首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The release of acetylcholine: from a cellular towards a molecular mechanism   总被引:3,自引:0,他引:3  
The isolation of synaptic vesicles rich in acetylcholine (ACh) from the electric organ of Torpedo has indeed strengthened the hypothesis of transmitter exocytosis, but soon after it was found that non-vesicular free ACh was released and renewed upon stimulation. In contrast, vesicular ACh and the number of vesicles remained stable during physiological stimulations. In addition free ACh variations (representing the cytoplasmic pool) were correlated to the release kinetics as measured by the electroplaque discharge. Consequently, the mechanism releasing ACh from the cytoplasm in a packet form was searched at the presynaptic membrane itself. With synaptosomes isolated from the electric organ of Torpedo, it became possible to freeze them rapidly at the peak of ACh release and study their membrane and contents after cryofracture. A statistical analysis showed that the main structural change was the occurrence of large intramembrane particles at the peak of ACh release and under all release conditions. This impressive change contrasted with the stability in the number of vesicles. Another role for the vesicle was envisaged during intense stimulations when the cytoplasmic ACh and ATP pools become exhausted. The decrease in ATP leads to an increase in calcium and protons in the cytoplasm; this signals the depletion of vesicular ACh and ATP stores in the cytoplasm. Release can go on, while ATP promotes the uptake of calcium by vesicles. At the end of its cycle the vesicle will be full of calcium and will perhaps release it. As far as the mechanism of ACh release is concerned it probably depends on a membrane component (perhaps the large particles) activated by calcium and able to translocate ACh in a quantal or subquantal form. In most recent work we showed that if a lyophilized presynaptic membrane was used to make proteoliposomes filled with ACh, they released ACh upon calcium action.  相似文献   

2.
Dunant Y  Israël M 《Biochimie》2000,82(4):289-302
The classical concept of the vesicular hypothesis for acetylcholine (ACh) release, one quantum resulting from exocytosis of one vesicle, is becoming more complicated than initially thought. 1) synaptic vesicles do contain ACh, but the cytoplasmic pool of ACh is the first to be used and renewed on stimulation. 2) The vesicles store not only ACh, but also ATP and Ca(2+) and they are critically involved in determining the local Ca(2+) microdomains which trigger and control release. 3) The number of exocytosis pits does increase in the membrane upon nerve stimulation, but in most cases exocytosis happens after the precise time of release, while it is a change affecting intramembrane particles which reflects more faithfully the release kinetics. 4) The SNARE proteins, which dock vesicles close to Ca(2+) channels, are essential for the excitation-release coupling, but quantal release persists when the SNAREs are inactivated or absent. 5) The quantum size is identical at the neuromuscular and nerve-electroplaque junctions, but the volume of a synaptic vesicle is eight times larger in electric organ; at this synapse there is enough ACh in a single vesicle to generate 15-25 large quanta, or 150-200 subquanta. These contradictions may be only apparent and can be resolved if one takes into account that an integral plasmalemmal protein can support the formation of ACh quanta. Such a protein has been isolated, characterised and called mediatophore. Mediatophore has been localised at the active zones of presynaptic nerve terminals. It is able to release ACh with the expected Ca(2+)-dependency and quantal character, as demonstrated using mediatophore-transfected cells and other reconstituted systems. Mediatophore is believed to work like a pore protein, the regulation of which is in turn likely to depend on the SNARE-vesicle docking apparatus.  相似文献   

3.
1. A chemiluminescent procedure for measuring acetylcholine (ACh) has recently been described. The procedure is based on the hydrolysis of ACh by acetylcholinesterase and on the oxidation of choline to betaine and H2O2 by choline oxidase. The H2O2 generated reacts with luminol in presence of peroxidase to produce a light emission. This method is sensitive in the pmol/ml range. 2. On isolated synaptosomes from electric organ, it is possible to obtain an estimate of the cytoplasmic ACh compartment by measuring the light emission after a single freezing and thawing cycle. The vesicular pool which resists several freezing and thawing cycles is then estimated by opening the compartment with a detergent. Increasing the intensity of stimulation of synaptosomes with different agents depletes the ACh content down to the vesicular pool. 3. The release of ACh is not associated with any change in the number of synaptic vesicles as seen in cryofractured synaptosomes. The only ultrastructural change detected common to all stimulations was a decreased density of P face intramembrane particles smaller than 11 nm and an increased density of E face 8 to 18 nm particles. The very significant particle changes were more intense for the conditions releasing more ACh. It is suggested that these particles are involved in the release of ACh from the cytoplasm. An attempt to directly correlate the release of ACh with intramembrane particle changes is discussed.  相似文献   

4.
The epithelial cholinergic system of the airways   总被引:1,自引:1,他引:0  
Acetylcholine (ACh), a classical transmitter of parasympathetic nerve fibres in the airways, is also synthesized by a large number of non-neuronal cells, including airway surface epithelial cells. Strongest expression of cholinergic traits is observed in neuroendocrine and brush cells but other epithelial cell types-ciliated, basal and secretory-are cholinergic as well. There is cell type-specific expression of the molecular pathways of ACh release, including both the vesicular storage and exocytotic release known from neurons, and transmembrane release from the cytosol via organic cation transporters. The subcellular distribution of the ACh release machineries suggests luminal release from ciliated and secretory cells, and basolateral release from neuroendocrine cells. The scenario as known so far strongly suggests a local auto-/paracrine role of epithelial ACh in regulating various aspects on the innate mucosal defence mechanisms, including mucociliary clearance, regulation of macrophage function and modulation of sensory nerve fibre activity. The proliferative effects of ACh gain importance in recently identified ACh receptor disorders conferring susceptibility to lung cancer. The cell type-specific molecular diversity of the epithelial ACh synthesis and release machinery implies that it is differently regulated than neuronal ACh release and can be specifically targeted by appropriate drugs.  相似文献   

5.
The concurrent release of endogenous ACh and GABA from the retina (in the presence of physostigmine) was measured using either an eye-cup preparation in rabbits anaesthetized with urethane or isolated rabbit retinas. There was a spontaneous resting release of ACh and GABA from the dark adapted retina of ca 5 and 160 pmol min-1 respectively. Stimulation of the initially dark adapted retina in vivo with flickering light (0.1-20 Hz) increased the release of ACh by up to 5 times the spontaneous resting release but did not cause a detectable increase in GABA release. The maximum light-evoked release of ACh was about 24 pmol min-1/retina and occurred at a frequency of 10 Hz. However, the maximum release of ACh per flash occurred at 0.1 Hz at which frequency the average ACh release per flash from one amacrine cell was ca 2.35 x 10(-18) mol. Exposure of the retina to the potent inhibitors of GABA uptake, SKF89976A and SKF100330A markedly reduced the resting release of ACh and abolished the light-evoked release of ACh but did not enable a light-evoked release of GABA to be detected. Bicuculline blocked the inhibitory actions of both SKF89976A and SKF100330A on ACh release but the combination of bicuculline and uptake inhibitor did not result in a light-evoked release of GABA. In contrast, KCl (20 mM) applied locally to the retina in vivo resulted in the release of both ACh and GABA (61 and 2.6-fold respectively). KCl (20 mM) also evoked large increases in ACh and GABA release from isolated rabbit retinas in room light (13.5 and 3.4-fold respectively). The K-evoked release of ACh and GABA from the rabbit retina both in vivo and in vitro was calcium dependent. These experiments are the first in which endogenous ACh and GABA release from the retina have been simultaneously measured and suggest that the release mechanisms for these transmitters are fundamentally similar.  相似文献   

6.
The fractional increase in ACh responses that occurs at the beginning of each train of iontophoretically applied ACh pulses has been examined at the frog neuromuscular junction at room temperature, in the presence of active cholinesterase, during desensitization produced by a rapid sequence (every 20 s) of short (5 Hz, 5 s) iontophoretic trains of ACh. The fractional increase in ACh responses, which is used as an indicator of postsynaptic potentiation, becomes progressively greater with ACh application, often markedly (greater than 100%), although ACh responses are greatly reduced (as much as 90%) owing to desensitization. Clearly postsynaptic potentiation can exist concomitantly with desensitization. In addition, the dose-response curve is shifted to the right and its maximal response is diminished. The shift in the dose-response curve to the right, which can explain greater postsynaptic potentiation, is unlikely to be caused by accumulation of "monoligand-bound ACh receptor complexes," since experiments were done with active cholinesterase. The shift probably results from a greater number of desensitized receptors which, because of their large affinity for ACh molecules, serve as "high affinity traps." A small decrease of the maximal dose-response suggests only a small fractional decrease in the number of activable receptors, whereas a large shift to the right indicates a large fractional increase in the number of desensitized receptors. It appears that prior to ACh application only a small fraction of all receptors are desensitized. Alternatively, the shift to the right occurs because the cooperative action of ACh on receptors increases during desensitization.  相似文献   

7.
The relationship of cerebral neurotransmitters acetylcholine (ACh), noradrenaline (NA), dopamine (DA), 5-hydroxytryptamine (5HT) to the energy state of the brain was examined in mice at various times following complete ischemia produced by decapitation, in gerbils submitted to transient global ischemia (10 min bilateral carotid artery occlusion, 5 or 30 min recirculation), and in rats 24 hr after irreversible microembolism. Ischemia caused significant reductions in brain monoamine concentrations. The alterations in NA, DA, and 5HT levels persisted during recirculation and were unrelated to energy restoration. They were accompanied by an increase in the concentrations of related metabolites, suggesting that synthesis was unable to compensate for the release of the transmitters at early post-ischemic time periods. As described for the catecholamines and 5HT, ischemia resulted in a significant decrease in ACh level, but recirculation was associated with a rapid increase in ACh concentration. Impaired synthesis and/or increased release of ACh can be responsible for the decrease in ACh concentration during ischemia. Early post-ischemic elevation of ACh may be related to the large increase in brain choline brought about by ischemia.  相似文献   

8.
Effects of saiboku-to, a traditional oriental herbal medicine, on diazepam-induced changes in cerebral acetylcholine (ACh) were investigated in rat striatum and hippocampus. Diazepam (10 mg/kg, i.p.) increased tissue concentrations of the ACh in both regions. The increase was enhanced in rats subacutely treated with saiboku-to (2.0 g/kg, p.o., once a day) for 7 days. Diazepam also decreased release levels of ACh in both regions. The release levels were further decreased in saiboku-to-treated rats. On the other hand, no significant changes in ACh synthesizing and the hydrolyzing enzyme activities in either brain region were observed in saiboku-to-, diazepam- and combination-treated rats. These results suggest that not only is the diazepam-induced increase in tissue ACh due to the inhibition of ACh release but also that saiboku-to potentiates diazepam-induced inhibition of ACh release.  相似文献   

9.
We investigated the release of acetylcholine (ACh) from tissue slices obtained from the nucleus basalis magnocellularis (nbM) of the rat brain. Potassium (35 mM) depolarization produced a 10- to 12-fold increase in the release of endogenous ACh above spontaneous release. Potassium-evoked ACh release was Ca2+ dependent. Injection of the excitotoxin quinolinic acid into the nbM produced a 72.8 +/- 13.0% decrease in spontaneous ACh release and a 60.4 +/- 8.2% decrease in potassium-evoked release. A fourfold increase in ACh release was observed following perfusion of the tissue with 1 mM 3,4-diaminopyridine (3,4-DAP) whereas 10 mM 3,4-DAP caused a sevenfold increase. The increase in ACh release caused by 3,4-DAP was inhibited by tetrodotoxin. Tissue slices accumulated [3H]choline by high-affinity choline uptake and this could be inhibited by hemicholinium-3. These results indicate that ACh can be released from tissue slices of the nbM by a calcium-dependent process and that a part of this release appears to be from the cholinergic neurons of the nbM.  相似文献   

10.
VIP release from enteric nerves is independent of extracellular calcium   总被引:4,自引:0,他引:4  
The release of endogenous vasoactive intestinal polypeptide (VIP) from enteric nerves of isolated rat ileum and the role of extracellular calcium on the release mechanism have been investigated. Evaluation of simultaneous release of endogenous acetylcholine (ACh) and adenosine 5'-triphosphate (ATP) from enteric nerves was used to establish the reliability of the technique. Electrical field stimulation of the ileal preparation induced an increase in the release of endogenous ACh, ATP and VIP. The evoked, but not the basal, release of these substances was blocked by tetrodotoxin (TTX), indicating that the release was a result of nerve stimulation. However, while increase in release of ACh and ATP during nerve stimulation was suppressed in Ca2+-free medium and by the addition of the Ca2+ channel blocker cadmium, nerve-mediated VIP release was unaffected. Further, while K+-depolarization induced release of ACh and ATP from the ileal preparations, it did not lead to an increase in the release of VIP. These results demonstrate that, unlike ACh and ATP release, release of endogenous VIP from enteric nerves is independent of extracellular calcium. The implications of these results in terms of the mechanism of transmitter release in the gastrointestinal tract are discussed.  相似文献   

11.
The effects of a new thyrotropin releasing hormone (TRH) analogue, YM-14673 (N alpha-[[(S)-4-oxo-2-azetidinyl]carbonyl]-L-histidyl-L-prolinamide dihydrate), on the release of acetylcholine (ACh) in free-moving rats were examined in vivo by intracerebral dialysis. In the frontal cortex, YM-14673 (0.1-0.3 mg/kg) caused a significant dose-dependent increase in the extracellular levels of ACh, suggesting that YM-14673 stimulated the ACh release. These actions of YM-14673 were about 50 times more potent than those of TRH. On the other hand, extracellular levels of ACh in caudate nucleus were not changed following injection of YM-14673 even at 3 mg/kg. TRH and methamphetamine also increased the release of ACh in frontal cortex. Haloperidol prevented the increase in the methamphetamine-induced release of ACh, whereas the increased release of ACh produced by YM-14673 was partially antagonized by haloperidol. These results suggest that the dopaminergic system affects the facilitatory effects on the ACh release in the frontal cortex and that the stimulatory effect of YM-14673 on the frontal cholinergic neurons is partially mediated by dopaminergic neurons.  相似文献   

12.
The effect of lanthanum ions (La3+) on the release of acetylcholine (ACh) from longitudinal muscle strips of the guinea pig ileum with the myenteric plexus attached was investigated. After an exposure of the tissue to 2 mM LaCl3 for 18 min the rate of ACh release was increased approximately eightfold and the increased release lasted for more than 100 min. The augmented release of ACh was accompanied by enhanced synthesis. At the end of the experiments (102 min after LaCl3 had been removed), when the release of ACh was still more than six times higher than in controls, the content of ACh was the same in La3+-treated and untreated tissues. Electrical field stimulation failed to cause a further increase in the release of ACh from La3+-pretreated preparations whereas ouabain released considerable more ACh when compared to controls. It is concluded from this difference that electrical stimulation and ouabain release ACh from different pools.  相似文献   

13.
Abstract: The acetylcholine (ACh) content of sympathetic ganglia increases above its normal level following a period of preganglionic nerve stimulation. In the present experiments, this extra ACh that accumulates following activity was labeled radioactively from [3H]choline and its specific activity was compared with that of ACh subsequently released during preganglionic nerve stimulation. The specific activity of the released ACh was similar to that of the total tissue ACh, suggesting that the extra ACh mixes fully with endogenous stores. The present experiments also show that transmitter release during neuronal stimulation is necessary for the poststimulation increase in transmitter store. However, the increase was not evident when transmitter release was induced by K+. It is concluded that both transmitter release and impulse invasion of the nerve terminals are necessary for the adaptive phenomenon to manifest itself. The role of choline delivery and choline acetyltransferase activity in generating the poststimulation increase in transmitter store was tested. When choline transport activity measured as choline analogue (homocholine) accumulation increased, ACh synthesis was increased and when transport activity was not increased, neither was ACh synthesis. There was no poststimulation increase in measured choline acetyltransferase activity.  相似文献   

14.
Sheridan RE  Adler M 《Life sciences》2006,79(6):591-595
In primary embryonic spinal cord cultures, synaptic transmission can be conveniently studied by monitoring radiolabeled neurotransmitter release or by recording of electrophysiological responses. However, while the mature spinal cord contains an appreciable number of cholinergic motoneurons, cultures of embryonic spinal cord have a paucity of these neurons and release little or no acetylcholine upon stimulation. To determine whether the proportion of cholinergic neurons in primary mouse spinal cord cultures can be augmented, the effects of several classes of growth factors were examined on depolarization- and Ca(2+)-evoked release of choline/acetylcholine (Ch/ACh). In the absence of growth factors, little or no evoked release of radiolabeled Ch/ACh could be demonstrated. Media supplemented with brain-derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF) or basic fibroblast growth factor (bFGF) were examined for their ability to preserve the population of neurons in culture. CNTF was found to increase the number of surviving neurons and to enhance the release of radiolabeled Ch/ACh; the other factors were without effect. The action of CNTF was transient, and the neuronal population decreased to levels observed in cultures lacking growth factor after 20 days in vitro. The correlation between enhanced neuron survival and increased Ch/ACh release suggests that CNTF protected cholinergic neurons, albeit transiently, from cell death.  相似文献   

15.
Chromaffin cells of bovine adrenal medulla release catecholamines in response to activation of nicotinic ACh receptors which open voltage-sensitive calcium channels. Catecholamine secretion by exocytosis requires an increase in cytosolic free calcium. The cells also possess muscarinic ACh receptors but muscarinic agents do not provoke catecholamine release. Quin-2 studies show that they do not increase cytosolic free Ca2+ concentration, but unlike the nicotinic agents, they cause phosphoinositide hydrolysis. Muscarinic stimulation leads to rapid loss of labelled phosphatidylinositol 4-phosphate and of phosphatidylinositol 4,5-bisphosphate. At the same time there is release of inositol trisphosphate, inositol bisphosphate and inositol phosphate. In a number of other cells inositol trisphosphate may act as a second messenger releasing Ca2+ from storage sites in the endoplasmic reticulum but this is not its function in bovine chromaffin cells.  相似文献   

16.
We have studied the effects of 25 mM potassium, electrical stimulation of the phrenic nerve, and crude black widow spider venom on the ultrastructure, electrophysiology, and acetylcholine (ACh) contents of mouse diaphragms. About 65% of the ACh in diaphragms is contained in a depletable store in the nerve terminals. The rest of the ACh is contained in a nondepletable store that may correspond to the store that remains in denervated muscles and includes, in addition, ACh in the intramuscular branches of the phrenic nerve. About 4% of the ACh released from the depletable store at rest is secreted as quanta and may come from the vesicles, while 96% is secreted in a nonquantized form and comes from an extravesicular pool. The size of the extravesicular pool is uncertain: it could be less than 10%, or as great as 50%, of the depletable store. K causes a highly (but perhaps not perfectly) selective increase in the rate of quantal secretion so that quanta account for about 50% of the total ACh released from K- treated diaphragms. K, or electrical stimulation of the phrenic nerve, depletes both the vesicular and extravesicular pools of ACh when hemicholinium no. 3 (HC-3) is present. However, most of the vesicles are retained under these conditions so that the diaphragms are able to increase slightly their rates of release of ACh when K is added. Venom depletes the terminals of their vesicles and abolishes the release of quanta of ACh. It depletes the vesicular pool of ACh (since it depletes the vesicles), but may only partially deplete the extravesicular pool (since it reduces resting release only 10--40%). The rate of release of ACh from the residual extravesicular pool does not increase when 25 mM K is added. Although we cannot exclude the possibility that stimulation may double the rate of release of ACh from the extravesicular pool, our results are compatible with the idea that the ACh released by stimulation comes mainly from the vesicles and that, when synthesis is inhibited by HC-3, ACh may be exchanged between the extravesicular pool and recycled vesicles.  相似文献   

17.
The purpose of the present study was to investigate whether hypoxia influences acetylcholine (ACh) release from the rabbit carotid body and, if so, to determine the mechanism(s) associated with this response. ACh is expressed in the rabbit carotid body (5.6 +/- 1.3 pmol/carotid body) as evidenced by electrochemical analysis. Immunocytochemical analysis of the primary cultures of the carotid body with antibody specific to ACh further showed that ACh-like immunoreactivity is localized to many glomus cells. The effect of hypoxia on ACh release was examined in ex vivo carotid bodies harvested from anesthetized rabbits. The basal release of ACh during normoxia ( approximately 150 Torr) averaged 5.9 +/- 0.5 fmol.min-1.carotid body-1. Lowering the Po2 to 90 and 20 Torr progressively decreased ACh release by approximately 15 and approximately 68%, respectively. ACh release returned to the basal value on reoxygenation. Simultaneous monitoring of dopamine showed a sixfold increase in dopamine release during hypoxia. Hypercapnia (21% O2 + 10% CO2) as well as high K+ (100 mM) facilitated ACh release from the carotid body, suggesting that hypoxia-induced inhibition of ACh release is not due to deterioration of the carotid body. Hypoxia had no significant effect on acetylcholinesterase activity in the medium, implying that increased hydrolysis of ACh does not account for hypoxia-induced inhibition of ACh release. In the presence of either atropine (10 microM) or domperidone (10 microM), hypoxia stimulated ACh release. These results demonstrate that glomus cells of the rabbit carotid body express ACh and that hypoxia overall inhibits ACh release via activation of muscarinic and dopaminergic autoinhibitory receptors in the carotid body.  相似文献   

18.
M Das  S P Chauhan  D K Ganguly 《Life sciences》1991,48(14):1395-1399
In the Auerbach's plexus of guinea-pig ileum lower concentrations of oxotremorine (Oxo-T) produced an increase, whereas higher concentrations of Oxo-T caused inhibition of evoked acetylcholine (ACh) release, measured by bioassay using dorsal muscle of leech. Dopamine inhibited the increase in evoked release of ACh induced by Oxo-T as a function of its concentration and this inhibitory effect was nullified in presence of pimozide, the dopamine receptor antagonist. The results demonstrate existence of presynaptic dopamine receptors having inhibitory influence on excitatory presynaptic muscarinic receptors on regulation of ACh release. However, no physiological role of dopamine could be observed on ACh release in this preparation.  相似文献   

19.
The objective of this study was to determine the subcellular origin of cholinergic transmitter released spontaneously from mouse forebrain minces. To accomplish this objective, minces were pretreated in ionic media and then loaded with [14C]homocholine, an analog of choline, to form the false transmitter [14C]acetylhomocholine [( 14C]AHCh). The ratio of the false transmitter [14C]AHCh to the true transmitter ACh was then used as an index of cholinergic transmitter contents for both the cytoplasmic (S3) and vesicle-bound (P3) fractions. Three different pretreatment procedures were used to cause the following changes in S3 and P3 false to true transmitter ratios prior to spontaneous release: 1) a small increase in the S3 ratio of [14C]AHCh to acetylcholine (ACh) and a large increase in the P3 ratio of [14C] AHCh to ACh; 2) a decrease in the S3 ratio of [14C]AHCh to ACh and an increase in the P3 ratio of [14C]AHCh to ACh; 3) an increase in the P3 ratio of [14C]AHCh to ACh without affecting the S3 ratio of [14C]AHCh to ACh. The influence of each pretreatment on these subcellular ratios was then compared with its influence on the spontaneous release ratio of [14C]AHCh to ACh. In all 3 instances, the influence of pretreatment on the ratio of spontaneously released false and true cholinergic transmitters from minces coincided with the effect of pretreatment on the pre-release ratio of false to true transmitter in the S3 fraction. These results suggest that much of the cholinergic transmitter which is spontaneously released from mouse forebrain occurs from the cytroplasmic fraction.  相似文献   

20.
The present experiments show that somatostatin (SS)-like immunoreactive material is present in the hippocampus and that its release can be increased by K+ stimulation of rat hippocampal slices, suggesting that SS-like peptides may be of significance to neurotransmission in the hippocampus. Exogenous SS-28 and SS-14 enhanced the K(+)-evoked release of endogenous acetylcholine (ACh) from rat hippocampal slices, whereas amino-terminal fragments of SS-28 did not. The increased ACh release in the presence of either peptide appeared to be mediated by an interaction with SS receptors because cyclo-SS, a putative SS antagonist, abolished the effects of both SS-28 and SS-14. In addition, the increase in ACh release induced by SS-14 or SS-28 was antagonized by the calcium channel antagonists omega-conotoxin GVIA, nifedipine, and cinnarizine, implicating voltage-sensitive calcium channels in this effect. Moreover, the effect was sensitive to tetrodotoxin, suggesting an indirect action of the peptides at a site distal to cholinergic nerve terminals. Cysteamine, which has been reported to deplete SS content and to increase SS release in brain, augmented the basal and evoked release of ACh from hippocampal slices, without affecting SS-like content and release. Finally, neuropeptide Y, which is colocalized with SS in many neurons of the hippocampal formation, did not alter ACh release, nor did it facilitate the SS-induced increase. The results suggest that in the rat hippocampus, both SS-28 and SS-14 interact with SS receptors to regulate ACh release indirectly by a mechanism that involves alterations of calcium influx during depolarization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号