首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
【目的】阐明霍乱弧菌ToxR蛋白功能调控的分子机制。【方法】利用巯基捕获(thiol-trapping)的方法分析DsbA蛋白对ToxR周质空间结构域半胱氨酸残基的氧化作用;采用定点突变的方法构建ToxR半胱氨酸突变株(ToxR_(C236/293S));利用荧光素酶基因作为报告基因分析ToxR野生型(ToxR_(wt))和半胱氨酸突变体(ToxR_(C236/293S))诱导下游基因表达的活性;通过细菌双杂交系统分析ToxR_(wt)和ToxR_(C236/293S)蛋白之间、ToxR与ToxS之间以及ToxS之间的相互作用。【结果】ToxR周质空间结构域半胱氨酸残基确实可以被DsbA蛋白氧化,且当ToxR与ToxS共表达时,ToxR诱导ctxAB转录表达的活性显著增强,且在dsbA基因缺失突变株中ToxR诱导ctxAB转录表达的活性更高;成功构建株霍乱弧菌ToxR半胱氨酸突变株(ToxR_(C236/293S)),在没有ToxS存在的条件下,ToxR_(C236/293S)诱导毒力基因表达的活性与ToxRwt相当;细菌双杂交系统分析发现当ToxR与ToxS共转录表达时,ToxS极大增强ToxR蛋白之间的互作;在dsbA基因缺失突变株中,ToxS之间的相互作用显著增强。【结论】ToxR蛋白本身的氧还状态对其诱导毒力基因表达的活性没有影响;ToxS通过增强ToxR形成二聚体的能力从而增强其诱导毒力基因的表达,而DsbA对ToxS蛋白之间的相互作用具有抑制作用,DsbA通过影响ToxS的蛋白互作从而影响ToxR蛋白的功能。本文为进一步阐明霍乱弧菌毒力基因表达调控的分子机制提供重要的理论依据。  相似文献   

3.
4.
5.
The ToxR protein of Vibrio cholerae is an integral membrane protein that co-ordinately regulates virulence determinant expression. ToxR directiy activates the cholera toxin operon, but maximal activation is achieved in the presence of ToxS, an integral membrane protein thought to interact with ToxR periplasmic sequences. Studies that substitute alkaline phosphatase sequences for the periplasmic domain of ToxR have led to a model for ToxR activation based on dimerization and ToxS interaction. We constructed λ-ToxR chimeric proteins using the DNA-binding domain of the phage λ repressor, which cannot effectively dimerize by itself, to assess the ability of ToxR to form dimers in Escherichia coli The results suggest that ToxR sequences can propagate dimerization, and that ToxS can influence the ability to dimerize.  相似文献   

6.
7.
8.
9.
10.
Intimin and Invasin are prototypical inverse (Type Ve) autotransporters and important virulence factors of enteropathogenic Escherichia coli and Yersinia spp. respectively. In addition to a C‐terminal extracellular domain and a β‐barrel transmembrane domain, both proteins also contain a short N‐terminal periplasmic domain that, in Intimin, includes a lysin motif (LysM), which is thought to mediate binding to peptidoglycan. We show that the periplasmic domain of Intimin does bind to peptidoglycan both in vitro and in vivo, but only under acidic conditions. We were able to determine a dissociation constant of 0.8 μM for this interaction, whereas the Invasin periplasmic domain, which lacks a LysM, bound only weakly in vitro and failed to bind peptidoglycan in vivo. We present the solution structure of the Intimin LysM, which has an additional α‐helix conserved within inverse autotransporter LysMs but lacking in others. In contrast to previous reports, we demonstrate that the periplasmic domain of Intimin mediates dimerisation. We further show that dimerisation and peptidoglycan binding are general features of LysM‐containing inverse autotransporters. Peptidoglycan binding by the periplasmic domain in the infection process may aid in resisting mechanical and chemical stress during transit through the gastrointestinal tract.  相似文献   

11.
 The Lpp′OmpA(46–159) hybrid protein can serve as an efficient targeting vehicle for localizing a variety of procaryotic and eucaryotic soluble proteins onto the E. coli surface, thus providing a system for several possible biotechnology applications. Here we show that fusions between Lpp′OmpA(46–159) and bacterial alkaline phosphatase (PhoA), a normally periplasmic dimeric enzyme, are also targeted to the outer membrane. However, protease accessibility experiments and immunoelectron microscopy revealed that, unlike other periplasmic proteins, the PhoA domain of these fusions is not exposed on the cell surface in cells having an intact outer membrane. Conditions that affect the formation of disulfide bonds and the folding of the PhoA domain in the periplasm not only did not facilitate targeting to the cell surface but led to lethality when the fusion was expressed from a high-copy-number plasmid. Furthermore, E. coli expressing the Lpp′OmpA(46–159)-PhoA fusion exhibited strain- and temperature-dependent alterations in outer-membrane permeability. Our results are consistent with previous studies with other vehicles indicating that PhoA is not displayed on the surface when fused to cell-surface expression vectors. Presumably, the enzyme rapidly assumes a tightly folded dimeric conformation that cannot be transported across the outer membrane. The large size and quaternary structure of PhoA may define a limitation of the Lpp′OmpA(46– 159) fusion system for the display of periplasmic proteins on the cell surface. Alkaline phosphatase is a unique protein among a group of five periplasmic proteins (β-lactamase, alkaline phosphatase, Cex cellulase, Cex cellulose-binding domain, and a single-chain Fv antibody fragment), which have been tested as passengers for the Lpp′OmpA(46–159) expression system to date, since it was the only protein not displayed on the surface. Received: 23 March 1995/Received revision: 29 July 1995/Accepted: 22 August 1995  相似文献   

12.
13.
Vibrio cholerae O1 is a natural inhabitant of aquatic environments and causes the diarrheal disease, cholera. Two of its primary virulence regulators, TcpP and ToxR, are localized in the inner membrane. TcpP is encoded on the Vibrio Pathogenicity Island (VPI), a horizontally acquired mobile genetic element, and functions primarily in virulence gene regulation. TcpP has been shown to undergo regulated intramembrane proteolysis (RIP) in response to environmental conditions that are unfavorable for virulence gene expression. ToxR is encoded in the ancestral genome and is present in non-pathogenic strains of V. cholerae, indicating it has roles outside of the human host. In this study, we show that ToxR undergoes RIP in V. cholerae in response to nutrient limitation at alkaline pH, a condition that occurs during the stationary phase of growth. This process involves the site-2 protease RseP (YaeL), and is dependent upon the RpoE-mediated periplasmic stress response, as deletion mutants for the genes encoding these two proteins cannot proteolyze ToxR under nutrient limitation at alkaline pH. We determined that the loss of ToxR, genetically or by proteolysis, is associated with entry of V. cholerae into a dormant state in which the bacterium is normally found in the aquatic environment called viable but nonculturable (VBNC). Strains that can proteolyze ToxR, or do not encode it, lose culturability, experience a change in morphology associated with cells in VBNC, yet remain viable under nutrient limitation at alkaline pH. On the other hand, mutant strains that cannot proteolyze ToxR remain culturable and maintain the morphology of cells in an active state of growth. Overall, our findings provide a link between the proteolysis of a virulence regulator and the entry of a pathogen into an environmentally persistent state.  相似文献   

14.
15.
The ToxR protein of Vibrio cholerae regulates the expression of several virulence factors that play important roles in the pathogenesis of cholera. Previous experiments with ToxR-alkaline phosphatase (ToxR-PhoA) fusion proteins suggested a model for gene regulation in which the inactive form of ToxR was a monomer and the active form of ToxR was a dimer (V. L. Miller, R. K. Taylor, and J. J. Mekalanos, Cell 48:271-279, 1987). In order to examine whether ToxR exists in a dimeric form in vivo, biochemical cross-linking analyses were carried out. Different dimeric cross-linked species were detected depending on the expression level of ToxR: when overexpressed, ToxR+ToxR homodimers and ToxR+ToxS heterodimers were detected, and when ToxR was expressed at normal levels, exclusively ToxR+ToxS heterodimers were detected. The amount of overexpression was quantitated by using ToxR-PhoA fusion proteins and was found to correspond to 2.7-fold the normal level of ToxR. The formation of both homodimeric ToxR species and heterodimeric ToxR+ToxS species is consistent with previously reported genetic data that suggested that both types of ToxR oligomeric interactions occur. However, variation in the amount of either the homodimeric or heterodimeric form detectable by this cross-linking analysis was not observed to correlate with laboratory culture conditions known to modulate ToxR activity. Thus, genetic and biochemical data indicate that ToxR is able to interact with both itself and ToxS but that these interactions may not explain mechanistically the observed changes in ToxR activity that occur in response to environmental conditions.  相似文献   

16.
17.
Two of the primary virulence regulators of Vibrio cholerae, ToxR and TcpP, function together with cognate effector proteins. ToxR undergoes regulated intramembrane proteolysis (RIP) during late stationary phase in response to nutrient limitation at alkaline pH; however, the specific function of its cognate ToxS remains unresolved. In this work, we found that ToxR rapidly becomes undetectable in a ΔtoxS mutant when cultures are exposed to either starvation conditions or after alkaline pH shock individually. A ΔtoxS mutant enters into a dormant state associated with the proteolysis of ToxR at a faster rate than wild‐type, closely resembling a ΔtoxR mutant. Using a mutant with a periplasmic substitution in ToxS, we found that the proteases DegS and DegP function additively with VesC and a novel protease, TapA, to degrade ToxR in the mutant. Overall, the results shown here reveal a role for ToxS in the stabilization of ToxR by protecting the virulence regulator from premature proteolysis.  相似文献   

18.
A gene coding for one of the IgG-binding domains of Staphylococcal protein A, designated domain B, was chemically synthesized. This gene was tandemly repeated to give dimeric and tetrameric domain B genes by the use of two restriction enzymes which gave blunt ends. The genes were highly expressed in Escherichia coli to afford a large amount of dimeric and tetrameric domain B proteins. The single domain B protein was efficiently produced as a fusion protein with a salmon growth hormone fragment. The fusion protein was converted to monomeric domain B by cyanogen bromide cleavage. The CD spectra of the monomeric, dimeric and tetrameric domain B proteins were essentially the same as that of native form protein A, showing that their secondary structures were very similar. The dimeric and tetrameric domain B proteins formed precipitates with IgG as protein A. This system permits the efficient production of mutated single and multiple IgG-binding domains which can be used to study structural changes and protein A-immunoglobulin interactions.  相似文献   

19.
20.
V L Miller  R K Taylor  J J Mekalanos 《Cell》1987,48(2):271-279
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号