首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The radiation of notothenioid fishes (Perciformes) in Antarctic waters was likely the result of an absence of competition in the isolated Antarctic waters and key traits such as the production of antifreeze glycoprotein and buoyancy modifications. Although notothenioids lack a swim bladder, the buoyancy of Antarctic species, ranging from neutrally buoyant to relatively heavy, corresponds to diverse life styles. The buoyancy of South American notothenioids has not been studied. Static buoyancy was measured in adult notothenioids (n = 263, from six species of the sub-order Notothenioidei, families Bovichtidae, Eleginopidae, Nototheniidae, and Harpagiferidae) from the Beagle Channel. Measurements were expressed as percentage buoyancy (%B). Buoyancy ranged from 3.88 to 6.96% (median, 4.0–6.7%), and therefore, all species could be considered benthic consistent with previous studies that found that neutral buoyancy in notothenioids is rare. Harpagifer bispinis, Patagonotothen cornucola, and Cottoperca gobio were significantly less buoyant than Paranotothenia magellanica. The buoyancy values of most species were concordant with known habitat preferences. These data, especially the data of C. gobio (sister lineage of all other nototehnioids) and E. maclovinus (sister lineage of the Antarctic clade of notothenioids), could be useful for understanding the diversification of this feature during the notothenioid radiation.  相似文献   

3.
State III respiration rates were measured in mitochondria isolated from hearts of Antarctic notothenioid fishes that differ in the expression of hemoglobin (Hb) and myoglobin (Mb). Respiration rates were measured at temperatures between 2 and 40°C in Gobionotothen gibberifrons (+Hb/+Mb), Chaenocephalus aceratus (–Hb/–Mb) and Chionodraco rastrospinosus (–Hb/+Mb). Blood osmolarity was measured in all three species and physiological buffers prepared for isolating mitochondria and measuring respiration rates. Respiration rates were higher in mitochondria from G. gibberifrons compared to those from C. aceratus at 2°C, but were similar among all species at temperatures between 10 and 26°C. Respiration rates were significantly lower in icefishes at 35 and 40°C compared to G. gibberifrons. The respiratory control ratio of isolated mitochondria was lower in C. aceratus compared to G. gibberifrons at all temperatures below 35°C. At 35 and 40°C, mitochondria were uncoupled in all species. The Arrhenius break temperature of state III respiration was similar among all three species (30.5 ± 0.9°C) and higher than values previously reported for Antarctic notothenioids, likely due to the higher osmolarity of buffers used in this study. These results suggest that differences in mitochondrial structure, correlated with the expression of oxygen-binding proteins, minimally impact mitochondrial function.  相似文献   

4.
Fishes of the perciform suborder Notothenioidei afford an excellent opportunity for studying the evolution and functional importance of diverse types of biochemical adaptation to temperature. Antarctic notothenioids have evolved numerous biochemical adaptations to stably cold waters, including antifreeze glycoproteins, which inhibit growth of ice crystals, and enzymatic proteins with cold-adapted specific activities (k(cat) values) and substrate binding abilities (K(m) values), which support metabolism at low temperatures. Antarctic notothenioids also exhibit the loss of certain biochemical traits that are ubiquitous in other fishes, including the heat-shock response (HSR) and, in members of the family Channichthyidae, hemoglobins and myoglobins. Tolerance of warm temperatures is also truncated in stenothermal Antarctic notothenioids. In contrast to Antarctic notothenioids, notothenioid species found in South American and New Zealand waters have biochemistries more reflective of cold-temperate environments. Some of the contemporary non-Antarctic notothenioids likely derive from ancestral species that evolved in the Antarctic and later "escaped" to lower latitude waters when the Antarctic Polar Front temporarily shifted northward during the late Miocene. Studies of cold-temperate notothenioids may enable the timing of critical events in the evolution of Antarctic notothenioids to be determined, notably the chronology of acquisition and amplification of antifreeze glycoprotein genes and the loss of the HSR. Genomic studies may reveal how the gene regulatory networks involved in acclimation to temperature differ between stenotherms like the Antarctic notothenioids and more eurythermal species like cold-temperate notothenioids. Comparative studies of Antarctic and cold-temperate notothenioids thus have high promise for revealing the mechanisms by which temperature-adaptive biochemical traits are acquired - or through which traits that cease to be of advantage under conditions of stable, near-freezing temperatures are lost - during evolution.  相似文献   

5.
The Antarctic notothenioids are among the most stenothermal of fishes, well adapted to their stable, cold and icy environment. The current study set out to investigate the thermal sensitivity/insensitivity of heart rate and ventral aortic blood pressure of the Antarctic nototheniid fish Pagothenia borchgrevinki over a range of temperatures. The heart rate increased rapidly from –1 to 6°C (Q10=2.0–3.3), but was relatively insensitive to temperature above the ~6°C lethal limit of the species (Q10=1.2). The increase in heart rate from –1 to 6°C was the result of a 45% increase in excitatory adrenergic tone, masking a 37% increase in inhibitory cholinergic tone. Ventral aortic pressure was regulated well above the lethal limit, up to at least 10°C. With the return of the fish to environmental temperatures, the heart rate rapidly decreased back to control levels, while ventral aortic pressure increased and remained elevated for over an hour following a 6°C exposure.  相似文献   

6.
Maximal ADP-stimulated mitochondrial respiration depends on convergent electron flow through Complexes I + II to the Q-junction of the electron transport system (ETS). In most studies of respiratory control in mitochondrial preparations, however, respiration is limited artificially by supplying substrates for electron input through either Complex I or II. High-resolution respirometry with minimal amounts of tissue biopsy (1–3 mg wet weight of permeabilized muscle fibres per assay) provides a routine approach for multiple substrate-uncoupler-inhibitor titrations. Under physiological conditions, maximal respiratory capacity is obtained with glutamate + malate + succinate, reconstituting the operation of the tricarboxylic acid cycle and preventing depletion of key metabolites from the mitochondrial matrix. In human skeletal muscle, conventional assays with pyruvate + malate or glutamate + malate yield submaximal oxygen fluxes at 0.50–0.75 of capacity of oxidative phosphorylation (OXPHOS). Best estimates of muscular OXPHOS capacity at 37 °C (pmol O2 s−1 mg−1 wet weight) with isolated mitochondria or permeabilized fibres, suggest a range of 100–150 and up to 180 in healthy humans with normal body mass index and top endurance athletes, but reduction to 60–120 in overweight healthy adults with predominantly sedentary life style. The apparent ETS excess capacity (uncoupled respiration) over ADP-stimulated OXPHOS capacity is high in skeletal muscle of active and sedentary humans, but absent in mouse skeletal muscle. Such differences of mitochondrial quality in skeletal muscle are unexpected and cannot be explained at present. A comparative database of mitochondrial physiology may provide the key for understanding the functional implications of mitochondrial diversity from mouse to man, and evaluation of altered mitochondrial respiratory control patterns in health and disease.  相似文献   

7.
A girl, who died at 14 years of age from a rapidly progressive mitochondrial myopathy, was found to be heteroplasmic for a mutation in the mitochondrial tRNALeu(UUR) gene at position 3251. A large proportion of muscle fibres contained accumulations of abnormal mitochondria but no cytochrome c oxidase deficient fibres were present. Polarographic and enzymatic measurements on isolated muscle mitochondria revealed a profound isolated complex I deficiency. A high percentage of mutant mtDNA was found in muscle (94%), fibroblasts (93%), brain (90%), liver (80%), and heart (79%). The family was not available for investigation. For genotype to phenotype correlation studies, we investigated the proportion of mutated mtDNA in single muscle fibres of normal appearance and muscle fibres with accumulations of mitochondria. The proportion of mutant mtDNA was 28% (range < 0.3%–86%) in normal-appearing fibres and 61% (range 15%–88%) in abnormal fibres. The difference in the proportion of mutant mtDNA was highly significant (P < 0.001) between the two groups of fibres.  相似文献   

8.
Antarctic icefishes of the family Channichthyidae are the only vertebrate animals that as adults do not express the circulating oxygen-binding protein hemoglobin (Hb). Six of the 16 family members also lack the intracellular oxygen-binding protein myoglobin (Mb) in the ventricle of their hearts and all lack Mb in oxidative skeletal muscle. The loss of Hb has led to substantial remodeling in the cardiovascular system of icefishes to facilitate adequate oxygenation of tissues. One of the more curious adaptations to the loss of Hb and Mb is an increase in mitochondrial density in cardiac myocytes and oxidative skeletal muscle fibers. The proliferation of mitochondria in the aerobic musculature of icefishes does not arise through a canonical pathway of mitochondrial biogenesis. Rather, the biosynthesis of mitochondrial phospholipids is up-regulated independently of the synthesis of proteins and mitochondrial DNA, and newly-synthesized phospholipids are targeted primarily to the outer-mitochondrial membrane. Consequently, icefish mitochondria have a higher lipid-to-protein ratio compared to those from red-blooded species. Elevated levels of nitric oxide in the blood plasma of icefishes, compared to red-blooded notothenioids, may mediate alterations in mitochondrial density and architecture. Modifications in mitochondrial structure minimally impact state III respiration rates but may significantly enhance intracellular diffusion of oxygen. The rate of oxygen diffusion is greater within the hydrocarbon core of membrane lipids compared to the aqueous cytosol and impeded only by proteins within the lipid bilayer. Thus, the proliferation of icefish's mitochondrial membranes provides an optimal conduit for the intracellular diffusion of oxygen and compensates for the loss of Hb and Mb. Currently little is known about how mitochondrial phospholipid synthesis is regulated and integrated into mitochondrial biogenesis. The unique architecture of the oxidative muscle cells of icefishes highlights the need for further studies in this area.  相似文献   

9.
Previous research on Antarctic notothenioids has demonstrated that cells of cold-adapted Antarctic notothenioids lack a common cellular defense mechanism called the heat shock response (HSR), the induction of a family of heat shock proteins (Hsps) in response to elevated temperatures. The goal of this study was to address how widespread the loss of the HSR is within the Notothenioidei suborder and, specifically, to ask whether cold temperate non-Antarctic notothenioids possess the HSR. In general, Antarctic fish have provided an important opportunity for physiologists to examine responses to selection in the environment and to ask whether traits of the notothenioids represent cold adaptation, or whether the traits are related to history and are characteristics of the notothenioid lineage. Using in vivo metabolic labeling, results indicate that one of the two New Zealand notothenioids possess an HSR. The thornfish, Bovichtus variegatus Richardson, 1846, expressed heat shock proteins (Hsp) in response to heat stress, whereas the black cod, Notothenia angustata Hutton, 1875, did not display robust stress-inducible Hsp synthesis at the protein-level. However, further analysis using Northern blotting clearly demonstrated that mRNA for a common Hsp gene, hsp70, was present in cells of both New Zealand species following exposure to elevated temperatures. Overall, combined evidence on the HSR in notothenioid fishes from temperate New Zealand waters indicate that the loss of the HSR in Antarctic notothenioid fishes occurred after the separation of Bovichtidae from the other Antarctic notothenioid families, and that the HSR was most likely lost during evolution at cold and constant environmental temperatures.  相似文献   

10.
In aquatic ectotherms, muscle metabolic capacities are strongly influenced by exogenous factors, principally temperature and food availability. Seasonal changes in temperature lead many organisms to modify their metabolic machinery so as to maintain capacity even in "slower" cold habitats. Modifications of mitochondrial capacities are central in this response. The increases in protein-specific oxidative capacities of mitochondria during cold acclimation of temperate fishes do not occur during the evolutionary adaptation to cold in Antarctic species. Instead, Antarctic fishes tend to increase the proportion of fibre volume devoted to mitochondria, perhaps to facilitate intracellular distribution of oxygen and metabolites. Variation in energetic status can drastically modify muscle metabolic status, with glycolytic muscle changing more than oxidative muscle. This in turn impacts swimming performance. A decrease in the condition of cod leads endurance at speeds above Ucrit to drop by 70%. Sprint swimming is less affected, perhaps as it does not exhaust glycolytic muscle. We used interindividual variation in muscle metabolic capacities to identify correlates of swimming performance in stickleback and cod. Activities of cytochrome c oxidase in glycolytic muscle are a correlate of sprint swimming in stickleback (Gasterosteus aculeatus) and cod (Gadus morhua), whereas lactate dehydrogenase activities in glycolytic muscle are a correlate of cod endurance swimming. In scallops, gonadal maturation leads to virtually complete mobilisation of glycogen from muscle. This does not reduce the capacity of the scallops, Chlamys islandica and Euvola ziczac, to mount escape responses, but significantly slows their recuperation from exhaustive exercise. Muscle metabolic capacities fall in parallel with glycogen mobilisation. In the compromise between muscles' dual roles as a motor and a macromolecular reserve, a significant loss in locomotory ability occurs during gametogenesis and spawning. Reproductive fitness takes the upper hand over maintenance of performance.  相似文献   

11.
Mitochondrial inclusion bodies are often described in skeletal muscle of patients suffering diseases termed mitochondrial myopathies. A major component of these structures was discovered as being creatine kinase. Similar creatine kinase enriched inclusion bodies in the mitochondria of creatine depleted adult rat cardiomyocytes have been demonstrated. Structurally similar inclusion bodies are observed in mitochondria of ischemic and creatine depleted rat skeletal muscle. This paper describes the various methods for inducing mitochondrial inclusion bodies in rodent skeletal muscle, and compares their effects on muscle metabolism to the metabolic defects of mitochondrial myopathy muscle. We fed rats with a creatine analogue guanidino propionic acid and checked their soled for mitochondrial inclusion bodies, with the electron microscope. The activity of creatine kinase was analysed by measuring creatine stimulated oxidative phosphorylation in soleus skinned fibres using an oxygen electrode . The guanidino propionic acid-rat soleus mitochondria displayed no creatine stimulation, whereas control soleus did, even though the GPA soled had a five fold increase in creatine kinase protein per mitochondrial protein. The significance of these results in light of their relevance to human mitochondrial myopathies and the importance of altered muscle metabolism in the formation of these crystalline structures are discussed. (Mol Cell Biochem 174: 283–289, 1997)  相似文献   

12.
Summary Single fast fibres and small bundles of slow fibres were isolated from the trunk muscles of an Antarctic (Notothenia neglecta) and various warm water marine fishes (Blue Crevally,Carangus melampygus; Grey Mullet,Mugil cephalus; Dolphin Fish,Coryphaena hippurus; Skipjack-tuna,Katsuwonus pelamis and Kawakawa,Euthynuus affinis). Fibres were chemically skinned with the nonionic detergent Brij 58.For warm water species, maximum Ca2+-activated tension (P 0) almost doubled between 5–20°C with little further increase up to 30°C. However, when measured at their normal body temperatures,P 0 values for fast fibres were similar for all species examined, 15.7–22.5 N · cm–2. Ca2+-regulation of contraction was disrupted at temperatures above 15°C in the Antarctic species, but was maintained at up to 30°C for warm water fish.Unloaded (maximum) contraction speeds (V max) of fibres were determined by the slacktest method. In general,V max was approximately two times higher in white than red muscles for all species studied, except Skipjack tuna. For Skipjack tuna,V max of superficial red and white fibres was similar (15.7 muscle lengths · s–1 (L 0 · s–1)) but were 6.5 times faster than theV max of internal red muscle fibres (2.4±0.2L 0 · s–1) (25°C). V max forN. neglecta fast fibres at 0–5°C (2–3L 0 · s–1) were similar to that of warm water species measured at 10–20°C. However, when measured at their normal muscle temperatures, theV max for the fast muscle fibres of the warm water species were 2–3 times higher than that forN. neglecta.In general,Q 10(15–30°C) values forV max were in the range 1.8–2.0 for all warm water species studied except Skipjack tuna.V max for the internal red muscle fibres of Skipjack tuna were much more temperature dependent (Q 10(15–30°C)=3.1) (P<0.01) than for superficial red or white muscle fibres. The proportion of slower red muscle fibres in tuna (28% for 1 kg Skipjack) is 3–10 times higher than for most teleosts and is related to the tuna's need to sustain high cruising speeds. We suggest that the 8–10°C temperature gradient that can exist in Skipjack tuna between internal red and white muscles allows both fibre types to contract at the same speed. Therefore, in tuna, both red and white muscle may contribute to power generation during high speed swimming.  相似文献   

13.
In cells, such as neurones and immune cells, mitochondria can form dynamic and extensive networks that change over the minute timescale. In contrast, mitochondria in adult mammalian skeletal muscle fibres show little motility over several hours. Here, we use a novel three channelled microflow device, the multifunctional pipette, to test whether mitochondria in mouse skeletal muscle connect to each other. The central channel in the pipette delivers compounds to a restricted region of the sarcolemma, typically 30 µm in diameter. Two channels on either side of the central channel use suction to create a hydrodynamically confined flow zone and remove compounds completely from the bulk solution to internal waste compartments. Compounds were delivered locally to the end or side of single adult mouse skeletal muscle fibres to test whether changes in mitochondrial membrane potential were transmitted to more distant located mitochondria. Mitochondrial membrane potential was monitored with tetramethylrhodamine ethyl ester (TMRE). Cytosolic free [Ca2+] was monitored with fluo-3. A pulse of carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP, 100 µM) applied to a small area of the muscle fibre (30 µm in diameter) produced a rapid decrease in the mitochondrial TMRE signal (indicative of depolarization) to 38% of its initial value. After washout of FCCP, the TMRE signal partially recovered. At distances greater than 50 µm away from the site of FCCP application, the mitochondrial TMRE signal was unchanged. Similar results were observed when two sites along the fibre were pulsed sequentially with FCCP. After a pulse of FCCP, cytosolic [Ca2+] was unchanged and fibres contracted in response to electrical stimulation. In conclusion, our results indicate that extensive networks of interconnected mitochondria do not exist in skeletal muscle. Furthermore, the limited and reversible effects of targeted FCCP application with the multifunctional pipette highlight its advantages over bulk application of compounds to isolated cells.  相似文献   

14.
Summary In European woodmice the amount and intensity of daily activity was compared to oxygen uptake and to the potential for oxidative metabolism of heart and skeletal muscle. One group of animals was inactivated by exposition to light during night time; another group of animals was trained by enforced running on a treadmill. The oxidative potential of the muscle tissue was assessed by morphometry of capillaries and mitochondria. A novel sampling technique was used which allowed us to obtain morphological data related to single muscles, to muscle groups, and finally to whole body muscle mass.Reducing the spontaneous activity by ten fold had no effect on oxygen uptake nor on capillaries or mitochondria in locomotory muscles. Mitochondrial volume was reduced, however, in heart and diaphragm. Enforced running increased the weight specific maximal oxygen uptake significantly. It also increased the mitochondrial volume in heart and diaphragm as well as in M. tibialis anterior. Capillary densities were neither affected by training nor by inactivation. A significant correlation was found between the capillary density and the volume density of mitochondria in all muscles analysed morphometrically. For the whole skeletal muscle mass of a European woodmouse the inner mitochondrial membranes were estimated to cover 30 m2. The oxygen consumption per unit time and per unit volume of muscle mitochondrion was found to be identical in all groups of animals (4.9 ml O2 min–1 cm–3).Symbols S v (im,m) surface area of inner mitochondrial membranes per unit mitochondrial volume - V v (mt, f) volume density of mitochondria (mitochondrial volume per fiber volume) - V (mt) total mitochondrial volume - V (f) muscle volume - N A (c, f) capillary density - (f) mean fiber cross-sectional area  相似文献   

15.
Summary The metabolic and structural differentiation of locomotory muscles of Notothenia rossii has been investigated. In this species sustained locomotion is achieved by sculling with enlarged pectoral fins (labriform locomotion), whilst the segmental myotomal muscle is reserved for burst activity. Red, white and subepidermal fibres can be distinguished in the trunk by histochemical and ultrastructural criteria. The main pectoral muscle (m. adductor profundus) consists entirely of red fibres. These three main fibres types show differences in histochemical staining profiles, capillarization, myofibril shape and packing, and lipid and mitochondrial content. The fractional volume of mitochondria amounts to 38% for pectoral, 30% for red myotomal and 1.9% for white myotomal fibres. Enzyme activities of red pectoral muscle are consistent with a higher potential for aerobic glucose and fatty acid oxidation than for the red myotomal fibres. Mg2+ Ca2+ -myofibrillar ATPase activities are similar for red pectoral and myotomal muscles and approximately half of those white fibres. Specialisations of N. rossii muscles associated with labriform swimming and locomotion at Antarctic temperatures are discussed.  相似文献   

16.
Metabolic responses to low temperature in fish muscle   总被引:2,自引:0,他引:2  
For most fish, body temperature is very close to that of the habitat. The diversity of thermal habitats exploited by fish as well as their capacity to adapt to thermal change makes them excellent organisms in which to examine the evolutionary and phenotypic responses to temperature. An extensive literature links cold temperatures with enhanced oxidative capacities in fish tissues, particularly skeletal muscle. Closer examination of inter-species comparisons (i.e. the evolutionary perspective) indicates that the proportion of muscle fibres occupied by mitochondria increases at low temperatures, most clearly in moderately active demersal species. Isolated muscle mitochondria show no compensation of protein-specific rates of substrate oxidation during evolutionary adaptation to cold temperatures. During phenotypic cold acclimation, mitochondrial volume density increases in oxidative muscle of some species (striped bass Morone saxatilis, crucian carp Carassius carassius), but remains stable in others (rainbow trout Oncorhynchus mykiss). A role for the mitochondrial reticulum in distributing oxygen through the complex architecture of skeletal muscle fibres may explain mitochondrial proliferation. In rainbow trout, compensatory increases in the protein-specific rates of mitochondrial substrate oxidation maintain constant capacities except at winter extremes. Changes in mitochondrial properties (membrane phospholipids, enzymatic complement and cristae densities) can enhance the oxidative capacity of muscle in the absence of changes in mitochondrial volume density. Changes in the unsaturation of membrane phospholipids are a direct response to temperature and occur in isolated cells. This fundamental response maintains the dynamic phase behaviour of the membrane and adjusts the rates of membrane processes. However, these adjustments may have deleterious consequences. For fish living at low temperatures, the increased polyunsaturation of mitochondrial membranes should raise rates of mitochondrial respiration which would in turn enhance the formation of reactive oxygen species (ROS), increase proton leak and favour peroxidation of these membranes. Minimisation of mitochondrial oxidative capacities in organisms living at low temperatures would reduce such damage.  相似文献   

17.
The intracellular lactate shuttle hypothesis posits that lactate generated in the cytosol is oxidized by mitochondrial lactate dehydrogenase (LDH) of the same cell. To examine whether skeletal muscle mitochondria oxidize lactate, mitochondrial respiratory oxygen flux (JO2) was measured during the sequential addition of various substrates and cofactors onto permeabilized rat gastrocnemius muscle fibers, as well as isolated mitochondrial subpopulations. Addition of lactate did not alter JO2. However, subsequent addition of NAD+ significantly increased JO2, and was abolished by the inhibitor of mitochondrial pyruvate transport, α-cyano-4-hydroxycinnamate. In experiments with isolated subsarcolemmal and intermyofibrillar mitochondrial subpopulations, only subsarcolemmal exhibited NAD+-dependent lactate oxidation. To further investigate the details of the physical association of LDH with mitochondria in muscle, immunofluorescence/confocal microscopy and immunoblotting approaches were used. LDH clearly colocalized with mitochondria in intact, as well as permeabilized fibers. LDH is likely localized inside the outer mitochondrial membrane, but not in the mitochondrial matrix. Collectively, these results suggest that extra-matrix LDH is strategically positioned within skeletal muscle fibers to functionally interact with mitochondria.  相似文献   

18.
Summary The mitochondria in type-I and -II muscle fibres in the pectoralis major muscle of the pigeon (Columba livia) have been analysed using stereological techniques not previously applied in muscle biology.Mitochondrial volume fractions (VV) were estimated in different regions of each type of muscle fibre using randomly orientated sampling sectors within fibre profiles. These sectors were sub-divided into smaller sampling regions to provide accurate data on the intracellular distribution of mitochondria. Estimates of the external surface densities of mitochondria per unit volume of fibre, SV total surface , and also the densities of mitochondrial cristae, SV total cristae , were obtained using a specific technique derived for analysing anisotropic structures (Saltykov, 1958). The relative amounts of the random and orientated mitochondrial membranes were also estimated.Significiant differences were found to exist between the different types of muscle fibres and considerable though constant variations in the intracellular arrangement of mitochondria were also found.  相似文献   

19.
Evolution and Diversification of Antarctic Notothenioid Fishes   总被引:3,自引:0,他引:3  
Antarctica supported fossil ichthyofaunas during the Devonian,Jurassic, Cretaceous and Eocene/Oligocene. These faunas arenot ancestral to each other, nor are they related to any componentof the modern fauna. About one hundred species of notothenioidsdominate a modern fauna of over 200 species of bottom fishes.This highly endemic perciform suborder is not representedinthe fossil record of Antarctica. Notothenioids may have evolvedin situ on the margins of the Antarctic continent while graduallyadapting to cooling conditions during the Tertiary. Cladisticstudies indicate that notothenioids are a monophyletic group,but a sister group has not been identified among perciform fishes.With relatively few non-notothenioid fishes in Antarctic waters,notothenioids fill ecological roles normally occupied by taxonomicallydiverse fishes in temperate waters. There are six notothenioidfamilies: Bovichtidae, Nototheniidae, Harpagiferidae, Artedidraconidae,Bathydraconidae and Channichthyidae. Aspects of theirbiologyare briefly considered with emphasis on the Nototheniidae, themost speciose family. Evolutionary diversification within thisfamily allows recognition of species which are pelagic, cryopelagic,benthopelagic and benthic.  相似文献   

20.
Effects of temperature on O2 consumption by mitochondria of the Antarctic fish Trematomus bernacchii were compared with effects obtained with mitochondria from tropical (Sarotheridon mossambica) and temperate zone fishes (Sebastes carnatus and Sebastes mystinus). Arrhenius plots of O2 consumption versus temperature exhibited slope discontinuities (“breaks”) at temperatures (Arrhenius break temperatures: ABTs) reflective of the species' adaptation temperatures. The ABT for mitochondria of T. bernacchii is the lowest reported for any animal and is ∼12 °C below the value predicted by a regression equation based on ABT data for several invertebrates and fishes. The temperature at which the acceptor control ratio (ACR), an index of efficiency of coupling of electron transport to synthesis of ATP, began to decrease with rising temperature also reflected adaptation temperature. The decrease in ACR with rising temperature began at ∼18 °C for mitochondria of T. bernacchii, in contrast to ∼35 °C for mitochondria of Sarotheridon mossambica. Maintaining T. bernacchii at 4 °C for 2 weeks led to no changes in ABT or in the response of ACR to temperature. The thermal sensitivities of mitochondria of T. bernacchii reflect the high level of cold adaptation and stenothermy that is characteristic of Antarctic Notothenioid fishes. Accepted: 5 January 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号