首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Monoclonal antibodies (mAb) to monomorphic and polymorphic determinants on the heavy chain of histocompatibility leukocyte antigen (HLA) class I antigens inhibit mAb OKT3-induced T cell proliferation, whereas the anti-beta 2-microglobulin mAb NAMB-1 does not affect it. The inhibitory effect of anti-HLA class I mAb is specific, is not an Fc-mediated phenomenon, does not require accessory cells, and does not involve early stages of T cell activation. Distinct determinants of HLA class I antigens regulate T cell proliferation by different mechanisms, because the anti-HLA-A2, A28 mAb CR11-351, and the mAb W6/32 to a framework determinant of HLA class I antigens block interleukin 2 (IL-2) secretion and IL-2 receptor expression, whereas the mAb CR10-215 to a monomorphic determinant blocks only IL-2 receptor expression. The mAb CR10-215 and W6/32 induced a 50% of maximal inhibition of T cell proliferation, when added after 27 and 12 hr, respectively, of incubation of peripheral blood mononuclear cells with mAb OKT3. On the other hand, the mAb CR11-351 inhibited T cell proliferation even when added after 38 hr of incubation of peripheral blood mononuclear cells with mAb OKT3 and was the only one to inhibit proliferation of cycling T lymphocytes. It is suggested that HLA class I antigens regulate T cell proliferation by interacting with cell-surface molecules involved in T cell activation. The differential inhibitory activity of the anti-HLA class I monoclonal antibodies tested may reflect the different ability of the corresponding determinants to interact with activation molecules.  相似文献   

2.
The role of HLA Class I antigens in T cell proliferation was investigated by using the anti-HLA Class I monoclonal antibodies (MoAb) CR10-215, CR10-325, and CR11-115. MoAb CR10-215 and CR11-115 recognize the same (or spatially close) monomorphic determinant, which is distinct and spatially distant from that reacting with MoAb CR10-325. Addition of MoAb CR10-215 and CR11-115 to cultures of peripheral blood mononuclear cells stimulated with MoAb OKT3, MoAb Pan T2, PHA, or PPD inhibited cell proliferation. The blocking is specific in that the anti-HLA Class I MoAb CR10-325 and the Pan T MoAb Pan T1 had no effect on the proliferation. The inhibitory activity of MoAb CR10-215 and CR11-115 does not reflect i) toxic effects, ii) induction of suppressor cells and factors, iii) blocking of the binding of mitogens to lymphocytes, iv) inhibition of the production of interleukin 1 (IL 1) and interleukin 2 (IL 2), or v) function of IL 2 receptor. Anti-HLA Class I MoAb were able to inhibit the proliferation of purified, Tac-, T cells. The inhibited cells did not express Tac antigen, as assayed by direct immunofluorescence, with MoAb anti-Tac, but released a normal amount of IL 2 in culture medium. These results indicate that monomorphic determinants of the HLA Class I complex are involved in the regulation of T cell proliferation. The effect appears to occur at the level of IL 2 receptor expression.  相似文献   

3.
The mAb 131 to a determinant preferentially expressed on the gene products of the HLA-A locus, the mAb Q6/64 and 4E to determinants preferentially expressed on the gene products of the HLA-B locus, the anti-HLA-A2,A28 mAb CR11-351, HO-2, HO-3, HO-4, and KS1, and the anti-HLA-B7 cross-reacting group mAb KS4 enhanced proliferation of T cells in most, if not all, the PBMC preparations stimulated with the anti-CD2 mAb 9-1 + 9.6. The mAb CR10-215, W6/32, and 6/31 to distinct monomorphic determinants of HLA class I antigens enhanced CD2-induced T cell proliferation in at most 30% of the PBMC preparations tested. The anti human beta 2-microglobulin (beta 2-mu) mAb NAMB-1 displayed no detectable effect on the proliferation of T cells stimulated with the mAb 9-1 + 9.6. The enhancing effect of anti-HLA class I mAb is specific, is dose dependent, is not abrogated by the addition of exogenous IL-1 and IL-2 to the cultures, and reflects the interaction of anti-HLA class I mAb with T cells. Enhancement of CD2 mediated proliferation of T cells is not a unique property of anti-HLA class I mAb, since the anti-HLA class II mAb Q5/6 and Q5/13 also had a similar effect. Analysis of the kinetics of the enhancing effect of anti-HLA class I mAb suggests that they modulate an early event of T cell activation and may affect the interaction of T cells with mAb 9-1. Phenotyping of T lymphocytes activated by mAb 9-1 + 9.6 in the presence of anti-HLA class I mAb suggests that the enhancing effect of anti-HLA class I mAb may reflect the recruitment of a higher percentage of T cells. The present study has shown for the first time that certain, but not all, the determinants of the HLA class I molecular complex are involved in the proliferation of T cells stimulated with the anti-CD2 mAb 9-1 + 9.6. Furthermore, the inhibitory effect of mAb CR11-351, KS1, Q6/64, and W6/32 on the proliferation of T cells stimulated with mAb OKT3 or with mAb BMA 031 indicates that the same determinants of HLA class I antigens play a differential regulatory role in T cell proliferation induced via the CD2 and CD3 pathway.  相似文献   

4.
mAb to monomorphic determinants of HLA class II Ag have been shown to inhibit monocyte-dependent OKT3-induced T cell proliferation, indicating that MHC class II molecules play a regulatory role also in Ag nonrestricted, CD3-induced T cell proliferation. This effect involves several steps in the process of T cell activation and proliferation, including IL-1 beta, IL-6, and IL-2 secretion and IL-2R alpha expression. In the present study, we analyzed the effect of an anti-HLA class II mAb (Q5/6) on the mRNA expression of genes related to monocyte and T cell activation. mRNA levels for early (early c-myc, c-fos) and late (late c-myc, N-ras, c-myb) genes involved in T cell activation were determined as well as mRNA levels for IL-1 beta, IL-6, IFN-gamma, IL-2, and IL-2R alpha. The kinetics of mRNA induction for ICAM-1 was also investigated. The results show that in T lymphocytes the expression of c-fos and early c-myc mRNA was unaffected by mAb Q5/6, whereas the c-myb and N-ras mRNA levels were strongly diminished as well as those of IL-2, IL-2R alpha, and IFN-gamma mRNA. An early increase of ICAM-1 mRNA was partially inhibited. In monocytes, a marked reduction of IL-1 beta and IL-6 mRNA was found. It is concluded that the HLA class II determinant involved in the inhibition mechanism can be engaged in the control of IL-1 beta and IL-6 mRNA levels and constitute an accessory signal up-regulating IL-2 and IL-2R alpha gene activation, through a pathway not affecting c-myc and c-fos expression.  相似文献   

5.
The effect of monoclonal antibodies (Mab) directed at T cell and accessory cell (AC) surface molecules on OKT3-induced T4 and T8 cell proliferation was examined. Mab directed at nonpolymorphic class I (W6/32, MB40.5) and class II (L243) major histocompatibility complex (MHC)-encoded gene products, an epitope common to LFA-1, CR3, and the p150, 95 molecule (60.3), and a heterodimer present on monocytes (M phi) and activated T cells (4F2) inhibited M phi-supported OKT3-induced proliferation of both T4 and T8 cells. Moreover, an Mab directed at the CD4 molecule (66.1) inhibited OKT3-induced T4 but not T8 cell proliferation, whereas an Mab directed at the CD8 molecule (OKT8) inhibited T8 but not T4 cell responses. With the exception of 66.1, each inhibited OKT3-induced T cell proliferation when added as late as 15 hr after the initiation of culture. Inhibition could not be explained by competition for Fc receptors on the AC. A variety of other Mab including OKT11 and those directed at other HLA-DR and DQ determinants were not inhibitory. The inhibitory Mab were found to diminish T4 cell IL 2 production and IL 2 receptor expression. Consequently, IL 2 reversed some but not all of the Mab-mediated inhibition of T cell proliferation. In contrast to the effects noted with M phi-supported responses, 60.3 and 66.1 but neither L243 nor 4F2 inhibited OKT3-induced T4 cell proliferation supported by Ia- or IFN-gamma-treated Ia+ endothelial cells. None of the Mab tested inhibited T cell proliferation induced by the AC-independent stimuli OKT3 and phorbol myristate acetate (PMA) or calcium ionophore and PMA in the presence or absence of added AC. The data therefore suggest that the Mab inhibit OKT3-induced activation of T4 and T8 cells by preventing necessary interactions between AC and T cell surface proteins. Moreover, the results suggest that different arrays of interaction molecules are involved in OKT3-induced T cell proliferation depending on the nature of the AC and the responding T cell subset.  相似文献   

6.
We have examined the effect of several monoclonal antibodies (MoAb) to monomorphic determinants of class II HLA antigens, and MoAb to monomorphic determinants of class I HLA antigens and to beta-2-microglobulin (beta 2-mu) on lectin- and MoAb OKT3-induced proliferation of human peripheral blood mononuclear cells (PBMNC) and cultured T cells (CTC). Some, but not all, anti-class II HLA MoAb inhibited the proliferative response of PBMNC to MoAb OKT3 and pokeweed mitogen (PWM). The degree of inhibitory effect varied considerably. This effect was not limited to anti-class II HLA MoAb since anti-class I HLA MoAb and anti-beta 2-mu MoAb also inhibited MoAb OKT3- or PWM-induced proliferative responses. In contrast, the response of PBMNC to phytohemagglutinin (PHA) and concanavalin A (Con A) was not blocked by any anti-class II HLA MoAb. However, some anti-class II HLA MoAb also inhibited the proliferative response of CTC plus allogeneic peripheral blood adherent accessory cells (AC) to PHA or Con A as well as to MoAb OKT3 or PWM. This may be attributable to the substantially greater class II HLA antigen expression by CTC than by fresh lymphocytes. Pretreatment of either CTC or AC with anti-class II HLA MoAb inhibited OKT3-induced proliferation. In contrast, pretreatment of CTC, but not AC, with anti-class I HLA MoAb inhibited the proliferative response of CTC to OKT3. Pretreatment of CTC with anti-class I HLA MoAb inhibited PHA-, Con A and PWM-induced proliferation, to a greater degree than the anti-class II HLA MoAb. It appears as if lymphocyte activation by different mitogens exhibits variable requirements for the presence of cells expressing major histocompatibility determinants. Binding of Ab to membrane markers may interfere with lymphocyte-AC cooperation, perhaps by inhibiting binding of mitogens to their receptors or by interfering with lymphocyte and AC function. We also have examined the role of class II HLA antigens on CTC by depleting class II HLA-positive cells. As expected, elimination of class II HLA-positive AC with anti-class II HLA MoAb plus complement caused a decrease in proliferation of CTC in response to all the mitogens tested. In contrast, elimination of class II HLA-positive CTC was shown to clearly increase proliferation of CTC, perhaps because this may deplete class II HLA-positive suppressor cells.  相似文献   

7.
This study aimed at characterizing the mechanism(s) underlying the regulatory role of distinct determinants of HLA Class I antigens in PHA-P-induced T cell proliferation and the involvement of monocytes in this phenomenon. The anti-HLA-A2,A28 monoclonal antibodies (MoAb) CR11-351, the MoAb Q6/64 to a determinant restricted to the gene products of the I antigens HLA-B locus, and the MoAb CR10-215 and W6/32 to distinct monomorphic determinants of HLA Class I antigens were found to inhibit PHA-P-induced peripheral blood mononuclear cell (PBMC) proliferation in a dose-dependent fashion. The inhibition is specific and reflects neither inhibition of PHA-P binding to cells nor a toxic effect of the anti-HLA Class I MoAb. The latter differed in the concentration required to induce inhibition, in the influence of the concentration of PHA-P used as mitogen, in the differential effect on the donors used as a source of PBMC, and/or in the requirement of the Fc portion to induce inhibition. At variance with the information in the literature, the inhibitory effect of anti-HLA Class I MoAb on PHA-P-induced PBMC proliferation neither reflected their interaction with accessory cells nor was mediated by suppressor factors released by monocytes stimulated with PHA-P in the presence of anti-HLA Class I MoAb. Therefore, the regulatory role of HLA Class I antigens in T cell proliferation is not likely to be mediated by monocytes and/or factors released from them, but may reflect an involvement of these molecules in T cell activation pathways.  相似文献   

8.
The anti-HLA-DR + DP monoclonal antibody (MoAb) CR11-462 was unexpectedly found to cross-inhibit the binding to B lymphoid cells of the anti-HLA Class I MoAb CR10-215 and CR11-115. The latter two antibodies recognized the same or spatially close antigenic determinant. The cross-blocking of anti-HLA Class I MoAb CR10-215 and CR11-115 by MoAb CR11-462 reflects neither its contamination by anti-HLA Class I antibodies nor its cross-reactivity with HLA Class I antigens. On the other hand, the cross-blocking appears to reflect redistribution of HLA Class II antigens by the MoAb CR11-462, since the MoAb CR10-215 and CR11-115 are not susceptible to blocking when lymphoid cells are treated with 0.025% glutaraldehyde or are coated with Fab' fragments of the MoAb CR11-462. Furthermore, immunoprecipitates from B lymphoid cells preincubated with the MoAb CR11-462 before solubilization contain HLA Class I antigens. Therefore, these results have shown for the first time an antibody-induced association between discrete regions of HLA Class I and Class II antigens on the membrane of B lymphoid cells.  相似文献   

9.
Monoclonal antibodies (mAb's) to monomorphic and polymorphic determinants of HLA Class I antigens were shown to inhibit proliferation of T cells stimulated with autologous and allogeneic B and T lymphocytes. Inhibition of proliferative responses was lower when T cells were used as stimulators than when B cells were used. The inhibitory activity was similar for mAb's to monomorphic and polymorphic determinants of HLA Class I antigens, suggesting that the density of antigen-antibody complexes on the cell membrane does not play a major role in the phenomenon. The anti-HLA Class I mAb's exerted their inhibitory effect at the level of both the responding and the stimulating cells. Addition of exogenous interleukin 2 to the mixed cultures did not affect the mAb-mediated inhibition.  相似文献   

10.
The T4 molecule has been identified as a marker of human T cell differentiation, but the function of this molecule remains to be defined. We have investigated its possible functional involvement in T cell proliferative responses to class II HLA antigens encoded by the recently described SB locus. The responses of SB-primed cells (specific for each of four different SB antigens) were studied with the use of two proliferation-inducing stimuli, SB antigen or TCGF. The proliferative responses to both stimuli were found to be mediated by T4+, T8- cells. Monoclonal antibodies against some epitopes on the T4 molecule (OKT4A and OKT4B) substantially blocked antigen-stimulated proliferative responses; antibodies against other epitopes of the T4 molecule (OKT4, T4C, T4D) blocked less well. Inhibition of SB-specific proliferation by antibodies to the T4 molecule was maximal only when the antibodies were incubated with the responder cells before the addition of stimulator cells. Proliferative responses of SB-primed cells stimulated with TCGF alone were not inhibited by any of the OKT4-related antibodies, but were completely inhibited by the anti-Tac monoclonal antibody, which reacts with the TCGF receptor. These results lend further support for the hypothesis that the T4 molecule is involved in T cell recognition of and/or activation by class II HLA antigens. We suggest that 1) the T4 molecule binds a nonpolymorphic epitope on class II HLA molecules, and 2) this interaction may facilitate, but not be an obligate requirement for, T cell activation by class II antigens.  相似文献   

11.
In this report we describe a novel pathway of human T cell activation and proliferation involving the CD5 surface Ag. The CD5-specific Cris1 mAb induces by itself monocyte-dependent proliferation of PBMC. Among a panel of CD5-specific mAb (Leu1, OKT1, LO-CD5a, F101-1C5, and F145GF3), only the F145GF3 mAb shared this property with Cris1. The analysis of the biochemical pathway involved in this activation showed the lack of detectable hydrolysis of inositol phosphates or early increments in the intracellular cytosolic calcium concentration, after triggering cells with the mitogenic CD5 mAb. However, stimulation with CD5 induces activation of protein kinase C, as measured by phosphorylation of a specific peptide substrate (peptide GS), which can be inhibited by a pseudosubstrate peptide inhibitor. Stimulation with CD5 mAb induces also tyrosine kinase activity, with a substrate pattern that differs from that induced after triggering lymphocytes through the TCR-CD3 complex. On the other hand the IL-2/IL-2R pathway seems involved in the CD5-mediated proliferation of PBMC because anti-IL-2R-specific mAb inhibits CD5-induced proliferation, and stimulation with mitogenic CD5 mAb induces production of IL-2 and expression of IL-2R alpha and beta chains. Therefore, the triggering of the CD5 Ag can induce IL-2- and monocyte-dependent human T cell proliferation by a biochemical pathway that differs, at least in the first stages, from the one that mediates TCR-CD3 complex-induced T cell activation.  相似文献   

12.
The monoclonal antibodies (MoAb) CR10-214, CR11-115, and Q1/28 to distinct monomorphic determinants of HLA class I antigens, the MoAb CL413 and PTF29.12 recognizing monomorphic determinants of HLA-DR antigens, the anti-HLA-DQw1 MoAb KS11, the anti-HLA-DPw1 MoAb B7/21, and the anti-HLA-DR,DP MoAb CR11-462 were tested for their ability to modulate human B-lymphocyte proliferation and maturation to IgM-forming cells. Purified tonsillar B cells were stimulated with Staphylococcus aureus bacteria of the Cowan first strain (SAC) or anti-human mu-chain xenoantibodies, as well as in growth factor- or T-cell-dependent activation cultures. The B-cell proliferative responses induced by SAC or by mitogenic concentrations of anti-mu-chain xenoantibodies were inhibited by some of the anti-HLA class I and anti-HLA class II monoclonal antibodies tested. The same antibodies were effective inhibitors of the proliferation of B cells stimulated with interferon-gamma (IFN-gamma) or interleukin-2 (IL-2) and with submitogenic concentrations of anti-mu-chain xenoantibodies. The proliferation induced by IL-2 of SAC-preactivated B cells was inhibited by some of the anti-HLA class II monoclonal antibodies, but not by the anti-HLA class I monoclonal antibodies tested. This inhibition appeared to reflect at least in part a direct effect on later events of the B-cell activation cascade, since some anti-HLA class II monoclonal antibodies still exerted considerable inhibitory activity when added together with IL-2 to SAC-preactivated B cells after the third day of culture. Anti HLA-DR, DQ, and DP monoclonal antibodies consistently inhibited the IgM production induced in B cells by T cells alone, T cells plus pokeweed mitogen (PWM), SAC plus IL-2, or IL-2 alone. In contrast, two of the three anti-HLA class I monoclonal antibodies tested inhibited the IgM production in cultures stimulated with SAC plus IL-2 and one the IgM production induced by IL-2 alone, but none of them had inhibitory effects on T-cell dependent IgM production. The results reported herein indicate that HLA class II molecules directly participate in different phases of the B-cell activation cascade. In addition, our data also suggest that HLA class I molecules can be involved in the events leading to B-cell proliferation and differentiation into immunoglobulin-secreting cells.  相似文献   

13.
Ni-specific T lymphocyte clones (TLC) were isolated from two patients with Ni-contact dermatitis. All of the isolated TLC required both histocompatible antigen-presenting cells (APC) and Ni for induction of proliferation. By using a panel of HLA-typed Epstein Barr virus-transformed B cells (EBV-B cells) as APC and monoclonal anti-DR antibody, the clones were shown to recognize Ni in the context of HLA class II determinants. All of the clones that were isolated are OKT3+, OKT4+, OKT8-. In the presence of Ni, they polyclonally activate autologous B cells, and in the presence of Ni and autologous EBV-B cells, they produce IL 2 and very high levels of IFN-gamma. The Ni-specific clones should be helpful in the identification of the Ni-induced antigen which is recognized by T cells.  相似文献   

14.
Six out of eight human melanoma cell lines were found to be able to function as accessory cells in PHA-induced proliferation of autologous and allogeneic T cells. The accessory cell function of the melanoma cell lines appears to be similar to that of monocytes, requires the presence of viable cells, and does not correlate with the cell surface binding sites for PHA and with the level of expression of HMW-MAA and of HLA Class I antigens. HLA Class II antigens do not appear to play a major role in these phenomena, since there is no relationship between level of expression of HLA Class II antigens and accessory cell function of melanoma cells. Furthermore, addition of anti-HLA Class II monoclonal antibodies does not affect proliferation of T cells stimulated with PHA in the presence of melanoma cells with accessory cell function. Although melanoma cells exert accessory cell function, functional and immunological assays did not detect IL-1 in the spent medium of the melanoma cell lines. Furthermore, Northern blotting analysis with IL-1 alpha and IL-1 beta probes did not detect IL-1-specific mRNA in melanoma cell lines. These results suggest that PHA-induced proliferation of T cells in the presence of melanoma cells can bypass the requirement for IL-1 or utilizes factors other than IL-1.  相似文献   

15.
The T3 antigen is expressed on all cytotoxic T lymphocytes (CTL). Monoclonal antibodies (MAb) to the T3 antigen previously have been shown to inhibit CTL-mediated killing of cells expressing the relevant target antigens. The mechanism of T3 MAb inhibition, however, remains undefined. In this report, we describe a novel effect of the T3 MAb: the stimulation of allospecific CTL clones to kill target cells that do not express the relevant HLA antigens. The stimulation of nonspecific killing was seen only with MAb to the T3 antigen; MAb to other function-associated antigens (e.g., LFA-1, LFA-2, LFA-3, T4, T8, HLA-A,B,C, and DR) had no effect. T3 MAb stimulated nonspecific killing by CTL clones expressing both the T4+ and T8+ phenotype and by CTL clones specific for both class I and class II HLA alloantigens. Target cell susceptibility to T3 MAb stimulated killing was variable. CTL clones lysed some target cell lines very efficiently (e.g., K562, Daudi, and M124.1) but lysed other cell lines much less efficiently (e.g., 23.1, Mann, and L cells). In CTL-mediated cytotoxicity assays with target cells expressing the relevant HLA antigens, T3 MAb demonstrated the expected inhibition of cytolysis. Thus, the ability of T3 MAb to stimulate and inhibit CTL-mediated cytolysis suggests that both effects may be the result of a common mechanism of activation.  相似文献   

16.
T cells are critical regulators of osteoclast differentiation and function in bone, but whether osteoclasts can, in turn, regulate T cell homing, and response to stimuli is unclear. To investigate whether osteoclasts are immune competent cells, the expression of HLA Class II and costimulatory receptors was evaluated by RT‐PCR and immunohistochemistry by comparing osteoclast precursors and mature osteoclasts. T‐cell‐attracting chemokines were measured in the supernatants of confluent cultures of osteoclasts and compared with mesenchymal stromal cells and osteoblasts. T cell proliferation, cytokine production, and apoptosis were assayed in co‐cultures with osteoclasts in the presence or absence of mitogenic stimuli. To define the mechanism of action of osteoclasts, cytokine‐blocking experiments were performed. Our findings revealed that mature osteoclasts constitutively expressed Class II HLA in the membrane and upregulate the expression of CD40 and CD80 during differentiation. Osteoclasts secreted high levels of most T cell chemoattractants and effectively retained T cells in adhesion assays. Moreover, the osteoclasts potently blunted T cell response to PHA and CD3/CD28 stimulation, thus inhibiting proliferation, suppressing T cell TNFα and IFNγ production and decreasing T cell apoptosis by a mostly cell‐contact independent mechanism. In conclusion, osteoclasts are immune‐competent cells which can retain T cells and suppress in vitro T cell response to proliferative stimuli. J. Cell. Physiol. 226: 982–990, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
In the process of evaluating murine hybridomas for an antibody to the beta-subunit of the IL-2R (p70) we identified an antibody that immunoprecipitated a 55- to 57-kDa complex from cross-linked lysates. We demonstrate that this complex is composed of IL-2 (15.5 kDa) cross-linked to the H chain of HLA class I (40 to 42 kDa), suggesting a molecular interaction between HLA class I molecules and IL-2R. Although the exact role of this association remains to be determined, the specific cross-linking of IL-2 to HLA class I Ag is intriguing in view of published claims for a role of HLA class I in OKT3-induced lymphocyte proliferation and in NK cell lytic activity.  相似文献   

18.
The enterotoxins produced by Staphylococcus aureus (SE) are the most potent mitogens known. Triggering of proliferation or cytotoxicity by SE requires the presence of MHC class II molecules on accessory or target cells. In this study we have investigated the role of HLA class II molecules in the activation of human T cells by SE and the nature of the target structure on the responding T lymphocyte for SE. This dependence on class II molecules is not due to an immunological "recognition" of SE since there is no restriction by polymorphic determinants of HLA molecules and since even xenogeneic class II molecules can reconstitute the human T cell response to SE. Furthermore, HLA class II-positive but not -negative cells absorb the mitogenic activity from SE solutions and significant binding of 125I-labeled SE can be demonstrated to class II-positive but not to class II-negative cells. Enterotoxin molecules react directly with T cells since they cause an increase in cytosolic Ca2+ concentration similar to anti-CD3 mAb. This increase is abrogated by prior modulation of the TCR/CD3 complex. Antibodies to CD2, CD3 and the TCR that block antigen-specific activation also block T cell activation by SE. Moreover, preincubation of purified resting accessory cell-free T cells with SE leads to modulation of the TCR/CD3 complex. Taken together these data indicate that SE interact selectively with HLA class II molecules on accessory or target cells and with a TCR-associated structure on the T cell.  相似文献   

19.
In contrast to general findings that mouse and human cytotoxic T lymphocytes (CTL) are restricted in cytotoxic activity by major histocompatibility complex (MHC) class I antigens, we previously found that some herpes simplex virus (HSV) type I-infected cells that shared no HLA class I antigens with the HSV-1-stimulated lymphocytes were lysed. In this study, we addressed the question of the role of HLA antigens in human T cell-mediated lysis of HSV-1-infected cells by generating clones of HSV-1-directed CTL from two HSV-1-seropositive individuals. CTL clones that lysed autologous HSV-1-infected lymphoblastoid cell lines (LCL), but not natural killer-sensitive K562 cells or uninfected or influenza virus-infected LCL, were tested for cytotoxicity against a panel of allogeneic HSV-1-infected LCL. Clone KL-35 from individual KL lysed only HSV-1-infected LCL sharing the HLA class II MB1 antigen with KL. With all four CTL clones isolated from individual PM, only HSV-1-infected LCL sharing DR1 with PM were lysed. Monoclonal antibody s3/4 (directed against MB1 ), but not TS1/16 or B33 .1 (directed against a DR framework determinant), blocked lysis of autologous HSV-1-infected cells by KL-35. In contrast, B33 .1, but not s3/4, blocked lysis of autologous HSV-1-infected cells by the PM CTL clones but not by KL-35. Together, these results indicate that our five human CTL clones which are directed against HSV-1-infected cells, and which are all OKT3+, OKT4+, OKT8-, are restricted in lytic activity by HLA class II MB and DR antigens. These results suggest that the HLA D region-encoded class II antigens may be important in the recognition and destruction of virus-infected cells by human CTL.  相似文献   

20.
The expression of HLA Class II antigens by resting and phytohemagglutinin (PHA)-activated T cells and their functional properties in autologous mixed-lymphocyte reactions (MLR) were investigated in patients with chronic active hepatitis, with alcoholic cirrhosis, and with primary biliary cirrhosis. In all groups of patients the percentage of resting T cells expressing HLA Class II antigens was significantly higher than that in controls. The percentage of T cells which acquired HLA Class II antigens following PHA stimulation was reduced in patients with chronic active hepatitis, serum hepatitis B surface antigen (HBsAg) positive, and in those with alcoholic cirrhosis, HBsAg negative, although the level of [3H] thymidine incorporation was within normal limits. The degree of proliferation in autologous MLR with PHA-T cells was significantly reduced in patients with chronic active hepatitis, HBsAb positive, and in those with alcoholic cirrhosis, HBsAg positive. A reduced proliferation was also detected in autologous MLR with non-T cells, in patients with chronic active hepatitis, HBsAg positive. The abnormalities of autologous MLR are selective, since the proliferative and stimulatory activities of cells from patients with chronic liver diseases in allogeneic MLR were within normal ranges. The immunoregulatory role of HLA Class II antigens and of autologous MLR suggests that the abnormalities we have identified may play a role in the immunological dysfunctions underlying chronic liver diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号