7, a CaM kinase inhibitor, did not significantly alter either directed migration or cell migration, although they all resulted in a slight reduction in directional migration. D-erythro-sphingosine at 15 microM, a PKC inhibitor, had virtually no effect on either migration distance or directed migration. These findings demonstrate that divergent kinase signaling pathways regulate general cell motility and sustained directional migration and highlight the complexity of the signal transduction mechanisms involved. The inhibitor studies described in this paper implicate a role for PKA in the regulation of the directional migratory response to applied electric fields, galvanotaxis.  相似文献   

16.
Attachment and migration of trophectoderm (Tr) cells, hallmarks of blastocyst implantation in mammals, are unique uterine events. Secreted phosphoprotein 1 (SPP1) in the uterus binds integrins on conceptus Tr and uterine luminal epithelium (LE), affecting cell–cell and cell–matrix interactions. The signal transduction pathways activated by SPP1 and integrins in conceptuses have not been elucidated. Results of this study demonstrate that SPP1 binds αvβ3 and α5β1 integrins to induce focal adhesion assembly, a prerequisite for adhesion and migration of Tr, through activation of: 1) P70S6K via crosstalk between FRAP1/mTOR and MAPK pathways; 2) mTOR, PI3K, MAPK3/MAPK1 (Erk1/2) and MAPK14 (p38) signaling to stimulate Tr cell migration; and 3) focal adhesion assembly and myosin II motor activity to induce migration of Tr cells. These cell signaling pathways, acting in concert, mediate adhesion, migration and cytoskeletal remodeling of Tr cells essential for expansion and elongation of conceptuses and attachment to uterine LE for implantation.  相似文献   

17.
Specificity and modulation of integrin function have important consequences for cellular responses to the extracellular matrix, including differentiation and transformation. The Ras-related GTPase, R-Ras, modulates integrin affinity, but little is known of the signaling pathways and biological functions downstream of R-Ras. Here we show that stable expression of activated R-Ras or the closely related TC21 (R-Ras 2) induced integrin-mediated migration and invasion of breast epithelial cells through collagen and disrupted differentiation into tubule structures, whereas dominant negative R-Ras had opposite effects. These results imply novel roles for R-Ras and TC21 in promoting a transformed phenotype and in the basal migration and polarization of these cells. Importantly, R-Ras induced an increase in cellular adhesion and migration on collagen but not fibronectin, suggesting that R-Ras signals to specific integrins. This was further supported by experiments in which R-Ras enhanced the migration of cells expressing integrin chimeras containing the alpha2, but not the alpha5, cytoplasmic domain. In addition, a transdominant inhibition previously noted only between integrin beta cytoplasmic domains was observed for the alpha2 cytoplasmic domain; alpha2beta1-mediated migration was inhibited by the expression of excess alpha2 but not alpha5 cytoplasmic domain-containing chimeras, suggesting the existence of limiting factors that bind the integrin alpha subunit. Using pharmacological inhibitors, we found that R-Ras induced migration on collagen through a combination of phosphatidylinositol 3-kinase and protein kinase C, but not MAPK, which is distinct from the other Ras family members, Rac, Cdc42, and N- and K-Ras. Thus, R-Ras communicates with specific integrin alpha cytoplasmic domains through a unique combination of signaling pathways to promote cell migration and invasion.  相似文献   

18.
Inhibition of angiogenesis by a mouse sprouty protein   总被引:7,自引:0,他引:7  
Sprouty negatively modulates branching morphogenesis in the Drosophila tracheal system. To address the role of mammalian Sprouty homologues in angiogenesis, another form of branching morphogenesis, a recombinant adenovirus engineered to express murine Sprouty-4 selectively in endothelial cells, was injected into the sinus venosus of embryonic day 9.0 cultured mouse embryos. Sprouty-4 expression inhibited branching and sprouting of small vessels, resulting in abnormal embryonic development. In vitro, Sprouty-4 inhibited fibroblast growth factor and vascular endothelial cell growth factor-mediated cell proliferation and migration and prevented basic fibroblast growth factor and vascular endothelial cell growth factor-induced MAPK phosphorylation in endothelial cells, indicating inhibition of tyrosine kinase-mediated signaling pathways. The ability of constitutively activated mutant Ras(L61) to rescue Sprouty-4 inhibition of MAPK phosphorylation suggests that Sprouty inhibits receptor tyrosine kinase signaling upstream of Ras. Thus, Sprouty may regulate angiogenesis in normal and disease processes by modulating signaling by endothelial tyrosine kinases.  相似文献   

19.
Cell migration is regulated simultaneously by growth factors and extracellular matrix molecules. Although information is continually increasing regarding the relevant signaling pathways, there exists little understanding concerning how these pathways integrate to produce the biophysical processes that govern locomotion. Herein, we report the effects of epidermal growth factor (EGF) and fibronectin (Fn) on multiple facets of fibroblast motility: locomotion speed, membrane extension and retraction activity, and adhesion. A surprising finding is that EGF can either decrease or increase locomotion speed depending on the surface Fn concentration, despite EGF diminishing global cell adhesion at all Fn concentrations. At the same time, the effect of EGF on membrane activity varies from negative to positive to no-effect as Fn concentration and adhesion range from low to high. Taking these effects together, we find that EGF and Fn regulate fibroblast migration speed through integration of the processes of membrane extension, attachment, and detachment, with each of these processes being rate-limiting for locomotion in sequential regimes of increasing adhesivity. Thus, distinct biophysical processes are shown to integrate for overall cell migration responses to growth factor and extracellular matrix stimuli.  相似文献   

20.
Phosphoinositide 3-OH kinase (PI3-K) has been shown to play an important role in the signaling pathway necessary for cytoskeletal reorganization in non-astrocytic cells. We investigated the role of PI3-K in U-251 MG human malignant astrocytoma cell adhesion and migration. Attachment of U-251 MG cells to vitronectin, fibronectin, laminin, and collagen was inhibited in a concentration-dependent manner by two specific inhibitors of PI3-K (Wortmannin and LY294002). Attachment to vitronectin, fibronectin, and laminin was more sensitive to inhibition of PI3-K (45% inhibition at 10 nM Wortmannin) than attachment to collagen (25% inhibition at 100 nM Wortmannin). Similarly, migration toward these substrates showed differential sensitivity to inhibition. Attachment of the cells to these matrix proteins resulted in an increase in PI3-K activity, as compared to that of cells in suspension, with attachment to vitronectin resulting in the greatest increase in PI3-K activity. p125 focal adhesion kinase (p125FAK) was found to co-immunoprecipitate with PI3-K from the NP40-soluble cell fraction of a 1% NP40 detergent lysate of cells in the early stages of adhesion to vitronectin and fibronectin, but not during adhesion to collagen. The expression of p125FAK protein and level of phosphorylation were similar on adherence to all three substrates. These data indicate that the sensitivity of U-251MG cell attachment and migration to PI3-K inhibitors is substrate-dependent, and that complex formation of PI3-K and p125FAK correlates with this sensitivity to PI3-K inhibitors. Our data suggest a role for PI3-K and p125FAK complex formation in PI3-K activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号