首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Epidemiological and experimental studies have demonstrated that early postnatal nutrition has been associated with long-term effects on glucose homeostasis in adulthood. Recently, our group demonstrated that undernutrition during early lactation affects the expression and activation of key proteins of the insulin signaling cascade in rat skeletal muscle during postnatal development. To elucidate the molecular mechanisms by which undernutrition during early life leads to changes in insulin sensitivity in peripheral tissues, we investigated the insulin signaling in adipose tissue. Adipocytes were isolated from epididymal fat pads of adult male rats that were the offspring of dams fed either a normal or a protein-free diet during the first 10 days of lactation. The cells were incubated with 100 nM insulin before the assays for immunoblotting analysis, 2-deoxyglucose uptake, immunocytochemistry for GLUT4, and/or actin filaments. Following insulin stimulation, adipocytes isolated from undernourished rats presented reduced tyrosine phosphorylation of IR and IRS-1 and increased basal phosphorylation of IRS-2, Akt, and mTOR compared with controls. Basal glucose uptake was increased in adipocytes from the undernourished group, and the treatment with LY294002 induced only a partial inhibition both in basal and in insulin-stimulated glucose uptake, suggesting an involvement of phosphoinositide 3-kinase activity. These alterations were accompanied by higher GLUT4 content in the plasma membrane and alterations in the actin cytoskeleton dynamics. These data suggest that early postnatal undernutrition impairs insulin sensitivity in adulthood by promoting changes in critical steps of insulin signaling in adipose tissue, which may contribute to permanent changes in glucose homeostasis.  相似文献   

2.
To determine the molecular mechanism underlying hyperglycemia-induced insulin resistance in skeletal muscles, postreceptor insulin-signaling events were assessed in skeletal muscles of neonatally streptozotocin-treated diabetic rats. In isolated soleus muscle of the diabetic rats, insulin-stimulated 2-deoxyglucose uptake, glucose oxidation, and lactate release were all significantly decreased compared with normal rats. Similarly, insulin-induced phosphorylation and activation of Akt/protein kinase B (PKB) and GLUT-4 translocation were severely impaired. However, the upstream signal, including phosphorylation of the insulin receptor (IR) and insulin receptor substrate (IRS)-1 and -2 and activity of phosphatidylinositol (PI) 3-kinase associated with IRS-1/2, was enhanced. The amelioration of hyperglycemia by T-1095, a Na(+)-glucose transporter inhibitor, normalized the reduced insulin sensitivity in the soleus muscle and the impaired insulin-stimulated Akt/PKB phosphorylation and activity. In addition, the enhanced PI 3-kinase activation and phosphorylation of IR and IRS-1 and -2 were reduced to normal levels. These results suggest that sustained hyperglycemia impairs the insulin-signaling steps between PI 3-kinase and Akt/PKB, and that impaired Akt/PKB activity underlies hyperglycemia-induced insulin resistance in skeletal muscle.  相似文献   

3.
Liu IM  Tzeng TF  Liou SS  Lan TW 《Life sciences》2007,81(21-22):1479-1488
The present study was conducted to explore the effects of myricetin on insulin resistance in rats fed for 6 weeks with a diet containing 60% fructose. Repeated intravenous (i.v.) injection of myricetin (1 mg/kg per injection, 3 times daily) for 14 days was found to significantly decrease the high glucose and triglyceride levels in plasma of fructose chow-fed rats. Also, the higher degree of insulin resistance in fructose chow-fed rats as measured by homeostasis model assessment of basal insulin resistance was significantly decreased by myricetin treatment. Myricetin increased the whole-body insulin sensitivity in fructose chow-fed rats, as evidenced by the marked elevation of composite whole-body insulin sensitivity index during the oral glucose tolerance test. Myricetin was found to reverse the defect in expression of insulin receptor substrate-1 (IRS-1) and the p85 regulatory subunit of phosphatidylinositol 3-kinase (PI 3-kinase) in soleus muscle of fructose chow-fed rats under the basal state, despite the protein expression of insulin receptor (IR). Increased basal phosphorylation of IR and IRS-1 as well as Akt was observed in parallel. The reduced level of insulin action on phosphorylation of IR, IRS-1 and Akt in soleus muscle of fructose chow-fed rats was reversed by myricetin treatment. Furthermore, myricetin treatment improved the defective insulin action on the translocation of glucose transporter subtype 4 (GLUT 4) in insulin-resistant soleus muscle. These findings indicate that myricetin improves insulin sensitivity through the enhancement of insulin action on IRS-1-associated PI 3-kinase and GLUT 4 activity in soleus muscles of animals exhibiting insulin resistance.  相似文献   

4.
Insulin secretion and GLUT-2 expression in undernourished neonate rats   总被引:1,自引:0,他引:1  
In previous studies, we verified increased insulin sensitivity in adult male offspring of lactating rats readjusting to lack of insulin secretion reduction brought about by protein restriction during lactation. The present study aims to evaluate the effects of maternal protein undernutrition during lactation on glucose-induced insulin secretion and GLUT-2 expression in beta-cells of neonate male and female rats. Lactating Wistar rats were given a protein-free diet during the first 10 days and a normal diet (22% of protein) until weaning. The neonates were separated at birth by sex and diet and studied at 4, 8 and 21 days of lactation. Glucose-induced insulin secretion by pancreatic islets was analyzed by radioimmunoassay and GLUT-2 expression in beta-cells by Western blot. Glucose-induced insulin secretion of the undernourished groups was higher than in the control groups except among females. When comparing the male and female groups and the control and undernourished groups, female neonates showed significantly greater insulin secretion than the male group. Also it was noted that undernutrition induced greater GLUT-2 expression. For instance, comparing the undernourished male and female neonates there was an increase in female GLUT-2 expression on day 4. On the other hand, in undernourished male neonates a GLUT-2 expression increased later in lactation. In conclusion, during a short term, maternal undernutrition induces an increase of the glucose-induced insulin secretion only in male neonates and is associated with an increase in GLUT-2 expression in the beta-cell.  相似文献   

5.
Undernutrition in rats impairs secretion of insulin but maintains glucose normotolerance, because muscle tissue presents an increased insulin-induced glucose uptake. We studied glucose transporters in gastrocnemius muscles from food-restricted and control anesthetized rats under basal and euglycemic hyperinsulinemic conditions. Muscle membranes were prepared by subcellular fractionation in sucrose gradients. Insulin-induced glucose uptake, estimated by a 2-deoxyglucose technique, was increased 4- and 12-fold in control and food-restricted rats, respectively. Muscle insulin receptor was increased, but phosphotyrosine-associated phosphatidylinositol 3-kinase activity stimulated by insulin was lower in undernourished rats, whereas insulin receptor substrate-1 content remained unaltered. The main glucose transporter in the muscle, GLUT-4, was severely reduced albeit more efficiently translocated in response to insulin in food-deprived rats. GLUT-1, GLUT-3, and GLUT-5, minor isoforms in skeletal muscle, were found increased in food-deprived rats. The rise in these minor glucose carriers, as well as the improvement in GLUT-4 recruitment, is probably insufficient to account for the insulin-induced increase in the uptake of glucose in undernourished rats, thereby suggesting possible changes in other steps required for glucose metabolism.  相似文献   

6.
Wu Y  Ouyang JP  Zhou YF  Wu K  Zhao DH  Wen CY 《生理学报》2004,56(4):539-549
本文研究血管紧张素Ⅱ受体拮抗剂诺沙坦对非胰岛素依赖型糖尿病(non-insulin-dependent diabetes mellitus,NIDDM)大鼠胰岛素敏感性的改善作用,并探讨其作用机制。从饮水中给予正常或高脂喂养加小剂量链脲佐菌素(STZ)诱发的NIDDM大鼠诺沙坦(4 mg/kg),连续6周。分离骨骼肌,用免疫印迹法检测诺沙坦对胰岛素受体底物1(insulin receptor substrate 1,IRS-1)、蛋白激酶B(protein kinase B,PKB)和葡萄糖转运因子4(glucose transporter 4,GLUT4)的表达,以及IRS-1的磷酸化、IRS-1与磷脂酰肌醇3激酶(phosphatidylinositol(PI)3-kinase)的结合。口服葡萄糖耐量试验表明,口服诺沙坦可改善糖尿病大鼠胰岛素敏感性。在骨骼肌组织,NIDDM和正常大鼠的IRS-1、PKB和GLUT4蛋白表达无差异,且不受诺沙坦处理的影响。NIDDM大鼠胰岛素刺激后的骨骼肌IRS-1酪氨酸磷酸化水平、PI 3-kinase结合IRS-1的活性和PKB活性较对照组显著降低(P<0.01),且不能被诺沙坦改善。诺沙坦显著增加NIDDM大鼠肌细胞质膜(plasma membrane,PM)和T管(T-tubules,TT)胰岛素诱导的GLUT4的 含量(P<0.05)。与该结果一致的是,诺沙坦处理的NIDDM大鼠血糖水平较未处理NIDDM大鼠下降(P<0.05)。结果表明,诺沙坦可改善胰岛素抵抗状态,主要是通过非PI 3-kinase依赖的  相似文献   

7.
Insulin receptor substrate-2-deficient (IRS-2(-/-)) mice develop type 2 diabetes. We have investigated the molecular mechanisms by which IRS-2(-/-) immortalized brown adipocytes showed an impaired response to insulin in inducing GLUT4 translocation and glucose uptake. IRS-2-associated phosphatidylinositol 3-kinase (PI 3-kinase) activity was blunted in IRS-2(-/-) cells, total PI 3-kinase activity being reduced by 30%. Downstream, activation of protein kinase C (PKC) zeta was abolished in IRS-2(-/-) cells. Reconstitution with retroviral IRS-2 restores IRS-2/PI 3-kinase/PKC zeta signalling, as well as glucose uptake. Wild-type cells expressing a kinase-inactive mutant of PKC zeta lack GLUT4 translocation and glucose uptake. Our results support the essential role played by PKC zeta in the insulin resistance and impaired glucose uptake observed in IRS-2-deficient brown adipocytes.  相似文献   

8.
Exercise training improves skeletal muscle insulin sensitivity in the obese Zucker rat. The purpose of this study was to investigate whether the improvement in insulin action in response to exercise training is associated with enhanced insulin receptor signaling. Obese Zucker rats were trained for 7 wk and studied by using the hindlimb-perfusion technique 24 h, 96 h, or 7 days after their last exercise training bout. Insulin-stimulated glucose uptake (traced with 2-deoxyglucose) was significantly reduced in untrained obese Zucker rats compared with lean controls (2.2 +/- 0.17 vs. 5.4 +/- 0.46 micromol x g(-1) x h(-1)). Glucose uptake was normalized 24 h after the last exercise bout (4.9 +/- 0.41 micromol x g(-1) x h(-1)) and remained significantly elevated above the untrained obese Zucker rats for 7 days. However, exercise training did not increase insulin receptor or insulin receptor substrate-1 (IRS-1) tyrosine phosphorylation, phosphatidylinositol 3-kinase (PI3-kinase) activity associated with IRS-1 or tyrosine phosphorylated immunoprecipitates, or Akt serine phosphorylation. These results are consistent with the hypothesis that, in obese Zucker rats, adaptations occur during training that lead to improved insulin-stimulated muscle glucose uptake without affecting insulin receptor signaling through the PI3-kinase pathway.  相似文献   

9.
In the present study we have examined the proteins involved in the insulin signaling cascade during and after differentiation of human adipocyte precursor cells and their correlation with glucose uptake. The differentiation of human adipocytes was characterized by a two- to threefold stimulation of glucose transport in response to insulin and a marked increase protein expression for the insulin receptor, IRS-1, GLUT-4, PI 3-kinase, and PKB, with respect to undifferentiated cells. In contrast, there were small changes in the protein expression of IRS-2, and no changes in PKC zeta and MAP kinases, although basal MAP kinase activity and GLUT-1 protein were reduced during differentiation. In conclusion, there are quantitative differences in the regulation of IRS-1 and other proteins during differentiation which may contribute to more efficient insulin signaling leading to glucose uptake in mature fat cells. Alterations in this pattern may reflect or contribute to an insulin-resistant state.  相似文献   

10.
Clinical evidence suggests a relationship between hypertension and insulin resistance, and cross-talk between angiotensin II (Ang II) and insulin signaling pathways may take place. We now report the effect of Ang II on insulin-induced glucose uptake and its intracellular mechanisms in vascular smooth muscle cells (VSMC). We examined the translocation of glucose transporter-4 (GLUT-4) and glucose uptake in rat aortic smooth muscle cells (RASMC). Mitogen-activated protein (MAP) kinases and Akt activities, and phosphorylation of insulin receptor substrate-1 (IRS-1) at the serine and tyrosine residues were measured by immunoprecipitation and immunoblotting. As a result, Ang II inhibited insulin-induced GLUT-4 translocation from cytoplasm to the plasma membrane in RASMC. Ang II induced extracellular signal-regulated kinase (ERK) 1/2 and c-Jun N-terminal kinase (JNK) activation and IRS-1 phosphorylation at Ser307 and Ser616. Ang II-induced Ser307 and Ser616 phophorylation of IRS-1 was inhibited by a MEK inhibitor, PD98059, and a JNK inhibitor, SP600125. Ang II inhibition of insulin-stimulated IRS-1 tyrosyl phophorylation and Akt activation were reversed by PD98059 but not by SP600125. Ang II inhibited insulin-induced glucose uptake, which was also reversed by PD98059 but not by SP600125. It is shown that Ang II-induced ERK1/2 activation inhibits insulin-dependent glucose uptake through serine phophorylation of IRS-1 in RASMC.  相似文献   

11.
Elevated levels of resistin have been proposed to cause insulin resistance and therefore may serve as a link between obesity and type 2 diabetes. However, its role in skeletal muscle metabolism is unknown. In this study, we examined the effect of resistin on insulin-stimulated glucose uptake and the upstream insulin-signaling components in L6 rat skeletal muscle cells that were either incubated with recombinant resistin or stably transfected with a vector containing the myc-tagged mouse resistin gene. Transfected clones expressed intracellular resistin, which was released in the medium. Incubation with recombinant resistin resulted in a dose-dependent inhibition of insulin-stimulated 2-deoxyglucose (2-DG) uptake. The inhibitory effect of resistin on insulin-stimulated 2-DG uptake was not the result of impaired GLUT4 translocation to the plasma membrane. Furthermore, resistin did not alter the insulin receptor (IR) content and its phosphorylation, nor did it affect insulin-stimulated insulin receptor substrate (IRS)-1 tyrosine phosphorylation, its association with the p85 subunit of phosphatidylinositol (PI) 3-kinase, or IRS-1-associated PI 3-kinase enzymatic activity. Insulin-stimulated phosphorylation of Akt/protein kinase B-alpha, one of the downstream targets of PI 3-kinase and p38 MAPK phosphorylation, was also not affected by resistin. Expression of resistin also inhibited insulin-stimulated 2-DG uptake when compared with cells expressing the empty vector (L6Neo) without affecting GLUT4 translocation, GLUT1 content, and IRS-1/PI 3-kinase signaling. We conclude that resistin does not alter IR signaling but does affect insulin-stimulated glucose uptake, presumably by decreasing the intrinsic activity of cell surface glucose transporters.  相似文献   

12.
Despite increased glucose utilization by hypertrophied myocardium, these hearts exhibit a slower rate of glucose uptake (GU). We hypothesized that, in hypertrophied myocardium, a defect of the insulin-responsive glucose transporter is responsible for impaired GU and metabolism during ischemia, contributing to post-ischemic myocardial dysfunction. In a rabbit model of pressure-overload hypertrophy, GU ((31)P NMR spectroscopy) and total/phosphorylated insulin-signaling intermediates were assayed: insulin-receptor, insulin-receptor-substrate-1 (IRS-1), phosphatidylinositol-3-kinase (PI3-k), GLUT-4 translocation and contractile function in an isolated heart ischemia/reperfusion model. Total protein was not different between hypertrophied and control hearts. Phosphorylation of IRS-1 and PI3-k activity was significantly lower in hypertrophy during ischemia. GU was impaired pre-ischemia in hypertrophy, remained lower during early reperfusion, and was associated with impaired recovery of contractile function. In conclusion, a defect in IRS-1 phosphorylation and PI3-k activation in hypertrophied hearts restricts insulin-mediated GLUT-4 translocation and ischemia, a known stimulus of GLUT-4 translocation, does not compensate for this defect.  相似文献   

13.
Overnourishment during the suckling period [small litter (SL)] results in the development of adult-onset obesity. To investigate the mechanisms that underlie the development of insulin resistance in the skeletal muscle of young and adult female SL rats, the litter size was reduced to 3 female pups/dam (SL) while the control litter had 12 pups/dam from the postnatal Day 3 until Day 21. Protein content, mRNA expression and methylation status of the promoter region of key components in the insulin signaling pathway were determined in the skeletal muscle of SL rats. Overnutrition during the suckling period resulted in increased body weight gains, hyperphagia and adult-onset obesity as well as increased levels of serum insulin, glucose and leptin in SL rats. No differences in the expression of total protein as well as tyrosine phosphorylation of insulin receptor β and glucose transporter 4 (Glut4) were observed in skeletal muscle between two groups at both ages. A significant decrease of total insulin receptor substrate 1 (IRS-1) and an increase in serine phosphorylation of IRS-1 were observed in skeletal muscle from adult SL rats. Hypermethylation of specific cytidyl-3',5'phospho-guanylyl (CpG) dinucleotides in the proximal promoter region was observed for the Irs1 and Glut4 genes, which correlated with the reduction in Irs1 and Glut4 mRNA levels in skeletal muscle of adult SL rats. Our results suggest that epigenetic modifications of the key genes involved in the insulin signaling pathway in skeletal muscle could result in the development of insulin resistance in SL female rats.  相似文献   

14.
We previously found that disruption of Kir6.2-containing ATP-sensitive K+ (KATP) channels increases glucose uptake in skeletal muscle, but the mechanism is not clear. In the present study, we generated knockout mice lacking both Kir6.2 and insulin receptor substrate-1 (IRS-1). Because IRS-1 is the major substrate of insulin receptor kinase, we expected disruption of the IRS-1 gene to reduce glucose uptake in Kir6.2 knockout mice. However, the double-knockout mice do not develop insulin resistance or glucose intolerance. An insulin tolerance test reveals the glucose-lowering effect of exogenous insulin in double-knockout mice and in Kir6.2 knockout mice to be similarly enhanced compared with wild-type mice. The basal 2-deoxyglucose uptake rate in skeletal muscle of double-knockout mice is increased similarly to the rate in Kir6.2 knockout mice. Accordingly, disruption of the IRS-1 gene affects neither systemic insulin sensitivity nor glucose uptake in skeletal muscles of Kir6.2-deficient mice. In addition, no significant changes were observed in phosphatidylinositol 3-kinase (PI3K) activity and its downstream signal in skeletal muscle due to lack of the Kir6.2 gene. Disruption of Kir6.2-containing Katp channels clearly protects against IRS-1-associated insulin resistance by increasing glucose uptake in skeletal muscles by a mechanism separate from the IRS-1/PI3K pathway.  相似文献   

15.
Early postnatal administration of monosodium glutamate (MSG) to rats induces obesity, hyperinsulinemia and hyperglycemia in adulthood, thus suggesting the presence of insulin resistance. We therefore investigated the effects of insulin on glucose transport and lipogenesis in adipocytes as well as insulin binding to specific receptors in the liver, skeletal muscle and fat tissues. An increase of plasma insulin, glucose and leptin levels was found in 3-month-old rats treated with MSG during the postnatal period. The attenuation of insulin stimulatory effect on glucose transport was observed in MSG-treated rats. Despite the lower basal and insulin-stimulated glucose uptake, the incorporation of glucose into lipids was significantly higher in MSG-treated rats, suggesting a shift in glucose metabolism towards lipid synthesis in fat tissue. Insulin binding to plasma membranes from the liver, skeletal muscle and adipocytes was decreased in MSG-treated rats. This is in agreement with the lower insulin effect on glucose transport in these animals. Furthermore, a decreased amount of GLUT4 protein was found in adipocytes from MSG-treated obese rats. The results demonstrated an attenuation of insulin effect on glucose transport due to a lower insulin binding and lower content of GLUT4 protein in MSG-treated rats. However, the effect of insulin on lipogenesis was not changed. Our results indicated that early postnatal administration of MSG exerts an important effect on glucose metabolism and insulin action in adipocytes of adult animals.  相似文献   

16.
It is now known that prenatal ethanol (EtOH) exposure is associated with impaired glucose tolerance and insulin resistance in rat offspring, but the underlying mechanism(s) is not known. To test the hypothesis that in vivo insulin signaling through phosphatidylinositol 3 (PI3)-kinase is reduced in skeletal muscle of adult rat offspring exposed to EtOH in utero, we gave insulin intravenously to these rats and probed steps in the PI3-kinase insulin signaling pathway. After insulin treatment, EtOH-exposed rats had decreased tyrosine phosphorylation of the insulin receptor beta-subunit and of insulin receptor substrate-1 (IRS-1), as well as reduced IRS-1-associated PI3-kinase in the gastrocnemius muscle compared with control rats. There was no significant difference in basal or insulin-stimulated Akt activity between EtOH-exposed rats and controls. Insulin-stimulated PKC isoform zeta phosphorylation and membrane association were reduced in EtOH-exposed rats compared with controls. Muscle insulin binding and peptide contents of insulin receptor, IRS-1, p85 subunit of PI3-kinase, Akt/PKB, and atypical PKC isoform zeta were not different between EtOH-exposed rats and controls. Thus insulin resistance in rat offspring exposed to EtOH in utero may be explained, at least in part, by impaired insulin signaling through the PI3-kinase pathway in skeletal muscle.  相似文献   

17.
Strenuous exercise induces delayed-onset muscle damage including oxidative damage of cellular components. Oxidative stress to muscle cells impairs glucose uptake via disturbance of insulin signaling pathway. We investigated glucose uptake and insulin signaling in relation to oxidative protein modification in muscle after acute strenuous exercise. ICR mice were divided into sedentary and exercise groups. Mice in the exercise group performed downhill running exercise at 30 m/min for 30 min. At 24 hr after exercise, metabolic performance and insulin-signaling proteins in muscle tissues were examined. In whole body indirect calorimetry, carbohydrate utilization was decreased in the exercised mice along with reduction of the respiratory exchange ratio compared to the rested control mice. Insulin-stimulated uptake of 2-deoxy-[(3)H]glucose in damaged muscle was decreased after acute exercise. Tyrosine phosphorylation of insulin receptor substrate (IRS)-1 and phosphatidyl-3-kinase/Akt signaling were impaired by exercise, leading to inhibition of the membrane translocation of glucose transporter 4. We also found that acute exercise caused 4-hydroxy-nonenal modification of IRS-1 along with elevation of oxidative stress in muscle tissue. Impairment of insulin-induced glucose uptake into damaged muscle after strenuous exercise would be related to disturbance of insulin signal transduction by oxidative modification of IRS-1.  相似文献   

18.
Peroxisome proliferator-activated receptor gamma (PPAR gamma) co-activator 1 (PGC-1) regulates glucose metabolism and energy expenditure and, thus, potentially insulin sensitivity. We examined the expression of PGC-1, PPAR gamma, insulin receptor substrate-1 (IRS-1), glucose transporter isoform-4 (GLUT-4), and mitochondrial uncoupling protein-1 (UCP-1) in adipose tissue and skeletal muscle from non-obese, non-diabetic insulin-resistant, and insulin-sensitive individuals. PGC-1, both mRNA and protein, was expressed in human adipose tissue and the expression was significantly reduced in insulin-resistant subjects. The expression of PGC-1 correlated with the mRNA levels of IRS-1, GLUT-4, and UCP-1 in adipose tissue. Furthermore, the adipose tissue expression of PGC-1 and IRS-1 correlated with insulin action in vivo. In contrast, no differential expression of PGC-1, GLUT-4, or IRS-1 was found in the skeletal muscle of insulin-resistant vs insulin-sensitive subjects. The findings suggest that PGC-1 may be involved in the differential gene expression and regulation between adipose tissue and skeletal muscle. The combined reduction of PGC-1 and insulin signaling molecules in adipose tissue implicates adipose tissue dysfunction which, in turn, can impair the systemic insulin response in the insulin-resistant subjects.  相似文献   

19.
Insulin action in skeletal muscle is enhanced by regular exercise. Whether insulin signaling in human skeletal muscle is affected by habitual exercise is not well understood. Phosphatidylinositol 3-kinase (PI3-kinase) activation is an important step in the insulin-signaling pathway and appears to regulate glucose metabolism via GLUT-4 translocation in skeletal muscle. To examine the effects of regular exercise on PI3-kinase activation, 2-h hyperinsulinemic (40 mU. m(-2). min(-1))-euglycemic (5.0 mM) clamps were performed on eight healthy exercise-trained [24 +/- 1 yr, 71.8 +/- 2.0 kg, maximal O(2) uptake (VO(2 max)) of 56.1 +/- 2.5 ml. kg(-1). min(-1)] and eight healthy sedentary men and women (24 +/- 1 yr, 64.7 +/- 4.4 kg, VO(2 max) of 44.4 +/- 2.7 ml. kg(-1). min(-1)). A [6, 6-(2)H]glucose tracer was used to measure hepatic glucose output. A muscle biopsy was obtained from the vastus lateralis muscle at basal and at 2 h of hyperinsulinemia to measure insulin receptor substrate-1(IRS-1)-associated PI3-kinase activation. Insulin concentrations during hyperinsulinemia were similar for both groups (293 +/- 22 and 311 +/- 22 pM for trained and sedentary, respectively). Insulin-mediated glucose disposal rates (GDR) were greater (P < 0.05) in the exercise-trained compared with the sedentary control group (9.22 +/- 0.95 vs. 6.36 +/- 0.57 mg. kg fat-free mass(-1). min(-1)). Insulin-stimulated PI3-kinase activation was also greater (P < 0.004) in the trained compared with the sedentary group (3.8 +/- 0.5- vs. 1.8 +/- 0.2-fold increase from basal). Endurance capacity (VO(2 max)) was positively correlated with PI3-kinase activation (r = 0.53, P < 0.04). There was no correlation between PI3-kinase and muscle morphology. However, increases in GDR were positively related to PI3-kinase activation (r = 0.60, P < 0.02). We conclude that regular exercise leads to greater insulin-stimulated IRS-1-associated PI3-kinase activation in human skeletal muscle, thus facilitating enhanced insulin-mediated glucose uptake.  相似文献   

20.
To explore the effect of LYRM1 over-expression on basal and insulin-stimulated glucose uptake in rat skeletal muscle cells, and to understand the underlying mechanisms, Rat myoblasts (L6) transfected with either an empty expression vector (pcDNA3.1Myc/His B) or a LYRM1 expression vector were differentiated into myotubes. Glucose uptake was determined by measuring 2-deoxy-D-[(3)H] glucose uptake into L6 myotubes. Western blotting was performed to assess the translocation of insulin-sensitive glucose transporter 4 (GLUT4). It was also used to measure the phosphorylation and total protein contents of insulin-signaling proteins, such as the insulin receptor (IR), insulin receptor substrate (IRS)-1, phosphatidylinositol-3-kinase (PI3K) p85, Akt, ERK1/2, P38, and JNK. LYRM1 over-expression in L6 myotubes reduced insulin-stimulated glucose uptake and impaired insulin-stimulated GLUT4 translocation. It also diminished insulin-stimulated tyrosine phosphorylation of IRS-1, PI3K (p85), and serine phosphorylation of Akt without affecting the phosphorylation of IR, ERK1/2, P38, and JNK. LYRM1 regulates the function of IRS-1, PI3K, and Akt, and decreases GLUT4 translocation and glucose uptake in response to insulin. These observations highlight the potential role of LYRM1 in glucose homeostasis and possibly in the pathophysiology of type 2 diabetes related to obesity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号