首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The day and night visual capacities (photopic and scotopic spectral sensitivity) of several species of boobies (family Sulidae) were analyzed using a behavioral psychophysical testing technique. On the basis of these data there is evidence for sensitivity to near-ultraviolet light in the order Pelecaniformes. The scotopic spectral sensitivity functions of three booby species conform closely to the spectral absorption characteristics of avian rhodopsin. There are marked differences between the photopic sensitivities of a coastal booby species with that of a pelagic species; these differences appear correlated with their respective feeding ecologies. Lastly, a brief review of avian spectral sensitivity and a consideration of individual variation in avian vision studies are presented.  相似文献   

3.
ERG's to spectral lights were recorded from all eyes of intact wolf spiders. Secondary eyes have maximum relative sensitivities at 505–510 nm which are unchanged by chromatic adaptations. Principal eyes have ultraviolet sensitivities which are 10 to 100 times greater at 380 nm than at 505 nm. However, two animals' eyes initially had greater blue-green sensitivities, then in 7 to 10 wk dropped 4 to 6 log units in absolute sensitivity in the visible, less in the ultraviolet. Chromatic adaptations of both types of principal eyes hardly changed relative spectral sensitivities. Small decreases in relative sensitivity in the visible with orange adaptations were possibly retinomotor in origin. Second peaks in ERG waveforms were elicited from ultraviolet-adapted principal eyes by wavelengths 400 nm and longer, and from blue-, yellow-, and orange-adapted secondary eyes by wavelengths 580 nm and longer. The second peaks in waveforms were most likely responses of unilluminated eyes to scattered light. It is concluded that both principal and secondary eyes contain cells with a visual pigment absorbing maximally at 505–510 nm. The variable absolute and ultraviolet sensitivities of principal eyes may be due to a second pigment in the same cells or to an ultraviolet-absorbing accessory pigment which excites the 505 nm absorbing visual pigment by radiationless energy transfer.  相似文献   

4.
A key to understanding animal behavior is knowledge of the sensory information animals extract from their environment. For visually motivated tasks, the information animals obtain through their eyes is often assumed to be essentially the same as that perceived by humans. However, known differences in structure and processing among the visual systems of different animals clearly indicate that the world seen by each is different. A well‐characterized difference between human and other animal visual systems is the number of types and spectral sensitivities of their photoreceptors. We are developing a technique, functional substitution, that exploits knowledge of these differences to portray for human subjects, colors as they would appear through the photoreceptors of another animal. In a specific application, we ask human subjects to rank hues of male threespine stickleback (Gasterosteus aculeatus) throats viewed through stickleback photopigments. We compare these ranks to ranks of the same throat hues viewed through normal human photoreceptors. We find essentially no difference between the two sets of rankings. This suggests that any differences in human and stickleback rankings of such hues would result from differences in post‐receptoral neural processing. Using a previously developed model of stickleback neural processing, we established another ranking of the hues which was again essentially the same as the rankings produced by the human subjects. A growing literature indicates that stickleback do rank such hues in the evaluation of males as potential mates or threats. Although our results do not demonstrate that humans and stickleback use the same mechanisms to assess color, our experiments significantly failed to show that stickleback and human rankings of throat hues should be different. Nevertheless, a comparison of all these rankings to ranks derived from subjective color scoring by human observers suggests that color scoring may utilize other cues and should thus be used cautiously.  相似文献   

5.
Animal communication relies on conspicuous signals and compatible signal perception abilities. Good signal perception abilities are particularly important for polymorphic animals where mate choice can be a challenge. Behavioral studies suggest that polymorphic damselflies use their varying body colorations and/or color patterns as communication signal for mate choice and to control mating frequencies. However, solid evidence for this hypothesis combining physiological with spectral and behavioral data is scarce. We investigated this question in the Australian common blue tail damselfly, Ischnura heterosticta, which has pronounced female-limited polymorphism: andromorphs have a male-like blue coloration and gynomorphs display green/grey colors. We measured body color reflectance and investigated the visual capacities of each morph, showing that I. heterosticta have at least three types of photoreceptors sensitive to UV, blue, and green wavelength, and that this visual perception ability enables them to detect the spectral properties of the color signals emitted from the various color morphs in both males and females. We further demonstrate that different color morphs can be discriminated against each other and the vegetation based on color contrast. Finally, these findings were supported by field observations of natural mating pairs showing that mating partners are indeed chosen based on their body coloration. Our study provides the first comprehensive evidence for the function of body coloration on mate choice in polymorphic damselflies.  相似文献   

6.
The discrete, subthreshold, slow potential fluctuations (SPF's) which can be recorded intracellularly in Limulus ommatidia are sensitive to temperature and light wavelength. SPF frequency increases with increasing temperature (Q10 about 3.5) and light intensity. The effects are additive. SPF rise and decay time decrease with increasing temperature (Q10 between 2 and 3). There is a peak, near 520 nm, in the spectral sensitivity of SPF frequency. This peak may correspond to the wavelength of maximum absorption by rhodopsin in the ommatidia. Hydroxylamine produces a rapid, irreversible reduction of SPF frequency and amplitude perhaps owing to its action on the photopigment. The cornea and crystalline cones fluoresce (peak about 445 nm) when excited by near-ultraviolet energy (380 nm peak) and this fluorescence may influence SPF spectral sensitivity measurements. These findings suggest that the SPF's are the results of photolytic and thermolytic reactions occurring in the ommatidial visual pigments and that they have a role in the mechanisms which transduce light to electrical activity in the visual receptors.  相似文献   

7.
The effects of ethanol on squid giant axons were studied by means of the sucrose-gap technique. The membrane action potential height is moderately reduced and the duration sometimes shortened by ethanol in sea water. Voltage clamp experiments showed that ethanol in sea water reduced the maximum membrane conductances for sodium (g'Na) and potassium (g'K). In experiments with multiple application of ethyl alcohol to the same spot of membrane, a reduction of g'Na to 82 per cent and of g'K to 80 per cent of their value in sea water was brought about by 3 per cent ethanol (by volume) while 6 per cent caused a decrease of g'Na to 59 per cent and of g'K to 69 per cent. Ethanol has no significant effect on the steady-state inactivation of gNa (as a function of conditioning membrane potential) or on such kinetic parameters as τh or the time course of turning on gi gNa and gK. It is concluded that ethanol mainly reduces gNa and gK in the Hodgkin-Huxley terminology.  相似文献   

8.
Light adaptation in insect photoreceptors is caused by an increase in the cytosolic Ca2+ concentration. To better understand this process, we measured the cytosolic Ca2+ concentration in vivo as a function of adapting light intensity in the white-eyed blowfly mutant chalky. We developed a technique to measure the cytosolic Ca2+ concentration under conditions as natural as possible. The calcium indicator dyes Oregon Green 1, 2, or 5N (Molecular Probes, Inc., Eugene, OR) were iontophoretically injected via an intracellular electrode into a photoreceptor cell in the intact eye; the same electrode was also used to measure the membrane potential. The blue-induced green fluorescence of these dyes could be monitored by making use of the optics of the facet lens and the rhabdomere waveguide. The use of the different Ca2+-sensitive dyes that possess different affinities for Ca2+ allowed the quantitative determination of the cytosolic Ca2+ concentration in the steady state. Determining the cytosolic Ca2+ concentration as a function of the adapting light intensity shows that the Ca2+ concentration is regulated in a graded fashion over the whole dynamic range where a photoreceptor cell can respond to light. When a photoreceptor is adapted to bright light, the cytosolic Ca2+ concentration reaches stable values higher than 10 μM. The data are consistent with the hypothesis that the logarithm of the increase in cytosolic Ca2+ concentration is linear with the logarithm of the light intensity. From the estimated values of the cytosolic Ca2+ concentration, we conclude that the Ca2+-buffering capacity is limited. The percentage of the Ca2+ influx that is buffered gradually decreases with increasing Ca2+ concentrations; at cytosolic Ca2+ concentration levels above 10 μM, buffering becomes minimal.  相似文献   

9.
Exposure of excitable tissues to hyperbaric environments has been shown to alter membrane ion conductances, but only little is known about the state of the membranes of intact cells in the post-decompression phase following a prolonged high-pressure treatment. Furthermore, almost nothing is known about high-pressure effects on skeletal muscle membranes. Therefore, we investigated changes to the input resistances, membrane potentials and voltage-gated membrane currents for sodium (INa), potassium (IK) and calcium (ICa) ions under voltage-clamp conditions in enzymatically isolated intact mammalian single fibers following a 3-hr high-pressure treatment up to 25 MPa at +4 degrees C. After a 3-hr 20 MPa treatment, the input resistance was increased but declined again for treatments with higher pressures. The resting membrane potentials were depolarized in the post-decompression phase following a 20-MPa high-pressure treatment; this could be explained by an increase in the Na+- over K+-permeability ratio and in intracellular [Na+]i. Following a 10-MPa high-pressure treatment, INa, IK and ICa amplitudes were similar compared to controls but were significantly reduced by 25 to 35% after a 3-hr 20-MPa high-pressure treatment. Interestingly, the voltage-dependent inactivation of INa and ICa seemed to be more stable at high pressures compared to the activation parameters, as no significant changes were found up to a 20-MPa treatment. For higher pressure applications (e.g., 25 MPa), there seemed to be a marked loss of membrane integrity and INa, IK and ICa almost disappeared.  相似文献   

10.
11.
A system for the generation of the repolarization phase of the ventricular action potential is described. The system is based on time-dependent changes in membrane conductance to sodium and potassium ions. However, the changes in conductance during an action potential retain a degree of voltage dependence through the initial conditions which depend on previous depolarizations of the membrane. The equations describing the system were solved with an analog computer and various action potential forms are reproduced. The effects of hyperpolarizing and depolarizing current applied during an action potential are investigated. The changes in shape of an action potential after a change in the rate of stimulation show partial agreement with previous experimental findings. The applicability of time-dependent and voltage-dependent systems for the generation of the repolarization phase of the ventricular action potential is discussed.  相似文献   

12.
The spectral sensitivities of single Limulus median ocellus photoreceptors have been determined from records of receptor potentials obtained using intracellular microelectrodes. One class of receptors, called UV cells (ultraviolet cells), depolarizes to near-UV light and is maximally sensitive at 360 nm; a Dartnall template fits the spectral sensitivity curve. A second class of receptors, called visible cells, depolarizes to visible light; the spectral sensitivity curve is fit by a Dartnall template with λmax at 530 nm. Dark-adapted UV cells are about 2 log units more sensitive than dark-adapted visible cells. UV cells respond with a small hyperpolarization to visible light and the spectral sensitivity curve for this hyperpolarization peaks at 525–550 nm. Visible cells respond with a small hyperpolarization to UV light, and the spectral sensitivity curve for this response peaks at 350–375 nm. Rarely, a double-peaked (360 and 530 nm) spectral sensitivity curve is obtained; two photopigments are involved, as revealed by chromatic adaptation experiments. Thus there may be a small third class of receptor cells containing two photopigments.  相似文献   

13.
Photoreceptors of higher plants   总被引:21,自引:0,他引:21  
Alfred Batschauer 《Planta》1998,206(4):479-492
  相似文献   

14.
Photoreceptors of cubozoan jellyfish   总被引:6,自引:2,他引:6  
Martin  Vicki J. 《Hydrobiologia》2004,530(1-3):135-144
The anatomically sophisticated visual system of the cubozoan jellyfish Carybdea marsupialis is described. Individual cubomedusae have eight complex eyes, each with a cornea, lens, and retina of ciliated photoreceptor cells, eight slit ocelli, and eight dimple ocelli. The photoreceptor cells of the complex eyes are bipolar and resemble vertebrate rod cells. Each photoreceptor has an outer cylindrical light-receptive segment that projects into a vitreous space that separates the lens and the retina, an inner segment rich in pigment granules, and a basal region housing the nucleus. The outer segment is a modified cilium with a 9 + 2 arrangement of microtubules plus stacks of membrane. These stacks of membrane form numerous discs that are oriented transversely to the long axis of the cell. The outer segment is connected to the inner segment by a slender stalk. The basal end of each photoreceptor forms an axon that projects into an underlying layer of interneurons. Each ocellus is composed of ciliated photoreceptor cells containing pigment granules. Rhodopsin-like and opsin-like proteins are found in the membrane stacks of the outer segments of the photoreceptors of the complex eyes. An ultraviolet-sensing opsin-like protein is present in the inner segments and basal regions of some of the photoreceptors of the complex eyes. Rhodopsin-like proteins are also detected in the photoreceptors of the slit ocelli. The cellular lens, composed of crystallin proteins, shows a paucity of organelles and a high concentration of homogeneous cytoplasm. Neurons expressing RFamide (Arg-Phe-amide) comprise a subset of interneurons found beneath the retinas of the complex eyes. RFamide-positive fibers extend from these neurons into the stalks of the rhopalia, eventually entering into the subumbrellar nerve ring. Vision may play a role in the navigation, feeding, and reproduction of the cubomedusae.  相似文献   

15.
The membrane potential and conductance of the giant muscle fiber of a barnacle (Balanus nubilus Darwin) were analyzed in relation to changes in the external (3.5–10.0) and the internal (4.7–9.6) pH, under various experimental conditions. A sharp increase in membrane conductance, associated with a large increase in conductance to Cl ions, was observed when the external pH was lowered to values below 5.0. The ratio of Cl to K conductance in normal barnacle saline is between –1/7 at pH 7.7, whereas at pH 4.0 the ratio is about 6–9. The behavior of the membrane in response to pH changes in a Cl-depleted muscle fiber shows that the K conductance decreases with decreasing external pH for the whole range of pH examined. A steep increase in Cl conductance is also observed when the internal pH of the fiber is lowered below 5.0. The K to Cl conductance ratio increases with increasing internal pH in a manner very similar to that found when the external pH is raised above 5.0. These facts suggest that the membrane is amphoteric with positive and negative fixed charge groups having dissociation constants such that at pH greater than 5, negative groups predominate and cations permeate more easily than anions, while at lower pH positive groups predominate, facilitating the passage of anions through the membrane.  相似文献   

16.
A quantitative analysis of photoreceptor properties was performed in the retina of the nocturnal deer mouse, Peromyscus maniculatus, using pigmented (wildtype) and albino animals. The aim was to establish whether the deer mouse is a more suitable model species than the house mouse for photoreceptor studies, and whether oculocutaneous albinism affects its photoreceptor properties. In retinal flatmounts, cone photoreceptors were identified by opsin immunostaining, and their numbers, spectral types, and distributions across the retina were determined. Rod photoreceptors were counted using differential interference contrast microscopy. Pigmented P. maniculatus have a rod-dominated retina with rod densities of about 450.000/mm2 and cone densities of 3000 - 6500/mm2. Two cone opsins, shortwave sensitive (S) and middle-to-longwave sensitive (M), are present and expressed in distinct cone types. Partial sequencing of the S opsin gene strongly supports UV sensitivity of the S cone visual pigment. The S cones constitute a 5-15% minority of the cones. Different from house mouse, S and M cone distributions do not have dorsoventral gradients, and coexpression of both opsins in single cones is exceptional (<2% of the cones). In albino P. maniculatus, rod densities are reduced by approximately 40% (270.000/mm2). Overall, cone density and the density of cones exclusively expressing S opsin are not significantly different from pigmented P. maniculatus. However, in albino retinas S opsin is coexpressed with M opsin in 60-90% of the cones and therefore the population of cones expressing only M opsin is significantly reduced to 5-25%. In conclusion, deer mouse cone properties largely conform to the general mammalian pattern, hence the deer mouse may be better suited than the house mouse for the study of certain basic cone properties, including the effects of albinism on cone opsin expression.  相似文献   

17.
光受体及光信号转导   总被引:5,自引:0,他引:5  
植物在进化过程中形成了对环境信号反应的能力,光是植物生长发育中的一个重要的环境信号.植物为了更好地生长和发育形成了精密的光信号接收和转导系统.本文介绍近年来光信号接收即光受体和光信号的转导研究进展.  相似文献   

18.
植物在进化过程中形成了对环境信号反应的能力,光是植物生长发育中的一个重要的环境信号。植物为了更好地生长和发育形成了精密的光信号接收和转导系统。本文介绍近年来光信号接收即光受体和光信号的转导研究进展。  相似文献   

19.
Photoreceptors and regulation of flowering time   总被引:29,自引:0,他引:29       下载免费PDF全文
Lin C 《Plant physiology》2000,123(1):39-50
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号