首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
In this study, we describe the membrane lipid composition of eight clinical isolates (azole resistant and sensitive strains) of Candida albicans isolated from AIDS/ HIV patients. Interestingly, fluorescence polarization measurements of the clinical isolates displayed enhanced membrane fluidity in fluconazole resistant strains as compared to the sensitive ones. The increase in fluidity was reflected in the change of membrane order, which was considerably decreased (decrease in fluorescence polarization "p" value denotes higher membrane fluidity) in the resistant strains. The ergosterol content in azole susceptible isolates was greater, almost twice as compared to the resistant isolates. However, no significant alteration was observed in phospholipid and fatty acid composition of these isolates. Labeling experiments with fluorescamine dye revealed that the percentage of phosphatidylethanolamine exposed to the membrane's outer leaflet was higher in the resistant strains as compared to the sensitive strains, indicating increased floppase activity of the two major ABC drug efflux pumps, CDR1 and CDR2 possibly due to their overexpression in resistant strains. The results of the present study suggest that changes in the status of membrane lipid phase especially the ergosterol content and increased activity of drug efflux pumps by overexpression ofABC transporters, CDR1 and CDR2 might contribute to fluconazole resistance in C. albicans isolated from AIDS/HIV patients.  相似文献   

2.
Membrane protein function is regulated by the cell membrane lipid composition. This regulation is due to a combination of specific lipid-protein interactions and more general lipid bilayer-protein interactions. These interactions are particularly important in pharmacological research, as many current pharmaceuticals on the market can alter the lipid bilayer material properties, which can lead to altered membrane protein function. The formation of gramicidin channels are dependent on conformational changes in gramicidin subunits which are in turn dependent on the properties of the lipid. Hence the gramicidin channel current is a reporter of altered properties of the bilayer due to certain compounds. Open in a separate windowClick here to view.(63M, flv)  相似文献   

3.
The influence of the acclimation temperature on the thermotropic behaviour of mitochondrial respiration and on the degree of unsaturation of mitochondrial membrane lipids has been studied. The mitochondria were isolated from red muscle, white muscle and liver of goldfish acclimated to 5, 20 and 30 degrees C. ADP-activated succinate oxidation was measured at different temperatures and resulted in non-linear Arrhenius-plots with breaks between 10 and 23 degrees C. As for the break-temperatures, there was found a shift downwards in preparations of decreased acclimation temperatures. This could be caused by a changed composition of membrane lipids and a simultaneous shift of the membrane phase transition temperature. Therefore, the fatty acid composition of all membrane preparations was analyzed. However, no consistent change of the degree of unsaturation due to a changed acclimation temperature could be found.  相似文献   

4.
The influence of the acclimation temperature on the thermotropic behaviour of mitochondrial respiration and on the degree of unsaturation of mitochondrial membrane lipids has been studied. The mitochondria were isolated from red muscle, white muscle and liver of goldfish acclimated to 5, 20 and 30°C. ADP-activated succinate oxidation was measured at different temperatures and resulted in non-linear Arrhenius-plots with breaks between 10 and 23°C. As for the break-temperatures, there was found a shift downwards in preparations of decreased acclimation temperatures. This could be caused by a changed composition of membrane lipids and a simultaneous shift of the membrane phase transition temperature. Therefore, the fatty acid composition of all membrane preparations was analyzed. However, no consistent change of the degree of unsaturation due to a changed acclimation temperature could be found.  相似文献   

5.

Background

The mitochondrial (mt) gene tree of placental mammals reveals a very strong acceleration of the amino acid (AA) replacement rate and a change in AA compositional bias in the lineage leading to the higher primates (simians), in contrast to the nuclear gene tree. Whether this acceleration and compositional bias were caused by adaptive evolution at the AA level or directional mutation pressure at the DNA level has been vigorously debated.

Methodology/Principal Findings

Our phylogenetic analysis indicates that the rate acceleration in the simian lineage is accompanied by a marked increase in threonine (Thr) residues in the transmembrane helix regions of mt DNA-encoded proteins. This Thr increase involved the replacement of hydrophobic AAs in the membrane interior. Even after accounting for lack of independence due to phylogeny, a regression analysis reveals a statistical significant positive correlation between Thr composition and longevity in primates.

Conclusion/Significance

Because crucial roles of Thr and Ser in membrane proteins have been proposed to be the formation of hydrogen bonds enhancing helix-helix interactions, the Thr increase detected in the higher primates might be adaptive by serving to reinforce stability of mt proteins in the inner membrane. The correlation between Thr composition in the membrane interior and the longevity of animals is striking, especially because some mt functions are thought to be involved in aging.  相似文献   

6.
Murine leukemia EL4 cells were modified by supplementation of culture media with fatty acids for 24 h. A plasma membrane-enriched fraction was prepared from substituted and normal cells. Analyses were performed to determine fatty acyl composition, phospholipid headgroup composition and cholesterol content. The two major membrane phospholipids, phosphatidylethanolamine (PE) and phosphatidylcholine (PC) were isolated by thin-layer chromatography and ESR measurements were done on liposomes prepared from these lipids as well as on the intact plasma membrane preparations. Slight perturbations in overall plasma membrane lipid composition were observed when EL4 cells were supplemented with a single exogenous fatty acid. This may be consistent with the idea that the incorporation of exogenous fatty acid induces compensatory changes in membrane lipid composition. On the other hand, we observed no significant difference in two ESR motional parameters between the unsubstituted control and various fatty acid-substituted plasma membranes. ESR measurements carried out on PE and PC liposomes derived from 17:0- and 18:2c-substituted membranes also failed to detect major differences between these liposomes and those made from normal EL4 phospholipids. In the case of liposomes prepared from 18:2t,-substituted membranes, the order parameter was significantly changed from the normal. However, the change was in opposite directions in PE and PC, perhaps accounting for the fact that no change parameter is seen in intact 18:2t-substituted plasma membrane. Measurements of order parameter (S) in mixed lipid vesicles showed that at up to 50 mol% mixture of a synthetic PC with plasma membrane PC, the value of S was only marginally different from that of the plasma membrane PC vesicles. We interpret these data as an indication that the two ESR parameters used are not sufficiently sensitive to detect changes due to modifications of the acyl chain composition of a complex biological membrane.  相似文献   

7.
Summary We have isolated Escherichia coli F mutants which, when mated with either Hfr or F, can form stable mating aggregates well but produce transconjugants with reduced frequencies. Selection procedure and other tests rule out the possibility that they are Rec strains. These mutants can be classified into two types: type I mutants can induce conjugal DNA replication in the donor, yet form transconjugants poorly; whereas, type II mutants induce conjugal DNA replication with poor efficiencies in the donor. Further tests indicate that type I mutants are very sensitive to lethal zygosis and their membranes, both inner and outer, show alterations in protein composition, whereas type II mutants are insensitive to lethal zygosis, and have an obvious alteration in the protein composition of their outer membrane. These results suggest that type I is defective in transconjugant formation primarily due to a change in the inner membrane, whereas type II is defective in generating a mating signal, which induces donor conjugal DNA replication, due to an alteration in the outer membrane.  相似文献   

8.
One of the hallmarks of mammalian sperm capacitation is the loss of cholesterol from the plasma membrane. Cholesterol has been associated with the formation of detergent insoluble membrane microdomains in many cell types, and sperm from several mammalian species have been shown to contain detergent-resistant membranes (DRMs). The change in cholesterol composition of the sperm plasma membrane during capacitation raises the question of whether the contents of DRMs are altered during this process. In this study, we investigated changes in protein composition of DRMs isolated from uncapacitated or capacitated mouse sperm. TX-100 insoluble membranes were fractionated by sucrose flotation gradient centrifugation and analyzed by Western and lectin blotting, and capacitation-related differences in protein composition were identified. Following capacitation, the detergent insoluble fractions moved to lighter positions on the sucrose gradients, reflecting a global change in density or composition. We identified several individual proteins that either became enriched or depleted in DRM fractions following capacitation. These data suggest that the physiological changes in sperm motility, ability to penetrate the zona pellucida (ZP), ZP responsiveness, and other capacitation-dependent changes, may be due in part to a functional reorganization of plasma membrane microdomains.  相似文献   

9.
The aim of this mini-review is to relate membrane physical properties to the adaptation and resistance of microorganisms to environmental stresses. In the first part, the effects of various stresses on the structure and dynamic properties of phospholipid and biological membranes are presented. The compensation of these effects, i.e., change in membrane fluidity, phase transitions, by the active cellular control of the membrane chemical composition, is then described. In this natural process, the change in membrane fluidity is viewed as the detecting "input" signal that initiates the regulation, activating proteic effectors that in turn may influence the chemical composition of the membrane (feedback). This adaptation system allows the maintenance of the physical characteristics of membranes and, thereby, of their functionality. When environmental stresses are extreme and occur abruptly, the regulation process may not compensate for the changes in the membrane physical characteristics. In such cases, important variations in the membrane fluidity and structure may induce cellular damages and cell death. However, the lethal consequences are not systematically observed because protective effects of changes in the membrane physical state on the resistance to stresses are also reported.  相似文献   

10.
The effect of the local anesthetic dibucaine on the membrane ultrastructure of sterol-manipulated Tetrahymena pyriformis (NT-1 strain) was studied by freeze-fracture electron microscopy. Dibucaine-treated, ergosterol-replaced Tetrahymena cells had marked alterations in their plasma membranes. IMP-free small depressions (exoplasmic fracture face) and protrusions (protoplasmic fracture face) were formed on the plasma membranes which was in contact with the outer alveolar membrane. In addition, large IMP-free surface "blebs" covered with hexagonally-arranged depressions and protrusions appeared on both the plasma and outer alveolar membranes. These "blebs" were pinched off when the membranes were severely affected. Our previous study (28) demonstrated that the plasma membrane of dibucaine-treated native Tetrahymena cells that contain tetrahymanol showed vertical displacement of its intramembranous particles and that subsequently a smooth, flat surface appeared. Therefore, the structural changes in ergosterol-replaced membranes produced by dibucaine differ strikingly from changes in the native membranes. The remarkable difference in the ultrastructural deformation of the plasma membrane probably is due to a difference in the membrane lipid composition induced by sterol-manipulation.  相似文献   

11.
Abstract

The article dwells upon identifying the effect of cadmium on the roots of beetroot. The exposure effects of various concentrations of cadmium were studied at different levels of the plant organization (tissue pieces, organelles, membrane vesicles). The effect was noted only at a concentration of 100?μm. The negative effect of cadmium on the roots tissues of beetroot appeared with an increase in permeability and a decrease in the stability of cell membranes due to a change in the composition of fatty acids of membrane lipids and an increase in oxidation processes. The effect of cadmium in model experiments on the activity of the proton pumps of the vacuolar membrane has been evaluated. The pumps provide for the transport of heavy metals into the vacuole, which is one of the effective mechanisms for phytoremediation. The influence of cadmium in model experiments on the activity of the proton pump of a vacuolar membrane was evaluated. Under the influence of cadmium, a decrease in the activity of V-ATPase was observed, while the activity of V-PPase did not change. The results obtained complement our understanding of the damaging effects that occur in plant cells under cadmium stress.  相似文献   

12.
Membrane proteins are regulated by the lipid bilayer composition. Specific lipid-protein interactions rarely are involved, which suggests that the regulation is due to changes in some general bilayer property (or properties). The hydrophobic coupling between a membrane-spanning protein and the surrounding bilayer means that protein conformational changes may be associated with a reversible, local bilayer deformation. Lipid bilayers are elastic bodies, and the energetic cost of the bilayer deformation contributes to the total energetic cost of the protein conformational change. The energetics and kinetics of the protein conformational changes therefore will be regulated by the bilayer elasticity, which is determined by the lipid composition. This hydrophobic coupling mechanism has been studied extensively in gramicidin channels, where the channel-bilayer hydrophobic interactions link a "conformational" change (the monomer<-->dimer transition) to an elastic bilayer deformation. Gramicidin channels thus are regulated by the lipid bilayer elastic properties (thickness, monolayer equilibrium curvature, and compression and bending moduli). To investigate whether this hydrophobic coupling mechanism could be a general mechanism regulating membrane protein function, we examined whether voltage-dependent skeletal-muscle sodium channels, expressed in HEK293 cells, are regulated by bilayer elasticity, as monitored using gramicidin A (gA) channels. Nonphysiological amphiphiles (beta-octyl-glucoside, Genapol X-100, Triton X-100, and reduced Triton X-100) that make lipid bilayers less "stiff", as measured using gA channels, shift the voltage dependence of sodium channel inactivation toward more hyperpolarized potentials. At low amphiphile concentration, the magnitude of the shift is linearly correlated to the change in gA channel lifetime. Cholesterol-depletion, which also reduces bilayer stiffness, causes a similar shift in sodium channel inactivation. These results provide strong support for the notion that bilayer-protein hydrophobic coupling allows the bilayer elastic properties to regulate membrane protein function.  相似文献   

13.
The effect of chronic administration of lithium salts on the lipid composition and physical properties of the synaptosomal plasma membrane was examined in rat brain. The effect of lithium treatment has been studied on the fluorescence polarization of synaptosomal plasma membrane and artificial lipid vesicles and on the lipid composition of the membranes. Fluorescence polarization of lipophilic probes was used to study membrane lipid structure. Steady-state polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH), a probe of the hydrophobic core, was significantly lower in plasma membranes from lithium-treated animals. Altered DPH polarization was due to a decrease in the order parameter of the probe. The lithium-treatment also changed the fluorescence of 1-anilino-8-naphthalene sulfonate (ANS), a probe that binds to the polar head group of the phospholipids and to proteins on the membrane surface. Synaptic plasma membranes from treated rats presented no significant changes on the cholesterol-to-phospholipid ratio, although the phospholipid class distribution was altered and the membrane phospholipid unsaturation increased. In summary, the neural plasma membranes became disorder after chronic lithium administration at therapeutic levels. This structural change may be due to changes in plasma membrane phospholipid distribution and to the degree of unsaturation of phospholipid fatty acids.  相似文献   

14.
This experiment was carried out to examine the influence of overfeeding ducks with corn on the lipid composition of hepatocyte plasma membrane. Seventy-day-old male Mule ducks (Cairina moschata × Anas platyrhynchos) were overfed with corn for 12.5 days in order to induce fatty livers. The cholesterol and phospholipid contents were approximately 50% higher in hepatocyte plasma membranes from fatty livers compared to those of lean livers obtained from non-overfed ducks. However, the cholesterol/phospholipids molar ratio did not differ between both groups. Overfeeding induced a significant change in phospholipid composition of hepatocyte plasma membrane with a decrease in phosphatidylcholine proportion and conversely an increase in phosphatidylethanolamine. The fatty acid profile of phospholipids was also altered. In fatty hepatocyte plasma membrane, the overall proportion of polyunsaturated fatty acids (PUFA) was decreased and this was due to the decrease of some of, but not all, the PUFA. In addition, the proportions of oleic acid and n-9 series unsaturated fatty acids were higher in fatty than in lean liver membranes. This study provides evidence that overfeeding with a carbohydrate-rich corn-based diet induces a de novo hepatic lipogenesis in Mule duck which predominates over dietary lipid intake to change the lipid composition of the hepatocyte plasma membrane.  相似文献   

15.
The action of the antiviral drug rimantadine on the structure of bilayer lipid membranes (BLM) and RBC membranes was investigated. Structural changes in BLM were recorded by ionophore conductivity changes and by changes in the third harmonic of capacity current signal due to lateral compression of BLM in an electric field. It was shown that the adsorption of rimantadine on BLM results in an increase in ionophore mobility in bilayer membranes of dioleolyllecithin (DOL) and common lipids of bovine brain (CL) and in a decrease in those of azolectin (A). Relative changes in the third harmonic signal also depend on the membrane composition and have different signs. The results may be explained by the rimantadine action on the lipid bilayer structure: "rigidification" of A-membranes and "fluidization" of BLM from DOL and CL. Structural reorganization of RBC membranes as investigated by the ability of the cells to enter a micropipette (inner diameter greater than or equal to 3 microns) thereby undergoing deformation. It was shown that rimantadine influences RBC deformability due to drug induced inhomogenous mechanical membrane properties. Also, rimantadine accelerated the process of artificially induced aggregation of erythrocytes. The relation of the effects on artificial and biological membranes, and the structural changes in the lipid phase of membrane are discussed.  相似文献   

16.
The mitogenic response of human peripheral lymphocytes to lectins can be decreased by brief treatment of the cells with lecithin-cholesterol liposomes. This fact indicates that the temporary increase of membrane fluidity, which occurs within 30 min after addition of mitogenic lectins, is an important early event for the subsequent activation of lymphocytes. This temporary increase of membrane fluidity is accompanied by neither a decrease in cellular cholesterol level nor by particular acceleration of the incorporation of polyunsaturated fatty acids into phospholipids. These facts suggest that this change in membrane fluidity is not due to the alteration of membrane lipid composition, but can be regarded as a result of temporary perturbation of membrane lipid bilayers induced by binding of the lectins to their membrane receptors.  相似文献   

17.
The shift of the carotenoid absorption spectrum induced by illumination and valinomycin-K+ addition was investigated in membrane structures with different characteristics and opposite sidednesses isolated from Rhodopseudomonas sphaeroides. Right-side-out membrane structures were prepared by isotonic lysozyme-EDTA treatment of the cells (spheroplasts) and by hypotonic treatment of spheroplasts (spheroplast membrane vesicles). Inside-out membrane structures ("chromatophores") were obtained by treating spheroplast membrane vesicles by French press or sonication. The membrane structures with either sidedness showed the same light-induced change of the "red shift" type. However, the absorbance change by K+ addition in the presence of valinomycin in the right-side-out membrane structures were opposite to that in the inverted vesicles, "blue shift" in the former and "red shift" in the latter. The carotenoid absorbance change was linear to membrane potential, calculated from the concentration of KCl added, with a reference on the cytoplasmic side, through positive and negative ranges.  相似文献   

18.
The effect of dietary phosphorus on intestinal calcium uptake was examined in duodenal cells isolated from vitamin D-deficient chicks. Cells from chicks on a high phosphorus diet accumulated calcium at a rate 38% higher than cells from animals on a normal phosphorus diet. Diet high in calcium did not affect calcium absorption in duodenal cells. The dietary phosphorus effect on calcium absorption was specific. Uptake of -methyl glucoside was not altered. Increase in calcium absorption by a high phosphorus diet was not due to a change in cellular energy metabolism nor to the content of phosphorus in cells. Kinetically, a high phosphorus diet increased the V max of calcium uptake; the affinity for calcium was unaffected. The effectiveness of dietary phosphorus to enhance the intestinal calcium uptake could also be demonstrated in brush border membrane vesicles. The increase in calcium uptake was not due to an alteration in membrane binding capacity nor to calcium efflux from vesicles. To test the hypothesis that a high phosphorus diet may affect membrane transport by altering phospholipid metabolism in duodenal cells, we examined the phospholipid content in isolated brush border membranes. The content of phosphatidylcholine, phosphatidylserine, phosphatidyinositol and phosphatidylethanolamine was not altered by the high phosphorus diet. These findings suggest that the vitamin D-independent and dietary phosphorus-dependent effect on intestinal calcium absorption was primarily due to a change in the calcium flux at the luminal side of the cells. However, the precise mechanism is still not clear.  相似文献   

19.
A study was conducted to determine the effects of freezing on the major membrane proteins of isolated human erythrocyte membranes. Membranes in low or normal ionic strength medium were frozen at slow or fast freezing rates. The membrane protein composition and elution of proteins from the membranes were studied utilizing polyacrylamide-gel electrophoresis in a sodium dodecyl sulfate or an acetic acid-urea-phenol solvent system. Neither a change in the composition of the membrane proteins nor any elution of membrane protein during freezing and thawing was observed. The data indicate that any human erythrocyte membrane damage during freezing and thawing was not related to a change in major membrane protein composition. Human red cell membranes were stable at ?80 or ?196 °C in the absence of a cryoprotective agent.  相似文献   

20.
The content of phospholipids in chromatin, nuclear matrix, and nuclear membrane from wheat (Triticum aestivum L.) embryos was studied. Subfractions of intact nuclei from dry embryos were shown to differ in the content and composition of particular phospholipids. Embryo germination resulted in the redistribution of phospholipid between nuclear subfractions. A functional role of structural changes in the nuclear membrane due to this phospholipid redistribution is discussed. It is supposed that these rearrangements change nuclear membrane permeability and its surface charge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号