首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
TFIID is a multiprotein complex composed of the TATA binding protein (TBP) and TBP-associated factors (TAF(II)s). The binding of TFIID to the promoter is the first step of RNA polymerase II preinitiation complex assembly on protein-coding genes. Yeast (y) and human (h) TFIID complexes contain 10 to 13 TAF(II)s. Biochemical studies suggested that the Drosophila (d) TFIID complexes contain only eight TAF(II)s, leaving a number of yeast and human TAF(II)s (e.g., hTAF(II)55, hTAF(II)30, and hTAF(II)18) without known Drosophila homologues. We demonstrate that Drosophila has not one but two hTAF(II)30 homologues, dTAF(II)16 and dTAF(II)24, which are encoded by two adjacent genes. These two genes are localized in a head-to-head orientation, and their 5' extremities overlap. We show that these novel dTAF(II)s are expressed and that they are both associated with TBP and other bona fide dTAF(II)s in dTFIID complexes. dTAF(II)24, but not dTAF(II)16, was also found to be associated with the histone acetyltransferase (HAT) dGCN5. Thus, dTAF(II)16 and dTAF(II)24 are functional homologues of hTAF(II)30, and this is the first demonstration that a TAF(II)-GCN5-HAT complex exists in Drosophila. The two dTAF(II)s are differentially expressed during embryogenesis and can be detected in both nuclei and cytoplasm of the cells. These results together indicate that dTAF(II)16 and dTAF(II)24 may have similar but not identical functions.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
The Drosophila 230-kDa TFIID subunit (dTAF230) interacts with the DNA binding domain of TATA box-binding protein (TBP) which exists in the same complex. Here, we characterize the inhibitory domain in the yeast TAF145 (yTAF145), which is homologous to dTAF230. Mutation studies show that the N-terminal inhibitory region (residues 10 to 71) can be divided into two subdomains, I (residues 10 to 37) and II (residues 46 to 71). Mutations in either subdomain significantly impair function. Acidic residues in subdomain II are important for the interaction with TBP. In addition, yTAF145 interaction is impaired by mutating the basic residues on the convex surface of TBP, which are crucial for interaction with TFIIA. Consistently, TFIIA and yTAF145 bind competitively to TBP. A deletion of the inhibitory domain of yTAF145 leads to a temperature-sensitive growth phenotype. Importantly, this phenotype is suppressed by overexpression of the TFIIA subunits, indicating that the yTAF145 inhibitory domain is involved in TFIIA function.  相似文献   

18.
19.
Potential targets for HSF1 within the preinitiation complex   总被引:1,自引:1,他引:0       下载免费PDF全文
  相似文献   

20.
We report structure-function analyses of TAF130, the single-copy essential yeast gene encoding the 130,000-Mr yeast TATA-binding protein (TBP)-associated factor TAF(II)130 (yTAF(II)130). A systematic family of TAF130 mutants was generated, and these mutant TAF130 alleles were introduced into yeast in both single and multiple copies to test for their ability to complement a taf130delta null allele and support cell growth. All mutant proteins were stably expressed in vivo. The complementation tests indicated that a large portion (amino acids 208 to 303 as well as amino acids 367 to 1037) of yTAF(II)130 is required to support cell growth. Direct protein blotting and coimmunoprecipitation analyses showed that two N-terminal deletions which remove portions of yTAF(II)130 amino acids 2 to 115 dramatically decrease the ability of these mutant yTAF(II)130 proteins to bind TBP. Cells bearing either of these two TAF130 mutant alleles also exhibit a slow-growth phenotype. Consistent with these observations, overexpression of TBP can correct this growth deficiency as well as increase the amount of TBP interacting with yTAF(II)130 in vivo. Our results provide the first combined genetic and biochemical evidence that yTAF(II)130 binds to yeast TBP in vivo through yTAF(II)130 N-terminal sequences and that this binding is physiologically significant. By using fluorescence anisotropy spectroscopic binding measurements, the affinity of the interaction of TBP for the N-terminal TBP-binding domain of yTAF(II)130 was measured, and the Kd was found to be about 1 nM. Moreover, we found that the N-terminal domain of yTAF(II)130 actively dissociated TBP from TATA box-containing DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号