共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Amino acid substitutions in mutant forms of histidinol dehydrogenase from Neurospora crassa 下载免费PDF全文
Amino acid changes in the enzyme l-histidinol dehydrogenase (l-histidinol–NAD oxidoreductase, EC 1.1.1.23) have been determined between the wild-type Neurospora crassa and two temperature-sensitive mutants. Comparison was made between amino acid analyses of peptides of differing electrophoretic and chromatographic mobilities resulting from tryptic and chymotryptic digestion of protein from wild-type and mutant K26, and wild-type and mutant K445 strains, respectively. The analyses demonstrate the substitution of aspartic acid for alanine in mutant K26, and leucine for histidine in mutant K445. The effects of the resulting changes in polarity and charge are discussed in relation to the catalytic functioning of the proteins. 相似文献
3.
4.
5.
Ornithine transcarbamylase catalyzes the synthesis of citrulline from carbamyl phosphate and ornithine. This enzyme is involved in the biosynthesis of arginine in many organisms and participates in the urea cycle of mammals. The biosynthetic ornithine transcarbamylase has been purified from the filamentous fungus, Neurospora crassa. It was found to be a homotrimer with an apparent subunit molecular weight of 37,000 and a native molecular weight of about 110,000. Its catalytic activity has a pH optimum of 9.5 and Km's of about 5 and 2.5 mM for the substrates, ornithine and carbamyl phosphate, respectively, at pH 9.5. The Km's and pH optimum are much higher than those of previously characterized enzymes from bacteria, other fungi, and mammals. These unusual kinetic properties may be of significance with regard to the regulation of ornithine transcarbamylase in this organism, especially in the avoidance of a futile ornithine cycle. Polyclonal antibodies were raised against the purified enzyme. These antibodies and antibody raised against purified rat liver ornithine transcarbamylase were used to examine the structural similarities of the enzyme from a number of organisms. Cross-reactivity was observed only for mitochondrial ornithine transcarbamylases of related organisms. 相似文献
6.
Xanthine dehydrogenase (EC 1.2.1.37) is the first enzyme in the degradative pathway by which fungi convert purines to ammonia. In vivo, the activity is induced 6-fold by growth in uric acid. Hypoxanthine, xanthine, adenine, or guanine also induce enzyme activity but to a lesser degree. Immunoelectrophoresis using monospecific antibodies prepared against Neurospora crassa xanthine dehydrogenase shows that the induced increase in enzyme activity results from increased numbers of xanthine dehydrogenase molecules, presumably arising from de novo enzyme synthesis. Xanthine dehydrogenase has been purified to homogeneity by conventional methods followed by immunoabsorption to monospecific antibodies coupled to Sepharose 6B. Electrophoresis of purified xanthine dehydrogenase reveals a single protein band which also exhibits enzyme activity. The average specific activity of purified enzyme is 140 nmol of isoxanthopterine produced/min/mg. Xanthine dehydrogenase activity is substrate-inhibited by xanthine (0.14 mM), hypoxanthine (0.3 mM), and pterine (10 micron), is only slightly affected by metal binding agents such as KCN (6 mM), but is strongly inhibited by sulfhydryl reagents such as p-hydroxymercuribenzoate (2 micron). The molecular weight of xanthine dehydrogenase is 357,000 as calculated from a sedimentation coefficient of 11.8 S and a Stokes radius of 6.37 nm. Sodium dodecyl sulfate-gel electrophoresis of the enzyme reveals a single protein band having a molecular weight of 155,000. So the xanthine dehydrogenase protein appears to be a dimer. In contrast to xanthine dehydrogenases from animal sources which typically possess as prosthetic groups 2 FAD molecules, 2 molybdenum atoms, 8 atoms of iron, and 8 acid-labile sulfides, the Neurospora enzyme contains 2 FAD molecules, 1 molybdenum atom, 12 atoms of iron, and 14 eq of labile sulfide/molecule. The absorption spectrum of the enzyme shows maxima between 400 and 500 nm typical of a non-heme iron-containing flavoprotein. 相似文献
7.
8.
W A Scott 《The Journal of biological chemistry》1971,246(20):6353-6359
9.
10.
11.
Melo AM Duarte M Møller IM Prokisch H Dolan PL Pinto L Nelson MA Videira A 《The Journal of biological chemistry》2001,276(6):3947-3951
We have inactivated the nuclear gene coding for a putative NAD(P)H dehydrogenase from the inner membrane of Neurospora crassa mitochondria by repeat-induced point mutations. The respiratory rates of mitochondria from the resulting mutant (nde-1) were measured, using NADH or NADPH as substrates under different assay conditions. The results showed that the mutant lacks an external calcium-dependent NADPH dehydrogenase. The observation of NADH and NADPH oxidation by intact mitochondria from the nde-1 mutant suggests the existence of a second external NAD(P)H dehydrogenase. The topology of the NDE1 protein was further studied by protease accessibility, in vitro import experiments, and in silico analysis of the amino acid sequence. Taken together, it appears that most of the NDE1 protein extends into the intermembrane space in a tightly folded conformation and that it remains anchored to the inner mitochondrial membrane by an N-terminal transmembrane domain. 相似文献
12.
13.
A gene encoding cellobiose dehydrogenase (CDH) from Neurospora crassa strain FGSC 2489 has been cloned and expressed in the heterologous host Pichia pastoris, under the control of the AOX1 methanol inducible promoter. Recombinant CDH without the native signal sequence and fused with a His6-tag (rNC-CDH1) was successfully expressed and secreted. rNC-CDH1 was produced at the level of 652 IU/L after 2 days of cultivation in the induction medium. The His6-tagged rNC-CDH1 was purified through a one-step Ni–NTA affinity column under non-denaturing conditions. The purified rNC-CDH1 has a CDH activity of 7451 IU/L (0.89 mg protein/mL), with a specific CDH activity of 8.37 IU/mg. The purity of the enzyme was examined by SDS–PAGE, and a single band corresponding to a molecular weight of about 120 kDa was observed. Activity staining confirmed the CDH activity of the protein band. The purified rNC-CDH1 has maximum CDH activity at pH 4.5, and a rather broad temperature optimum of 25–70 °C. Kinetic analysis showed cellobiose and cellooligosaccharides are the best substrates for rNC-CDH1. The Km value of the rNC-CDH1 for cellooligosaccharide increases with the elongation of glucosyl units. kcat remains relatively constant when the chain length changes. 相似文献
14.
15.
16.
17.
18.
19.
The purification and molecular properties of the tryptophan-sensitive 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase from Neurospora crassa. 总被引:2,自引:0,他引:2 下载免费PDF全文
Neurospora crassa contains three isoenzymes of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase, which are inhibited by tyrosine, tryptophan and phenylalanine respectively, and it was estimated that the relative proportions of the total activity were 54%, 14% and 32% respectively. The tryptophan-sensitive isoenzyme was purified to homogeneity as judged by polyacrylamide-gel electrophoresis and ultracentrifugation. The tyrosine-sensitive and phenylalanine-sensitive isoenzymes were only partially purified. The three isoenzymes were completely separated from each other, however, and can be distinguished by (NH4)2SO4 fractionation, chromatography on DEAE-cellulose and Ultrogel AcA-34 and polyacrylamide-gel electrophoresis. Polyacrylamide-gel electrophoresis in the presence of sodium dodecyl sulphate indicated that the tryptophan-sensitive isoenzyme contained one type of subunit of molecular weight 52000. The molecular weight of the native enzyme was found to be 200000 by sedimentation-equilibrium centrifugation, indicating that the enzyme is a tetramer, and the results of cross-linking and gel-filtration studies were in agreement with this conclusion. 相似文献