首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Regulation of coenzyme A biosynthesis.   总被引:36,自引:24,他引:12       下载免费PDF全文
Coenzyme A (CoA) and acyl carrier protein are two cofactors in fatty acid metabolism, and both possess a 4'-phosphopantetheine moiety that is metabolically derived from the vitamin pantothenate. We studied the regulation of the metabolic pathway that gives rise to these two cofactors in an Escherichia coli beta-alanine auxotroph, strain SJ16. Identification and quantitation of the intracellular and extracellular beta-alanine-derived metabolites from cells grown on increasing beta-alanine concentrations were performed. The intracellular content of acyl carrier protein was relatively insensitive to beta-alanine input, whereas the CoA content increased as a function of external beta-alanine concentration, reaching a maximum at 8 microM beta-alanine. Further increase in the beta-alanine concentration led to the excretion of pantothenate into the medium. Comparing the amount of pantothenate found outside the cell to the level of intracellular metabolites demonstrates that E. coli is capable of producing 15-fold more pantoic acid than is required to maintain the intracellular CoA content. Therefore, the supply of pantoic acid is not a limiting factor in CoA biosynthesis. Wild-type cells also excreted pantothenate into the medium, showing that the beta-alanine supply is also not rate limiting in CoA biogenesis. Taken together, the results point to pantothenate kinase as the primary enzymatic step that regulates the CoA content of E. coli.  相似文献   

3.
All enzymes required for the biosynthesis of CoA from pantothenic acid are present in the particle-free supernatant fraction from rat liver. We now report that also mitochondria have the capacity for biosynthesis of CoA, with 4′-phosphopantetheine as the initial precursor. Rat liver mitochondria do not contain pantothenate kinase, 4′-phosphopantothenoyl-1-synthetase or 4′-phosphopantothenoyl-1-cysteine decarboxylase. Dephospho-CoA pyrophosphorylase and dephospho-CoA kinase are present in the inner mitochondrial membrane, however, at specific activities as high as in cytosol. Km of mitochondrial dephospho-CoA kinase for dephospho-CoA is about 0.01 mmol/1, which is one order of magnitude lower than reported for the kinase from cytosol.  相似文献   

4.
5.
6.
7.
Pyruvic dehydrogenase activity has been examined in a number of highly purified leaf organelles. In spinach leaf cell, the major activity is in the mitochrondrion with low activity in isolated chloroplasts. The major source of CO2 derived from pyruvic acid metabolism in the isolated chloroplast is via the acetolactic synthase reaction localized in the chloroplast. Evidence is presented that the leaf mitochondrion contains both the pyruvic acid dehydrogenase and an acetyl coenzyme A hydrolase. It is suggested that free acetic acid is generated in the mitochrondrion and then moves to the chloroplast where acetyl coenzyme synthetase converts it from the metabolically inert acid to the very metabolically active acetyl coenzyme A.  相似文献   

8.
9.
10.
11.
12.
13.
P J Day  W V Shaw  M R Gibbs  A G Leslie 《Biochemistry》1992,31(17):4198-4205
The possible involvement of arginyl and lysyl side chains of chloramphenicol acetyltransferase (CAT) in binding coenzyme A (CoA) was studied by means of chemical modification, site-directed mutagenesis, variation in ionic strength, use of competitive inhibitors or substrate analogues, and X-ray crystallography. Unlike a number of enzymes, including citrate synthase, CAT does not employ specific ion pairs with the phosphoanionic centers of CoA to bind the acetyl donor, and arginyl residues play no role in recognition of the coenzyme. Although phenylglyoxal inactivates CAT reversibly, it does so by the formation of an unstable adduct with a thiol group, that of Cys-31 in the chloramphenicol binding site. The inhibitory effect of increasing ionic strength on kcat/Km(acetyl-CoA) can be explained by long-range electrostatic interactions between CoA and the epsilon-amino groups of Lys-54 and Lys-177, both of which are solvent-accessible. The epsilon-amino group of Lys-54 contributes 1.3 kcal.mol-1 to the binding of acetyl-CoA via interactions with both the 3'- and 5'-phosphoanions of CoA. Lys-177 contributes only 0.4 kcal.mol-1 to the productive binding of acetyl-CoA, mediated by long-range (approximately 14 A) interactions with the 5'-alpha- and -beta-phosphoanions of CoA. The combined energetic contribution of Lys-54 and Lys-177 to acetyl-CoA binding (1.7 kcal.mol-1) is less than that previously demonstrated (2.4 kcal.mol-1) for a simple hydrophobic interaction between Tyr-178 and the adenine ring of CoA (Day & Shaw, 1992).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
15.
16.
17.
Acetaldehyde coenzyme A dehydrogenase of Escherichia coli.   总被引:15,自引:12,他引:3       下载免费PDF全文
Mutants of Escherichia coli (adh) in which alcohol dehydrogenase is derepressed under aerobic conditions were also found to overproduce acetaldehyde coenzyme a dehydrogenase. However, acetaldehyde coenzyme A dehydrogenase was induced by ethanol or acetaldehyde and subject to strong catabolite repression, whereas alcohol dehydrogenase was little affected by these conditions. Mutants no longer able to use ethanol as carbon source were isolated from an adh strain. Some of these mutants were revertants at the adh locus and no longer produced either alcohol dehydrogenase or acetaldehyde coenzyme A dehydrogenase. Others, designated acd, were found to lack only acetaldehyde coenzyme A dehydrogenase. The acd mutation was located at min 62 of the E. coli genetic map, the gene order being thyA-lysA-acd-serA-fda. Isolation of Tn10 insertions cotransducible with acd greatly simplified the mapping procedure.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号