首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The detailed mechanical properties of various layers of the coronary artery are important for understanding the function of the vessel. The present article is focused on the determination of the incremental modulus in different layers and directions in the neighborhood of the in vivo state. The incremental modulus can be defined for any material subjected to a large deformation if small perturbations in strain lead to small perturbations of stresses in a linear fashion. This analysis was applied to the porcine coronary artery, which was treated as a two-layered structure consisting of an inner intima-media layer and an outer adventitia layer. We adopted a theory based on small-perturbation experiments at homeostatic conditions for determination of incremental moduli in circumferential, axial, and cross directions in the two layers. The experiments were based on inflation and axial stretch. We demonstrate that under homeostatic conditions the incremental moduli are layer- and direction dependent. The incremental modulus is highest in the circumferential direction. Furthermore, in the circumferential direction, the media is stiffer than the whole wall, which is stiffer than the adventitia. In the axial direction, the adventitia is stiffer than the intact wall, which is stiffer than the media. Hence, the coronary artery must be treated as a composite, nonisotropic body. The data acquire physiological relevance in relation to coronary artery health and disease.  相似文献   

2.
Effects of cyclic stress on the mechanical properties of collagen fascicles were studied by in vitro tissue culture experiments. Collagen fascicles (approximately 300 microns in diameter) obtained from the rabbit patellar tendon were applied cyclic load at 4 Hz for one hour per day during culture period for one or two weeks, and then their mechanical properties were determined using a micro-tensile tester. There was a statistically significant correlation between tensile strength and applied peak stress in the range of 0 to 5 MPa, and the relation was expressed by a quadratic function. The maximum strength (19.4 MPa) was obtained at the applied peak stress of 1.8 MPa. The tensile strength of fascicles were within a range of control values, if they were cultured under peak stresses between 1.1 and 2.6 MPa. Similar results were also observed in the tangent modulus, which was maintained at control level under applied peak stresses between 0.9 and 2.8 MPa. The stress of 0.9 to 1.1 MPa is equivalent to approximately 40% of the in vivo peak stress which is developed in the intact rabbit patellar tendon by running, whereas that of 2.6 to 2.8 MPa corresponds to approximately 120% of the in vivo peak stress. Therefore, the fascicles cultured under applied peak stresses of lower than 40% and higher than 120% of the in vivo peak stress do not keep the original strength and modulus. These results indicate that the mechanical properties of cultured collagen fascicles strongly depend upon the magnitude of the stress applied during culture, which are similar to our previous results observed in stress-shielded and overstressed patellar tendons in vivo.  相似文献   

3.
Experiments are described in which the tensile strength, the initial (Youngs') modulus, and other mechanical properties of the bacterial cell wall were obtained as functions of relative humidity (RH) in the range of 20 to 95%. These properties were deduced from tensile tests on bacterial thread, a fiber consisting of many highly aligned cells of Bacillus subtilis, from which residual culture medium had been removed by immersion in water. Reasons are given to support the idea that the mechanical properties of bacterial thread relate directly to those of the cylinder wall and that they are not influenced by septa, cytoplasm, or the thread assembly. The data show that the cell wall, like many other heteropolymers, is visco-elastic. When dry, it behaves like a glassy polymer with a tensile strength of about 300 MPa and a modulus of about 13 GPa. When wet, its behavior is more like a rubbery polymer with a tensile strength of about 13 MPa and a modulus of about 30 MPa. Thus, the cell wall is stronger than previously reported. Walls of this strength would be able to bear a turgor pressure of 2.6 MPa (about 26 atm). The dynamic behavior suggests a wide range of relaxation times. The way in which mechanical behavior depends strongly on humidity is discussed in terms of possible hydrogen bond density and the ordering of water molecules. Cell walls in threads containing residual culture medium TB are, except at low RH, 10 times more flexible and about 4 times less strong. All of their mechanical properties appear to vary with change in RH in a manner similar to those of walls from which the culture medium has been washed, but with a downshift of about 18% RH.  相似文献   

4.
Currently, little is known about the mechanical properties of filamentous fungal hyphae. To study this topic, atomic force microscopy (AFM) was used to measure cell wall mechanical properties of the model fungus Aspergillus nidulans. Wild type and a mutant strain (deltacsmA), lacking one of the chitin synthase genes, were grown in shake flasks. Hyphae were immobilized on polylysine-coated coverslips and AFM force--displacement curves were collected. When grown in complete medium, wild-type hyphae had a cell wall spring constant of 0.29 +/- 0.02 N/m. When wild-type and mutant hyphae were grown in the same medium with added KCl (0.6 M), hyphae were significantly less rigid with spring constants of 0.17 +/- 0.01 and 0.18 +/- 0.02 N/m, respectively. Electron microscopy was used to measure the cell wall thickness and hyphal radius. By use of finite element analysis (FEMLAB v 3.0, Burlington, MA) to simulate AFM indentation, the elastic modulus of wild-type hyphae grown in complete medium was determined to be 110 +/- 10 MPa. This decreased to 64 +/- 4 MPa for hyphae grown in 0.6 M KCl, implying growth medium osmotic conditions have significant effects on cell wall elasticity. Mutant hyphae grown in KCl-supplemented medium were found to have an elastic modulus of 67 +/- 6 MPa. These values are comparable with other microbial systems (e.g., yeast and bacteria). It was also found that under these growth conditions axial variation in elastic modulus along fungal hyphae was small. To determine the relationship between composition and mechanical properties, cell wall composition was measured by anion-exchange liquid chromatography and pulsed electrochemical detection. Results show similar composition between wild-type and mutant strains. Together, these data imply differences in mechanical properties may be dependent on varying molecular structure of hyphal cell walls as opposed to wall composition.  相似文献   

5.
Toole GA  Smith AC  Waldron KW 《Planta》2002,214(3):468-475
Single large internode cells of the charophyte (giant alga) Chara corallina were dissected to give sheets of cell wall, which were then notched and their mechanical properties in tension determined. The cells were subjected to a thermal treatment in excess water (cf. cooking), which had little effect on strength but increased the stiffness, contrasting with the behaviour of higher-plant tissues. Extraction in CDTA (cyclohexane-trans-1,2-diamine-N,N,N',N'-tetraacetate) or 4 M KOH reduced the strength from 17 MPa to 10 MPa, although sequential extraction in CDTA and 4 M KOH reduced the strength further to 4 MPa. The stiffness decreased from 500 MPa to 300 MPa on extraction in CDTA or 4 M KOH, while falling to 70 MPa after extraction in CDTA followed by 4 M KOH. Conventional sequential extraction in CDTA, Na2CO3 at 1 degrees C and 20 degrees C, and KOH at 0.5 M, 1 M, 2 M and 4 M caused a gradual decrease in stiffness and strength after the CDTA treatment to the same lower values. This result is in keeping with mechanical properties for plant tissues, but in contrast to the removal of pectic polysaccharides from model cell wall systems, which does not reduce the stiffness.  相似文献   

6.
At autopsy, 13 nonstenotic human left anterior descending coronary arteries [71.5 +/- 7.3 (mean +/- SD) yr old] were harvested, and related anamnesis was documented. Preconditioned prepared strips (n = 78) of segments from the midregion of the left anterior descending coronary artery from the individual layers in axial and circumferential directions were subjected to cyclic quasi-static uniaxial tension tests, and ultimate tensile stresses and stretches were documented. The ratio of outer diameter to total wall thickness was 0.189 +/- 0.014; ratios of adventitia, media, and intima thickness to total wall thickness were 0.4 +/- 0.03, 0.36 +/- 0.03, and 0.27 +/- 0.02, respectively; axial in situ stretch of 1.044 +/- 0.06 decreased with age. Stress-stretch responses for the individual tissues showed pronounced mechanical heterogeneity. The intima is the stiffest layer over the whole deformation domain, whereas the media in the longitudinal direction is the softest. All specimens exhibited small hysteresis and anisotropic and strong nonlinear behavior in both loading directions. The media and intima showed similar ultimate tensile stresses, which are on average three times smaller than ultimate tensile stresses in the adventitia (1,430 +/- 604 kPa circumferential and 1,300 +/- 692 kPa longitudinal). The ultimate tensile stretches are similar for all tissue layers. A recently proposed constitutive model was extended and used to represent the deformation behavior for each tissue type over the entire loading range. The study showed the need to model nonstenotic human coronary arteries with nonatherosclerotic intimal thickening as a composite structure composed of three solid mechanically relevant layers with different mechanical properties. The intima showed significant thickness, load-bearing capacity, and mechanical strength compared with the media and adventitia.  相似文献   

7.
The function of the esophagus is mechanical. To understand the function, it is necessary to know how the stress and strain in the esophagus can be computed, and how to determine the stress-strain relationship of the wall materials. The present article is devoted to the issue of determining the incremental elastic moduli in the layers of the esophagus under homeostatic conditions. The esophagus is treated as a two-layered structure consisting of an inner collagen-rich submucosa layer and an outer muscle layer. We adopt a theory based on small perturbation experiments at homeostatic conditions for determination of incremental moduli in circumferential, axial, and cross directions in the two layers. The experiments are inflation, axial stretching, circumferential bending, and axial bending. The analysis takes advantage of knowing the esophageal zero-stress state (an open sector with an opening angle of 59.4 +/- 13.2 deg). The neutral axis was located 27% +/- 1.9%away from the mucosal surface. It is demonstrated that under homeostatic conditions, the incremental moduli are layer and direction dependent. The incremental modulus is the highest in the axial direction. Furthermore, the axial moduli for the two layers are similar, whereas in the circumferential direction, the incremental modulus is a factor of 6 higher in the mucosa-submucosa layer compared to the muscle layer. Hence, the esophagus has to be treated as a composite, anisotropic body. With this additional information, we can then look forward to a vision of truly understanding the mechanical events of the esophagus.  相似文献   

8.
黄喉拟水龟消化道的组织学观察   总被引:1,自引:0,他引:1  
观察黄喉拟水龟消化道的组织结构.采用常规石蜡切片和HE染色方法对黄喉拟水龟的消化道进行观察.除了口咽腔以外,消化道的管壁是由粘膜层、粘膜下层、肌肉层和外膜组成;各部分的主要区别在于粘膜层,食道和大肠的是复层柱状上皮,胃和小肠的是单层柱状上皮.黄喉拟水龟的舌桔红色,不能伸缩;食管中无食管腺,扩张性强;胃呈囊状,有大量胃腺,腔面皱襞较多;小肠较长,是消化的主要场所,表面有大量的绒毛,在绒毛中可见肠腺;大肠无绒毛,也存在皱襞.  相似文献   

9.
Cylindrical bone specimens from the proximal epiphysis of ten normal human proximal tibiae were randomly assigned to a destructive axial compression test-series (N = 94) or to a protocol of standardized mechanical conditioning followed by non-destructive repeated testing to 0.6% strain and a final destructive test (N = 121). Specimen X-ray quantitative computed tomography (QCT) obtained at different scanning energies (100, 120 and 140 kVp) yielded closely related results (r = 1.00). Accordingly, predictions of physically measured densities or mechanical properties were not improved by using more than one scanning energy. QCT and physically measured densities were intimately related (QCT at 140 kVp to apparent density using linear regression: r = 0.94, and to apparent ash density: r = 0.95) and did not differ significantly in their ability to predict the mechanical properties, thus favouring the more easily implemented QCT for routine work. Evaluation of the relation of apparent density to Young's modulus and ultimate strength suggested that a power law regression model is preferable to a linear model, although linear model prediction of mechanical properties does not have significantly worse accuracy within the narrow density range investigated. The effect of conditioning on the behaviour of bone specimens subjected to destructive compression tests was to increase the stiffness and strength by approximately 50 and 20% respectively.  相似文献   

10.
Roots of plants growing in dry soil often experience large mechanical impedance because the decreased soil water content is associated with increased in soil strength. The combined effect of mechanical impedance and water stress hinders the establishment of seedlings in many soils, but little is known about the interaction between these two stresses. A method has been designed that, for the first time, measured the maximum axial force exerted by a root growing under controlled water stress. Using this technique the axial force exerted by a pea radicle was measured using a shear beam, while the seedling was suspended in an aerate solution of polyethylene glycol 20 000 at osmotic potentials between 0 and -0.45 MPa. The maximum growth force was then divided by the cross-sectional area of the root to give the maximum axial growth pressure. The value of maximum axial growth pressure decreased linearly from 0.66 and 0.35 MPa as the osmotic potentials of the solution of PEG decreased from 0 to -0.45 MPa. In dry soil, therefore, the maximum strength of soil that a root can penetrate is decreased because of the decrease in maximum growth pressure. The elongation rates of unimpeded roots were similar whether the roots were subject to either a matric potential in soil or to an osmotic potential in a solution of PEG.Key words: Pisum sativum L, pea, mechanical impedance, axial growth pressure, water stress, PEG 20 000.   相似文献   

11.
The oesophagus is subjected to large axial strains in vivo and the zero-stress state is not a closed cylinder but an open circular cylindrical sector. The closed cylinder with no external loads applied is called the no-load state and residual strain is the difference in strain between the no-load state and zero-stress state. To understand oesophageal physiology and pathophysiology, it is necessary to know the distribution of axial strain, the zero-stress state, the stress-strain relations of oesophageal tissue, and the changes of these states and relationships due to biological remodeling of the tissue under stress. This study is addressed to such biomechanical properties in normal rabbits. The oesophagi were marked on the surface in vivo, photographed, excised (in vitro state), photographed again, and sectioned into rings (no-load state) in an organ bath containing calcium-free Kreb's solution with dextran and EGTA added. The rings were cut radially to obtain the zero-stress state for the non-separated wall and further dissected to separate the muscle and submucosa layers. Equilibrium was awaited for 30min in each state and the specimens were photographed in no-load and the zero-stress states. The oesophageal length, circumferences, layer thicknesses and areas, and openings angle were measured from the digitised images. The oesophagus shortened axially by 35% after excision. The in vivo axial strain showed a significant variation with the highest values in the mid-oesophagus (p<0.001). Luminal area, circumferences, and wall and layer thicknesses and areas varied in axial direction (in all tests p<0.05). The residual strain was compressive at the mucosal surface and tensile at the serosal surface. The dissection studies demonstrated shear forces between the two layers in the non-separated wall in the no-load and zero-stress states. In conclusion, our data show significant axial variation in passive morphometric and biomechanical properties of the oesophagus. The oesophagus is a layered composite structure with nonlinear and anisotropic mechanical behaviour.  相似文献   

12.
A method for the wet extrusion of human plasma-derived fibronectin-fibrinogen cables is described. Solutions of fibronectin and fibrinogen with and without sodium alginate and carboxymethylcellulose (CMC) are tested. The rheological properties of the protein solutions changed from Newtonian to shear thinning non-Newtonian in the presence of small quantities of these additives, the apparent viscosity increased, and the extrusion properties of the protein solutions improved. Cables were prepared using a capillary with a diameter of 1 mm and overall length of 18 mm. Cable diameter was reduced to about 0.5 mm by drawing using a series of rollers. Cables prepared with sodium alginate were found to have suitable properties, and those made with CMC were sticky and difficult to handle. Solutions containing no sodium alginate required a minimum total protein concentration of about 70 mg/mL for extrusion. Extruded cables were prepared with solutions containing 140 mg/mL total protein with 12.9 mg/mL alginate (high protein), and 46 mg/mL total protein with 47.6 mg/mL of sodium alginate (high alginate). The mechanical strength of the extruded cables was within the range suitable for application in tissue engineering. Extrusion of the protein solutions into cables was achieved in a coagulation bath. Cables with a mechanical strength of approximately 30 N/mm(2), suitable for wound repair and nerve regeneration applications, were prepared with a coagulation bath containing 0.25 M HCl, 2% CaCl(2) at a pH of <0.9. These cables also had a large average elongation at break of 52%, and showed an increase in cable length after breakage (permanent set) of 20%, demonstrating the potential for drawing the cables down to a fine diameter.  相似文献   

13.
A method for measuring mechanical properties of Saccharopolyspora erythraea is reported with data from a batch fermentation. Briefly, hyphae were glued to the end of a tungsten filament mounted horizontally on a sensitive force transducer. Free ends of hyphae were trapped against a flat surface by a second probe. The force transducer and tungsten filament were then moved at a fixed rate, the hypha were strained, and the force resisting motion recorded. From these data the maximum force resisting motion is taken as the force at which breakage occurs. Hyphae from the mid-logarithmic phase of a simple batch fermentation on defined medium were found to have a breaking force of 890 +/- 160 nN (95% confidence), while stationary phase hyphae were weaker at 580 +/- 150 nN. Video recordings of the experiments allowed an approximation of breaking strain, which did not differ significantly between samples at 0.18 +/- 0.03. Electron microscopy was used to measure cell wall thickness, cell diameter, and hence cell wall cross-sectional area. The ultimate tensile strength was estimated to be 24 +/- 3 MPa with no difference between the two samples, the lower breaking force of the stationary phase hyphae being attributed to a thinner cell wall. Assuming a linear relationship between stress and strain, the elastic modulus was estimated to be 140 +/- 30 MPa. These values are comparable with other structural biological materials such as yeast cell walls and collagen.  相似文献   

14.
Bacterial threads of Bacillus subtilis have been immersed in, and redrawn from, water of various pH values, in solutions of (NH4)2SO4 and NaCl of various concentrations, and in lysozyme solutions. The changes in the tensile strength, elastic modulus, and other mechanical properties of the bacterial cell wall due to these treatments were obtained. The data show that change in pH has little effect but that as the salt concentration is increased, the cell walls become more ductile. A high salt concentration (1 M NaCl) can reduce the modulus by a factor of 26 to 13.5 MPa at 81% relative humidity and the strength by a factor of only 2.5. Despite attacking the septal-wall region of the cellular filaments, lysozyme has no effect on the mechanical properties. There is no significant change in the stress relaxation behavior due to any of the treatments. The dependence of mechanical properties on the salt concentration is discussed in terms of the polyelectrolyte nature of cell walls. The evidence presented in this and the accompanying paper (J. J. Thwaites and U.C. Surana, J. Bacteriol., 173:197-203, 1991) supports the idea that the peptidoglycan in bacterial cell wall is an entanglement network with a large degree of molecular flexibility, with some order but no regular structure.  相似文献   

15.
The human skin is an exceedingly complex and multi-layered material. This paper aims to introduce the application of the finite element analysis (FEA) to the in vivo characterization of the non-linear mechanical behaviour of three human skin layers. Indentation tests combined with magnetic resonance imaging (MRI) technique have been performed on the left dorsal forearm of a young man in order to reveal the mechanical behaviour of all skin layers. Using MRI images processing and a pre and post processor allows to make numerically individualized 2D model which consists of three skin layers and the muscles. FEA has been applied to simulate indentation tests. Neo-Hookean slightly compressible material model of two material constants (C(10), K) has been used to model the mechanical behaviour of the three skin layers and the muscles. The identification of material model parameters was done by applying Levenberg-Marquardt algorithm (LMA). Our methodology of identification provides a range of values for each constant. Range of values of different material properties of epidermis, dermis, hypodermis are respectively, C10(E)=0.12+/-0.06 MPa, C10(D)=1.11+/-0.09 MPa, C10(H)=0.42+/-0.05 KPa, K(E)=5.45+/-1.7 MPa, K(D)=29.6+/-1,28 MPa, K(H)=36.0+/-0.9 KPa.  相似文献   

16.
The aim of this study was to determine the comparative three-dimensional mechanical properties of healthy and atherosclerotic muscular human arteries. Using a previously developed experimental system, in vitro inflation tests were performed on twelve segments of arteries, in static conditions. Two different initial states were used to carry the mechanical study through (large deformation, thick-walled). Main significant differences between healthy and atherosclerotic tested segments are observed for axial traction force whatever the initial state and radial and circumferencial strains referenced to longitudinally pre-stretched state. We showed that strain energy allows to differentiate between both types of arteries only when absolute values of transversal components were considered. Differential values of energy were not discriminating. Our results also show the potential interest of studying arteries in vivo at low transmural pressure.  相似文献   

17.
Finite element models were used to predict the structural consequences of transcortical holes through long bones loaded in torsion. Several parameters were investigated including hole size, anelastic behavior of the bone, cortical wall thickness, cortical wall symmetry, curvature along the bone's long axis and the axial length of the defect. Finite element model predictions of percent intact bone strength were compared to experimental data for sheep femora with transcortical drill holes loaded to failure in torsion. Hole size was expressed as hole diameter divided by the outer bone diameter. Linear finite element model predictions were in conservative agreement with the experimental data for large hole sizes. A transcortical hole with a diameter 50% of the outer bone diameter reduced the torsional strength by 60%. However, the linear models predict a 40% drop in strength for small holes whereas in vitro data suggest that small holes have no significant effect on strength. Models which represent non-linear anelastic behavior in bone over-predicted torsional strengths. Asymmetric cortical wall thickness and long bone bowing have minor effects, while the length of an elongated defect strongly influences the torsional strength. Strength reductions are greatest for bones with thin cortical walls.  相似文献   

18.
The mechanical and melt flow properties of two thermoplastic potato starch materials with different amylose contents were evaluated. The materials were prepared by mixing starch, glycerol, and water, mainly in the weight proportions of 10:3:4.5. Compression molding was used to produce sheets/films with a thickness in the range of 0.3-1 mm. After conditioning at 53% relative humidity (RH) and 23 C, the glycerol-plasticized sheets with a higher amylose content (HAP) were stronger and stiffer than the normal thermoplastic starch (NPS) with an amylose content typical for common potato starch. The tensile modulus at 53% RH was about 160 MPa for the high-amylose material and about 120 MPa for the plasticized NPS. The strain at break was about 50% for both materials. The stress at break was substantially higher for the HAP materials than for the NPS materials, 9.8 and 4.7 MPa, respectively. Capillary viscometry at 140 C showed that the high-amylose material had a higher melt viscosity and was more shear-thinning than the NPS. Dynamic mechanical measurements indicated a broad transition temperature range for both types of starch material. The main transition peaks for glycerol-plasticized starch were located at about room temperature with the transition for the HAP material being at a somewhat higher temperature than that of the NPS material with a lower amylose content. It was also noted that the processing conditions used during the compression molding markedly affected the mechanical properties of the starch material.  相似文献   

19.
Stiffness changes in response to mechanical and chemical stimulation were studied in muscle-free dermal samples from the body wall of the starfish Linckia laevigata. The ultrastructural study showed that the dermis was packed with collagen fibrils between which only a small number of cells were observed. Muscles were found only in the walls of coelomic extensions leading to papulae. Stress-strain tests were performed on isolated dermis containing no muscles. The tangent modulus was 27.5 MPa at 0.04% strain rate in the stress-strain tests. It was increased to 40.7 MPa by mechanical stimulation, which also increased the tensile strength and breaking-strain energy density. Dynamic mechanical tests showed that the increase in stiffness in response to mechanical stimulation was transient. Acetylcholine (10(-6)-10(-3) mol l(-1)) and artificial seawater with an elevated potassium concentration (KASW) stiffened the dermis. Mechanical stimulation caused a 12% mass loss. KASW also caused mass loss, which was inhibited by anesthesia. These results clearly showed that the stiffness changes in the starfish dermis were based on a non-muscular mechanism that was similar to that of other echinoderm connective tissues with mechanical mutability.  相似文献   

20.
Various mechanical properties of single-walled carbon nanotubes (SWCNT) and double-walled carbon nanotubes (DWCNT) are evaluated using molecular dynamics (MD) simulations. A tensioning process was first performed on a SWCNT whose interaction is based on the Brenner’s ‘second generation’ potential under varying length–diameter ratios and strain rates, in order to understand the SWCNT’s behaviour under axial tension. The results showed an increase in the SWCNT’s ultimate tensile strength and a decrease in critical strain given the conditions of increasing strain rate and a decreasing length–diameter ratio. Comparison was done with previous studies on axial tensioning of SWCNT to validate the results obtained from the set-up, based on the general stress–strain relationship and key mechanical properties such as the strain at failure and the Young’s modulus. A DWCNT was then constructed, and Lennard-Jones ‘12-6’ potential was used to describe the energy present between the nanotube layers. Extraction of the inner tube in a DWCNT was performed using two inner wall tubings of different diameters to draw comparison to the energies needed to separate fully the outer and inner tubing. Finally, a bending test was performed on two DWCNTs with different intertube separations. Insights into the entire bending process were obtained through analyses of the variations in the strain energy characteristic of the surface atoms near the bending site, as the DWCNT is gradually bent until failure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号