首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Circular DNA molecules imaged in air by scanning force microscopy.   总被引:48,自引:0,他引:48  
Routine and reproducible imaging of DNA molecules in air with the scanning force microscope (SFM) has been accomplished. Circular molecules of plasmid DNA were deposited onto red mica and imaged under various relative humidities. In related experiments, the first images of the Escherichia coli RNA polymerase-DNA complex have also been obtained. This has been possible by (1) the use of specially modified SFM tips with a consistent radius of curvature of 10 nm or less, to minimize the amount of image distortion introduced by the finite dimensions of commercially available tips, (2) the optimization of a method to deposit and bind DNA molecules to the mica surface in a stable fashion, and (3) careful control of the sample humidity, to prevent solvation of the molecules and detachment from the surface by the scanning tip or stylus. Contact forces in the range of a few nanonewtons are routinely possible in air and in the presence of residual humidity. The spatial resolution of the images appears determined by the radius of curvature of the modified styli, which can be estimated directly from the apparent widths of the DNA molecules in the images.  相似文献   

2.
High resolution scanning force microscope (SFM) images of fibrinogen-exposed platelet membranes are presented. Using ultrasharp carbon tips, we are able to obtain submolecular scale resolution of membrane surface features. Corroboration of SFM results is achieved using low voltage, high resolution scanning electron microscopy (LVHRSEM) to image the same protein molecule that is seen in the SFM. We obtain accurate height dimensions by SFM complemented by accurate lateral dimensions obtained by LVHRSEM. The use of 14- and 5-nm gold labels to identify specific membrane-bound biomolecules and to provide contrast enhancement with the SFM is explored as a useful adjunct to observation of unlabeled material. It is shown that the labels are useful for locating specific protein molecules on platelet membrane surfaces and for assessing the distribution of these molecules using the SFM. Fourteen nm labels are shown to be visible over the membrane corrugation, whereas 5-nm labels appear difficult to resolve using the present SFM instrumental configuration. When using the 5-nm labels, collateral use of LVHRSEM allows one to examine SFM images at submolecular resolution and associate function with the structures imaged after the SFM experiment is completed.  相似文献   

3.
Most of the scanning force microscopy (SFM) images of supercoiled DNA on untreated mica thus far reported have not shown tight plectonemic structure seen by electron microscopy, but instead less coiled molecules and sometimes a partly "condensed" state with intimate chain-chain interactions. By observing time-lapse images of conformational changes of DNA induced by decreasing ionic strength of imaging buffer in solution SFM, we could show that the process of water rinsing, an indispensable step for preparation of dried samples, may be responsible for some of the conformational anomalies in the images previously reported. We have studied several protocols to observe supercoiled DNA molecules by SFM and discuss the merits and the demerits. Images obtained following uranyl acetate treatment may be ideal for the detection of DNA damage, as the supercoiled and nicked forms are easily distinguishable.  相似文献   

4.
Surface plasmon resonance (SPR) has recently gained attention as a label-free method for the detection of biological molecules binding onto functionalised surfaces. It is one of the most sensitive detection method for monitor variations in the thickness and refractive index in ultra-thin films. Here, the adsorption processes of oligonucleotides onto gold substrates have been investigated in aqueous buffer solution using SPR imaging measurements. The hybridization of a thiol-modified, single stranded oligonucleotide anchored to a gold surface via thiol group, with its complementary sequence has been observed and characterised monitoring the hybridization process by SPR equipment. In situ investigation of smallest changes in SPR imaging measurements dynamically performed in liquid phase in the presence of DNA complementary probes was performed. Infrared spectroscopy and scanning electron microscopy characterisation of the functionalised gold surfaces of the biosensor were compared with the images obtained by SPR experimental apparatus.  相似文献   

5.
Optical mapping by direct visualization of individual DNA molecules, stretched in nanochannels with sequence-specific fluorescent labeling, represents a promising tool for disease diagnostics and genomics. An important challenge for this technique is thermal motion of the DNA as it undergoes imaging; this blurs fluorescent patterns along the DNA and results in information loss. Correcting for this effect (a process referred to as kymograph alignment) is a common preprocessing step in nanochannel-based optical mapping workflows, and we present here a highly efficient algorithm to accomplish this via pattern recognition. We compare our method with the one previous approach, and we find that our method is orders of magnitude faster while producing data of similar quality. We demonstrate proof of principle of our approach on experimental data consisting of melt mapped bacteriophage DNA.  相似文献   

6.
It is shown that scanning force microscopy (SFM), operated in the attractive mode, can be used to obtain high resolution pictures of adsorbed fibrinogen molecules on solid surfaces, without the need for staining or special microscope grids. SFM also reveals the three-dimensional structure of the adsorbed molecules. Two forms of adsorbed fibrinogen are demonstrated on hydrophobic silicone dioxide surfaces; a trinodular about 60 nm long and a globular with about a 40 nm diameter. Polymeric networks formed after storage of the surface with adsorbed fibrinogen in PBS for 11 days are also shown. The SFM-results for the trinodular structure suggest the existence of loops or peptide chains extending outside the basic structure of the fibrinogen molecule.  相似文献   

7.
To reveal the structure of penultimate DNA intermediates in T4 bacteriophage recombination, resolution of which produces free recombinant molecules, a single-burst analysis of the recombinant progeny was made in multifactor crosses, enabling one to determine quantitatively the different recombinants generated by one or two exchanges within the same chromosome segment. It was found that double and single exchanges are highly correlated in T4 recombination. These results were interpreted as evidence for simultaneous formation of a splice/patch pair as the primary recombination products. A recombination model called here the "splice/patch coupling model" is presented according to which resolution of a single DNA intermediate results in two linear heterozygous molecules containing a patch and a splice, respectively, in homologous positions.  相似文献   

8.
Applications for atomic force microscopy of DNA.   总被引:11,自引:2,他引:9       下载免费PDF全文
Tapping mode atomic force microscopy (AFM) of DNA in propanol, dry helium, and aqueous buffer each have specific applications. Resolution is best in propanol, which precipitates and immobilizes the DNA and provides a fluid imaging environment where adhesive forces are minimized. Resolution on exceptional images of DNA appears to be approximately 2 nm, sufficient to see helix turns in detail, but the smallest substructures typically seen on DNA in propanol are approximately 6-10 nm in size. Tapping AFM in dry helium provides a convenient way of imaging such things as conformations of DNA molecules and positions of proteins on DNA. Images of single-stranded DNA and RecA-DNA complexes are presented. In aqueous buffer DNA molecules as small as 300 bp have been imaged even when in motion. Images are presented of the changes in shape and position of circular plasmid DNA molecules.  相似文献   

9.
We present “molecular threading”, a surface independent tip-based method for stretching and depositing single and double-stranded DNA molecules. DNA is stretched into air at a liquid-air interface, and can be subsequently deposited onto a dry substrate isolated from solution. The design of an apparatus used for molecular threading is presented, and fluorescence and electron microscopies are used to characterize the angular distribution, straightness, and reproducibility of stretched DNA deposited in arrays onto elastomeric surfaces and thin membranes. Molecular threading demonstrates high straightness and uniformity over length scales from nanometers to micrometers, and represents an alternative to existing DNA deposition and linearization methods. These results point towards scalable and high-throughput precision manipulation of single-molecule polymers.  相似文献   

10.
Phase imaging with a tapping mode atomic force microscope (AFM) has many advantages for imaging moving DNA and DNA-enzyme complexes in aqueous buffers at molecular resolution. In phase images molecules can be resolved at higher scan rates and lower forces than in height images from the AFM. Higher scan rates make it possible to image faster processes. At lower forces the molecules are imaged more gently. Moving DNA molecules are also resolved more clearly in phase images than in height images. Phase images in tapping mode AFM show the phase difference between oscillation of the piezoelectric crystal that drives the cantilever and oscillation of the cantilever as it interacts with the sample surface. Phase images presented here show moving DNA molecules that have been replicated with Sequenase in the AFM and DNA molecules tethered in complexes with Escherichia coli RNA polymerase.  相似文献   

11.
Polynucleotide: adenosine glycosidases (PNAG) are a class of plant and bacterial enzymes commonly known as ribosome-inactivating proteins (RIP). They are presently classified as rRNA N-glycosidases in the enzyme nomenclature [EC 3.2.2.22]. Several activities on nucleic acids, other than depurination, have been attributed to PNAG: in particular modifications induced in circular plasmids, including linearisation and topological changes, and cleavage of guanidinic residues. Here we describe a chromatographic procedure to obtain nuclease-free PNAG by dye-chromatography onto Procion Red derivatized Sepharose((R)). Highly purified enzymes depurinate extensively pBR322 circular, supercoiled DNA at neutral pH and exhibit neither DNase nor DNA glycolyase activities, do not cause topological changes, and adenine is the only base released from DNA and rRNA, even at very high enzyme concentrations. A scanning force microscopy (SFM) study of pBR322 treated with saporin-S6 confirmed that (i) this PNAG binds extensively to the plasmid, (ii) the distribution of the bound saporin-S6 molecules along the DNA chain is markedly variable, (iii) plasmids already digested with saporin-S6 do not appear fragmented or topologically modified. The observations here described demonstrate that polynucleotide:adenosine glycosidase is the sole enzymatic activity of the four ribosome-inactivating proteins gelonin, momordin I, pokeweed antiviral protein from seeds and saporin-S6. These proteins belong to different families, suggesting that the findings here described may be generalized to all PNAG.  相似文献   

12.
The T4 bacteriophage has been used to investigate protocols for the preparation of samples for scanning force microscopy in air, in order to obtaining reproducible images. The resolution of images and the distribution of bacteriophages on the substrate depends on the buffer type, its concentration, the surface treatment of substrate, and the method of deposition. The best imaging conditions for the phages require dilution in a volatile buffer at low ionic strength and adsorption onto hydrophilic surfaces. When imaging with the scanning force microscopy the quality of the images is influenced by the vertical and lateral forces applied on the sample and by the tip geometry.  相似文献   

13.
Transient kinetic analyses further support the role of the clamp-loader in bacteriophage T4 as a catalyst which loads the clamp onto DNA through the sequential hydrolysis of two molecules of ATP before and after addition of DNA. Additional rapid-quench and pulse-chase experiments have documented this stoichiometry. The events of ATP hydrolysis have been related to the opening/closing of the clamp protein through fluorescence resonance energy transfer (FRET). In the absence of a hydrolysable form of ATP, the distance across the subunit interface of the clamp does not increase as measured by intramolecular FRET, suggesting gp45 cannot be loaded onto DNA. Therefore, ATP hydrolysis by the clamp-loader appears to open the clamp wide enough to encircle DNA easily. Two additional molecules of ATP then are hydrolyzed to close the clamp onto DNA. The presence of an intermolecular FRET signal indicated that the dissociation of the clamp-loader from this complex occurred after guiding the polymerase onto the correct face of the clamp bound to DNA. The final holoenzyme complex consists of the clamp, DNA, and the polymerase. Although this sequential assembly mechanism can be generally applied to most other replication systems studied to date, the specifics of ATP utilization seem to vary across replication systems.  相似文献   

14.
Jobs M  Howell WM  Brookes AJ 《BioTechniques》2002,32(6):1322-4, 1326, 1329
We describe afast, low-cost, and reliable way of creating arrays from sample molecules of interest present within microformatted sample vessels (such as 1536-well microplates). The principle involves simple centrifugal transfer of molecules of interest onto a solid planar or membrane surfaces placed over the initial sample vessel. Tools and procedures are presented that validate the robustness and precision of this facile solution to an otherwise difficult problem in modern molecular genetics. The availability of transferred DNA molecules for hybridization is also demonstrated. In conclusion, this "centrifugal-array" concept should help research studies to be applied on ever-greater scales with very simple machinery.  相似文献   

15.
Melting fine structure of the nuclear DNA isolated from the filamentous fungus Fusarium graminearum Schwabe is presented. Optical melting profiles of nuclear DNA were analyzed by using a combination of curve fitting and derivative techniques. The "melting components" were obtained from the derivative curve by a simple decomposition technique. Differential optical melting curves of unsheared nuclear DNA indicate the presence of 15 "melting components" in filamentous fungus nuclear genome. It should be emphasized that the "melting components" observed here are different from the "thermalites" which can be observed in bacteriophage DNA. The "melting components" reported here represent the separately melting of large "blocks" of fungus nuclear DNA.  相似文献   

16.
H Savilahti  D H Bamford 《Gene》1987,57(1):121-130
DNA molecules replicating in a linear form have been found in certain viruses and plasmids of both prokaryotic and eukaryotic origin. Characteristic of this type of molecules are the proteins covalently linked to their 5' ends and inverted terminal nucleotide sequences. The molecules replicate via a protein-priming mechanism, where participants include terminal protein and a specific polymerase. We report here the nucleotide sequence of the left very early region of Escherichia coli bacteriophage PRD1. This region codes for the terminal protein and the phage DNA polymerase. The predicted amino acid sequence of the terminal protein does not share homology with those of other known terminal proteins. The PRD1 DNA polymerase shows four regions of extensive homology to that of Bacillus subtilis phage phi 29. One of these conserved regions is also found in several animal virus DNA polymerases.  相似文献   

17.
Silanized nucleic acids: a general platform for DNA immobilization   总被引:1,自引:0,他引:1  
We have developed a method for simultaneous deposition and covalent cross-linking of oligonucleotide or PCR products on unmodified glass surfaces. By covalently conjugating an active silyl moiety onto oligonucleotides or cDNA in solutions we have generated a new class of modified nucleic acids, namely silanized nucleic acids. Such silanized molecules can be immobilized instantly onto glass surfaces after manual or automated deposition. This method provides a simple and rapid, yet very efficient, solution to the immobilization of prefabricated oligonucleotides and DNA for chip production.  相似文献   

18.
We have examined the dissociation of nucleosomes into histones and free, 4.5S DNA over a range of sodium chloride concentrations between 0.25 and 1 M. We have also studied this dissociation as a function of nucleosome concentration at two salt concentrations, 0.8 M and 0.9 M. In addition, we have measured the kinetics of transfer of histone cores from nucleosomes onto recipient bacteriophage T7 DNA in 0.6, 0.7 and 0.8 M NaCl solutions. Although the mechanism of nucleosome transfer is unknown the data presented here are consistent with either a reversible dissociation of the nucleosome or DNA strand displacement by another DNA.  相似文献   

19.
Atomic force microscopy (AFM, also called scanning force microscopy) is proving to be a useful technique for imaging DNA. Thus it is important to push the limits of AFM imaging in order to explore both what types of DNA can be reliably imaged and identified and also what substrates and methods of sample preparation are suitable. The following advances in AFM of DNA are presented here. (i) DNA molecules as short as 25 bases can be seen by AFM. The short single-stranded DNAs imaged here (25 and 50 bases long) appeared globular in the AFM, perhaps because they are all capable of intramolecular base pairing and because the DNAs were in a Mg(ll) buffer, which facilitates intramolecular cross-bridging. (ii) AFM images in air of short double-stranded DNA molecules, 100-200 bp, gave lengths consistent with A-DNA. (iii) AFM images of poly (A) show both short bent lumpy molecules with an apparent persistence length of 40 nm and long straight molecules with an apparent persistence length of 600 nm. For comparison, the apparent persistence length for double-stranded DNA from phX-174 under the same conditions was 80 nm. (iv) Structures believed to be triple- stranded DNA were seen in samples of poly(dA.poly(dT) and poly (dG).poly(dC). These structures were twice as high as double-stranded DNA and the same width. (v) Entire molecules of lambda DNA, approx. 16 micron long, were imaged clearly in overlapping scans. (vi) Plasmid DNA was imaged on oxidized silicon, although less clearly than on mica.  相似文献   

20.
An anti-Z-DNA IgG antibody was used to probe for the left-handed Z-DNA conformation of a d(CG)11 insert in a negatively supercoiled plasmid DNA (pAN022). The complexes were spread on mica in the presence of a quaternary ammonium detergent benzyldimethylalkylammonium chloride and imaged with a scanning force microscope (SFM). The high affinity anti-Z-DNA antibody was retained even after restriction endonuclease cleavage of the DNA. The two arms in the product molecules had unequal lengths in conformity with the known location of the Z-DNA forming insert. Most complexes exhibited one IgG per DNA molecule. The bound antibodies were up to approximately 35 nm in diameter and extended approximately 2 nm from the mica surface. They were generally in a lateral orientation relative to the DNA, in accordance with prior chemical modification experimental data indicating a bipedal mode of binding for an anti-Z-DNA IgG. However, the SFM images also suggest that the DNA bends to accommodate the two Fab combining regions of the antibody. This study demonstrates the utility of the SFM for investigating conformation-dependent molecular recognition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号