首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
John A. Cairns 《CMAJ》1977,117(3):255-262
The majority of in-hospital deaths from acute myocardial infarction occur as a result of the “power failure” syndrome (severe congestive heart failure and cardiogenic shock), which results from extensive loss of myocardium. The death of myocardial cells is sequential over many hours. Surrounding the central zone of necrosis in an acute myocardial infarction is a zone of ischemic myocardium whose fate might be altered by interventions during the early phase of the infarction. ST-segment mapping, serial measurement of the serum concentration of creatine phosphokinase and myocardial imaging by means of radionuclides are being developed for the noninvasive assessment of infarct size in animals and humans. A number of interventions appear to limit infarct size in animals. There have been relatively few studies in humans to date, but preliminary results suggest that infarct size might be limited by certain interventions. The research has provided important practical benefits in terms of understanding the course of acute myocardial infarction and the potential effects of conventional therapies. For the present, interventions designed to limit infarct size remain in the realm of clinical research; routine clinical use would be inappropriate.  相似文献   

2.
Stimulation of cardiac beta(2)-adrenergic receptor (beta(2)-AR) or delta-opioid receptor (DOR) exerts a similar degree of cardioprotection against myocardial ischemia in experimental models. We hypothesized that delta-opioid-initiated cardioprotection is mediated by the intrinsic cardiac adrenergic (ICA) cell via enhanced epinephrine release. Using immunohistochemical and in situ hybridization methods, we detected in situ tyrosine hydroxylase (TH) mRNA and TH immunoreactivity that was colocalized with DOR immunoreactivity in ICA cells in human and rat hearts. Western blot analysis detected DOR protein in ICA cells isolated from rat ventricular myocytes. The physiology of DOR expression was examined by determining changes of cytosolic Ca(2+) concentration ([Ca(2+)](i)) transients in isolated rat ICA cells using fluorescence spectrophotometry. Exposing the selective delta-opioid agonist D-[Pen(2,5)]enkephalin (DPDPE) to ICA cells increased [Ca(2+)](i) transients in a concentration-dependent manner. Such an effect was abolished by the Ca(2+) channel blocker nifedipine. HPLC-electrochemical detection demonstrated a 2.4-fold increase in epinephrine release from ICA cells following DPDPE application. The significance of the ICA cell and its epinephrine release in delta-opioid-initiated cardioprotection was demonstrated in the rat myocardial infarction model and ICA cell-ventricular myocyte coculture. DPDPE administered before coronary artery occlusion or simulated ischemia-reperfusion reduced left ventricular infarct size by 54 +/- 15% or myocyte death by 26 +/- 4%, respectively. beta(2)-AR blockade markedly attenuated delta-opioid-initiated infarct size-limiting effect and abolished delta-opioid-initiated myocyte survival protection in rat ICA cell-myocyte coculture. Furthermore, delta-opioid agonist exerted no myocyte survival protection in the absence of cocultured ICA cells during ischemia-reperfusion. We conclude that delta-opioid-initiated myocardial infarct size reduction is primarily mediated via endogenous epinephrine/beta(2)-AR signaling pathway as a result of ICA cell activation.  相似文献   

3.
The objective of this study was to determine the feasibility of delayed-enhancement micro-computed tomography (microCT) imaging to quantify myocardial infarct size in experimental mouse models. A total of 20 mice were imaged 5 or 35 days after surgical ligation of the left coronary artery or sham surgery (n=6 or 7 per group). We utilized a prototype microCT that covers a three-dimensional (3D) volume with an isotropic spatial resolution of 100 microm. A series of image acquisitions were started after a 200 microl bolus of a high-molecular-weight blood pool CT agent to outline the ventricles. CT imaging was continuously performed over 60 min, while an intravenous constant infusion with iopamidol 370 was started at a dosage of 1 ml/h. Thirty minutes after the initiation of this infusion, signal intensity in Hounsfield units was significantly higher in the infarct than in the remote, uninjured myocardium. Cardiac morphology and motion were visualized with excellent contrast and in fine detail. In vivo CT determination of infarct size at the midventricular level was in good agreement with ex vivo staining with triphenyltetrazolium chloride [5 days post-myocardial infarction (MI): r(2)=0.86, P<0.01; 35 days post-MI: r(2)=0.92, P<0.01]. In addition, we detected significant left ventricular remodeling consisting of left ventricular dilation and decreased ejection fraction. 3D cine microCT reliably and rapidly quantifies infarct size and assesses murine anatomy and physiology after coronary ligation, despite the small size and fast movement of the mouse heart. This efficient imaging tool is a valuable addition to the current phenotyping armamentarium and will allow rapid testing of novel drugs and cell-based interventions in murine models.  相似文献   

4.

Background

Cardiac biomarkers are routinely obtained in the setting of suspected myocardial ischemia and infarction. Evidence suggests these markers may correlate with functional and clinical outcomes, but the strength of this correlation is unclear. The relationship between enzyme measures of myocardial necrosis and left ventricular performance and adverse clinical outcomes were explored.

Methods

Creatine kinase (CK) and CK-MB data were analyzed, as were left ventricular ejection fraction (LVEF) by angiogram, and infarct size by single-photon emission computed tomography (SPECT) imaging in patients in 2 trials: Prompt Reperfusion In Myocardial-infarction Evolution (PRIME), and Efegatran and Streptokinase to Canalize Arteries Like Accelerated Tissue plasminogen activator (ESCALAT). Both trials evaluated efegatran combined with thrombolysis for treating acute ST-segment elevation myocardial infarction (STEMI).

Results

Peak CK and CK area-under-the-curve (AUC) correlated significantly with SPECT-determined infarct size 5 to 10 days after enrollment. Peak CK had a statistically significant correlation with LVEF, but CK-AUC and LVEF correlation were less robust. Statistically significant correlations exist between SPECT-determined infarct size and peak CK-MB and CK-MB AUC. However, there was no correlation with LVEF for peak CK-MB and CK-MB AUC. The combined outcome of congestive heart failure and death were significantly associated with CK AUC, CK-MB AUC, peak CK, and peak CK-MB measurements.

Conclusion

Peak CK and CK-MB values and AUC calculations have significant correlation with functional outcomes (LVEF- and SPECT-determined infarct size) and death or CHF outcomes in the setting of STEMI. Cardiac biomarkers provide prognostic information and may serve as valid endpoint measurements for phase II clinical trials.  相似文献   

5.
Myocardial infarction is one of the leading causes of death in the Western world. The similarity of the mouse heart to the human heart has made it an ideal model for testing novel therapeutic strategies.In vivo magnetic resonance imaging (MRI) gives excellent views of the heart noninvasively with clear anatomical detail, which can be used for accurate functional assessment. Contrast agents can provide basic measures of tissue viability but these are nonspecific. Positron emission tomography (PET) is a complementary technique that is highly specific for molecular imaging, but lacks the anatomical detail of MRI. Used together, these techniques offer a sensitive, specific and quantitative tool for the assessment of the heart in disease and recovery following treatment.In this paper we explain how these methods are carried out in mouse models of acute myocardial infarction. The procedures described here were designed for the assessment of putative protective drug treatments. We used MRI to measure systolic function and infarct size with late gadolinium enhancement, and PET with fluorodeoxyglucose (FDG) to assess metabolic function in the infarcted region. The paper focuses on practical aspects such as slice planning, accurate gating, drug delivery, segmentation of images, and multimodal coregistration. The methods presented here achieve good repeatability and accuracy maintaining a high throughput.  相似文献   

6.
The admission electrocardiogram (ECG) was studied in 898 patients admitted to a coronary care unit over two years. The diagnosis made from this tracing was compared with that made at the end of the patient''s stay. About half the cases of recent myocardial infarct were diagnosed from the admission ECG, but accuracy rose to 83% with serial ECG''s in the unit. The ECG is important but not entirely reliable in the early detection of acute myocardial infarction, which should be largely a clinical diagnosis.  相似文献   

7.
近年来,超声(ultrasound, US)、CT冠状动脉造影(CT coronary angiography, CCTA)、血管内超声(intravenous ultrasound,IVUS)、光学相干断层成像(optical coherence tomography, OCT)、多层螺旋CT成像(multi-slice computed tomography, MSCT)、单光子发射计算机断层成像(single-photon emission computed tomography, SPECT)、正电子发射计算机断层成像(positron emission computed tomography, PET)及心脏磁共振(cardiac magnetic resonance, CMR)等多种心血管成像技术能够提供与冠脉病变及心肌形态和功能相关的解剖学、血流动力学、细胞生物学及病理生理学等方面的重要信息,在缺血性心肌病的临床诊疗及预后评估中发挥着日益重要的作用。然而,如何恰当选择的多模态心血管影像技术是临床医师面临的一大难题。因此,本文在归纳总结主要心血管成像技术临床应用进展的基础上,对多模态心血管影像学在缺血性心肌病相关的冠脉解剖与斑块成像、心肌功能、心肌灌注及心肌活性显像中的临床应用价值进行综述。旨在帮助临床医师客观认识各种成像技术的优势与不足,从而制定最优化的选择方案。  相似文献   

8.
Acetaminophen, the active ingredient in Tylenol, is a widely used drug that is well known for its analgesic and antipyretic properties. Acetaminophen is a commonly used alternative to nonsteroidal anti-inflammatory drugs, which have recently been demonstrated to increase mortality after acute myocardial infarction (AMI). The safety and potential cardioprotective properties of acetaminophen in the setting of AMI have recently been investigated; however, the results from these studies have been inconclusive. Using both large (ovine) and small (rabbit) collateral-deficient animal models, we studied the effects of acetaminophen in the setting of reperfused AMI. In both species we studied the effects of acetaminophen on myocardial salvage and ventricular function. Additionally, we studied the effects of acetaminophen on myocardial perfusion in sheep and on myocyte apoptosis in rabbits. Sixteen sheep and twenty-two rabbits were divided into two groups and administered acetaminophen or a vehicle before undergoing ischemia and reperfusion. The ischemic period was 60 min in sheep and 30 min in rabbits. All animals were reperfused for 3 h. There were no significant differences observed in myocardial perfusion, myocyte apoptosis, or infarct size in acetaminophen-treated animals. Acetaminophen increased cardiac output and mean arterial pressure before ischemia in sheep but had no effect on any other hemodynamic parameter. In rabbits, no effect on cardiac output or blood pressure was detected. These results support the role of acetaminophen as a safe drug in the postmyocardial infarction setting; however, no significant cardioprotective effect of the drug could be demonstrated.  相似文献   

9.
Positive myocardial imaging was undertaken on 120 unselected patients admitted to a coronary care unit with clinical suspicion of acute myocardial infarction. Multipurpose mobile gamma-cameras were used for serial imaging after administration of 99mtechnetium-labelled imidodiphosphonate, a low-cost radiopharmaceutical that is 97% specific for myocardial necrosis, with myocardial uptake and blood clearance most suitable for myocardial imaging. The sensitivty of detection was 94% for patients whose infarction was unequivocal on the ECG; when the presence of raised enzyme concentrations was also used as a criterion for myocardial necrosis, the overall sensitivity for all 120 patients remained 94%. In 73 patients (61%), whose ECGs were unhelpful or difficult to interpret, scintigraphy allowed infarction to be diagnosed in 11 (15%) and to be excluded in five (7%). In 32 (44%) of this group whose ECGs were totally uninterpretable due to previous myocardial damage or disorders of electrical activation, scintigraphy provided confirmation of a diagnosis that otherwise rested only on whether enzyme concentrations were raised. Myocardial imaging is thus a useful technique that permits more definite diagnosis in patients for whom ECG and enzyme data are uncertain.  相似文献   

10.
The diagnostic capacities of 99mTc-pyrophosphate plane myocardial scintigraphy versus 99mTc-pyrophosphate single photon emission computed tomography (SPECT) were compared. Recording right precordial ECG leads showed that 26 patients had right ventricular myocardial infarction (MI)-typical changes as ST-segment evaluation, followed by abnormal Q wave. Plane scintigraphy indicated a characteristic inclusion of 99mTc-pyrophosphate into the right ventricular myocardium in 18.8% of the patients with acute lower MI and in one of 38 patients with acute MI of the anterior left ventricular wall. SPECT revealed a characteristic inclusion of 99mTc-pyrophosphate into the right ventricular myocardium much more frequently than did plane myocardial scintigraphy--in 34% of cases. Right ventricular myocardial inclusion of 99mTc-pyrophosphate was found in 50% of the patients with acute lower MI, including all 9 patients with positive 99mTc-pyrophosphate myocardial scintigraphy. Thus, the sensitivity of SPECT in the diagnosis of right ventricular MI is somewhat higher than that of precordial ECG and more than thrice higher than that of plane scintigraphy.  相似文献   

11.
Acute myocardial infarction is being recognized as a spectrum of clinical subsets. This appreciation has been brought about to a large degree by the development of several new tools that can be applied clinically to aid in evaluation of patients with acute infarction, and in some cases to provide short and long-term prognostic information. In the realm of noninvasive methods, several tests utilizing radiopharmaceuticals and scintillation cameras have emerged and are rapidly becoming reliable diagnostic parameters in patients with coronary disease and infarction. Technetium 99m (stannous) pyrophosphate (TcPYP) scintigraphy, one of the first of these techniques to find clinical use, has been shown to be an accurate indicator of acute transmural myocardial infarction and provides added sensitivity and specificity to the diagnosis. Increased diagnostic accuracy, the dimension of visible localization and the potential for infarct sizing promise physicians better understanding of a patient''s clinical presentation and a more rational approach to management.  相似文献   

12.
Thallium-201 (201T1) myocardial perfusion imaging allows definition of zones of myocardial infarction and ischemia. The temporal changes in sequential quantitative 201T1 infarct imaging was studied 4 and 24 hours in dogs subjected to closed-chest anterior wall myocardial infarction. A temporal decrease in 201T1 imaged infarct areas was noted in 10 of 13 animals. In no animal did the infarct area increase. The imaged infarct area decreased by an average of 30% from 12.9 ± 6.2 cm2 at 4 hours to 9.1 ± 5.1 cm2 at 24 hours (p < 0.001), and involved 34 ± 16% of the total 201T1 left ventricular distribution at 4 hours and 22 ± 14% at 24 hours (p < 0.001). The magnitude of temporal change in imaged infarct area was not predicted by initial image defect or final histopathologic infarct size. Thus, the results of 201T1 infarct imaging in the early period of infarction are clearly dependent upon the time at which the procedure is performed.  相似文献   

13.
Cytochrome P-450 (CYP) omega-hydroxylases and their arachidonic acid (AA) metabolite, 20-hydroxyeicosatetraenoic acid (20-HETE), produce a detrimental effect on ischemia-reperfusion injury in canine hearts, and the inhibition of CYP omega-hydroxylases markedly reduces myocardial infarct size expressed as a percentage of the area at risk (IS/AAR, %). In this study, we demonstrated that a specific CYP omega-hydroxylase inhibitor, N-methylsulfonyl-12,12-dibromododec-11-enamide (DDMS), markedly reduced 20-HETE production during ischemia-reperfusion and reduced myocardial infarct size compared with control [19.5 +/- 1.0% (control), 9.6 +/- 1.5% (0.40 mg/kg DDMS), 4.0 +/- 2.0% (0.81 mg/kg DDMS), P < 0.01]. In addition, 20-hydroxyeicosa-6(Z),15(Z)-dienoic acid (20-HEDE, a putative 20-HETE antagonist) significantly reduced myocardial infarct size from control [10.3 +/- 1.3% (0.032 mg/kg 20-HEDE) and 5.9 +/- 1.9% (0.064 mg/kg 20-HEDE), P < 0.05]. We further demonstrated that one 5-min period of ischemic preconditioning (IPC) reduced infarct size to a similar extent as that observed with the high doses of DDMS and 20-HEDE, and the higher dose of DDMS given simultaneously with IPC augmented the infarct size reduction [9.9 +/- 2.8% (IPC) to 2.5 +/- 1.4% (0.81 mg/kg DDMS), P < 0.05] to a greater degree than that observed with either treatment alone. These results suggest an important negative role for endogenous CYP omega-hydroxylases and their product, 20-HETE, to exacerbate myocardial injury in canine myocardium. Furthermore, for the first time, this study demonstrates that the effect of IPC and the inhibition of CYP omega-hydroxylase synthesis (DDMS) or its actions (20-HEDE) may have additive effects in protecting the canine heart from ischemia-reperfusion injury.  相似文献   

14.
Cardiovascular magnetic resonance is considered the standard imaging modality in clinical trials to monitor patients after acute myocardial infarction. However, limited data are available with respect to infarct size, presence and extent of microvascular injury (MVO) and changes over time, in relation to cardiac function in optimally treated patients. In the current study we prospectively investigate the change of infarct size over time, and the incidence and significance of MVO in a uniform, optimally treated patient group after AMI. (Neth Heart J 2008;16:179-81.)  相似文献   

15.
Previous studies indicate that deficiency of endothelial nitric oxide (NO) synthase (eNOS)-derived NO exacerbates myocardial reperfusion injury. We hypothesized that overexpression of eNOS would reduce the extent of myocardial ischemia-reperfusion (MI/R) injury. We investigated two distinct strains of transgenic (TG) mice overexpressing the eNOS gene (eNOS TG). Bovine eNOS was overexpressed in one strain (eNOS TG-Kobe), whereas the human eNOS gene was overexpressed in the other strain (eNOS TG-RT). Non-TG (NTG) and eNOS TG mice were subjected to 30 min of coronary artery occlusion followed by 24 h of reperfusion, and the extent of myocardial infarction was determined. Myocardial infarct size was reduced by 33% in the eNOS TG-Kobe strain (P < 0.05 vs. NTG) and by 32% in the eNOS TG-RT strain (P < 0.05 vs. NTG). However, postischemic cardiac function (cardiac output, fractional shortening) was not improved in the eNOS TG-Kobe mouse at 24 h of reperfusion [P = not significant (NS) vs. NTG]. In additional studies, eNOS TG-Kobe mice were subjected to 30 min of myocardial infarction and 7 days of reperfusion. Fractional shortening and the first derivative of left ventricular pressure were measured in eNOS TG-Kobe and NTG mice, and no significant differences in contractility were observed (P = NS) between the eNOS TG mice and NTG controls. Left ventricular end-diastolic pressure was significantly (P < 0.05 vs. NTG) reduced in the eNOS TG-Kobe strain at 7 days of reperfusion. The cardioprotective effects of eNOS overexpression on myocardial infarct size were ablated by Nomega-nitro-l-arginine methyl ester (300 mg/kg) pretreatment. Thus genetic overexpression of eNOS in mice attenuates myocardial infarction after MI/R but fails to significantly protect against postischemic myocardial contractile dysfunction in mice.  相似文献   

16.
An important aspect of the diagnostic and prognostic work-up of patients with ischaemic cardiomyopathy is the assessment of myocardial viability. Patients with left ventricular dysfunction who have viable myocardium are the patients at highest risk because of the potential for ischaemia but at the same time benefit most from revascularisation. It is important to identify viable myocardium in these patients, and radionuclide myocardial scintigraphy is an excellent tool for this. Single-photon emission computed tomography perfusion scintigraphy (SPECT), whether using 201thallium, 99mTc-sestamibi, or 99mTc- tetrofosmin, in stress and/or rest protocols, has consistently been shown to be an effective modality for identifying myocardial viability and guiding appropriate management.Metabolic and perfusion imaging with positron emission tomography radiotracers frequently adds additional information and is a powerful tool for predicting which patients will have an improved outcome from revascularisation. New techniques in the nuclear cardiology field, such as attenuation corrected SPECT, dual isotope simultaneous acquisition (DISA) SPECT and gated FDG PET are promising and will further improve the detection of myocardial viability. Also the combination of multislice computed tomography scanners with PET opens possibilities of adding coronary calcium scoring and noninvasive coronary angiography to myocardial perfusion imaging and quantification.  相似文献   

17.
The alphavbeta3-integrin is expressed in angiogenic vessels in response to hypoxia and represents a potential novel target for imaging myocardial angiogenesis. This study evaluated the feasibility of noninvasively tracking hypoxia-induced alphavbeta3-integrin activation within the myocardium as a marker of angiogenesis early after myocardial infarction. Acute myocardial infarction was produced by coronary artery occlusion in rodent and canine studies. A novel (111)In-labeled radiotracer targeted at the alphavbeta3-integrin ((111)In-RP748) was used to localize regions of hypoxia-induced angiogenesis early after infarction. In rodent studies, the specificity of (111)In-RP748 for alphavbeta3-integrin was confirmed with a negative control compound ((111)In-RP790), and regional uptake of these compounds correlated with (201)Tl perfusion and a (99m)Tc-labeled nitroimidazole (BRU59-21), which was used as a quantitative marker of myocardial hypoxia. The ex vivo analysis demonstrated that only (111)In-RP748 was selectively retained in infarcted regions with reduced (201)Tl perfusion and correlated with uptake of BRU59-21. In canine studies, myocardial uptake of (111)In-RP748 was assessed using in vivo single-photon-emission computed tomography (SPECT), ex vivo planar imaging, and gamma well counting of myocardial tissue and correlated with (99m)Tc-labeled 2-methoxy-2-methyl-propyl-isonitrile ((99m)Tc-sestamibi) perfusion. Dual-radiotracer in vivo SPECT imaging of (111)In-RP748 and (99m)Tc-sestamibi provided visualization of (111)In-RP748 uptake within the infarct region, which was confirmed by ex vivo planar imaging of excised myocardial slices. Myocardial (111)In-RP748 retention was associated with histological evidence of alphavbeta3-integrin expression/activation in the infarct region. (111)In-RP748 imaging provides a novel noninvasive approach for evaluation of hypoxia-induced alphavbeta3-integrin activation in myocardium early after infarction and may prove useful for directing and evaluating angiogenic therapies in patients with ischemic heart disease.  相似文献   

18.
Recent studies from our lab and others have shown that the hematopoietic cytokine erythropoietin (EPO) can protect the heart from ischemic damage in a red blood cell-independent manner. Here we examined any protective effects of the long-acting EPO analog darbepoetin alfa (DA) in a rat model of ischemia-reperfusion (I/R) injury. Rats were subjected to 30-min ischemia followed by 72-h reperfusion. In a dose-response study, DA (2, 7, 11, and 30 mug/kg) or vehicle was administered as a single bolus at the start of ischemia. To determine the time window of potential cardioprotection, a single high dose of DA (30 mug/kg) was given at either the initiation or the end of ischemia or at 1 or 24 h after reperfusion. After 3 days, cardiac function and infarct size were assessed. Acute myocyte apoptosis was quantified by TUNEL staining on myocardial sections and by caspase-3 activity assays. DA significantly reduced infarct size from 32.8 +/- 3.5% (vehicle) to 11.0 +/- 3.3% in a dose-dependent manner, while there was no difference in ischemic area between groups. Treatment with DA as late as 24 h after the beginning of reperfusion still demonstrated a significant reduction in infarct size (17.0 +/- 1.6%). Consistent with infarction data, DA improved in vivo cardiac reserve compared with vehicle. Finally, DA significantly decreased myocyte apoptosis and caspase-3 activity after I/R. These data indicate that DA protects the heart against I/R injury and improves cardiac function, apparently through a reduction of myocyte apoptosis. Of clinical importance pointing toward a relevant therapeutic utility, we report that even if given 24 h after I/R injury, DA can significantly protect the myocardium.  相似文献   

19.
In spite of the current optimal therapy, the mortality of patients with ischemic heart disease (IHD) remains high, particularly in cases with diabetes mellitus (DM) as a co-morbidity. Myocardial infarct size is a major determinant of prognosis in IHD patients, and development of a novel strategy to limit infarction is of great clinical importance. Ischemic preconditioning (PC), postconditioning (PostC) and their mimetic agents have been shown to reduce infarct size in experiments using healthy animals. However, a variety of pharmacological agents have failed to demonstrate infarct size limitation in clinical trials. One of the possible reasons for the discrepancy between the results of animal experiments and clinical trials is that co-morbidities, including DM, modified myocardial responses to ischemia/reperfusion and to cardioprotective agents. Here we summarize observations of the effects of DM on myocardial infarct size and ischemic PC and PostC and discuss perspectives for protection of DM hearts.  相似文献   

20.
Clinical studies have demonstrated the predictive values of changes in electrocardiographic (ECG) parameters for the preexisting myocardial ischemic infarction. However, a simple and early predictor for the subsequent development of myocardial infarction during the ischemic phase is of significant value for the identification of ischemic patients at high risk. The present study was undertaken by using non-human primate model of myocardial ischemic infarction to fulfill this gap. Twenty male Rhesus monkeys at age of 2–3 years old were subjected to left anterior descending artery ligation. This ligation was performed at varying position along the artery so that it produced varying sizes of myocardial infarction at the late stage. The ECG recording was undertaken before the surgical procedure, at 2 h after the ligation, and 8 weeks after the surgery for each animal. The correlation of the changes in the ECG waves in the early or the late stage with the myocardial infarction size was analyzed. The R wave depression and the QT shortening in the early ischemic stage were found to have an inverse correlation with the myocardial infarction size. At the late stage, the R wave depression, the QT prolongation, the QRS score, and the ST segment elevation were all closely correlated with the developed infarction size. The poor R wave progression was identified at both the early ischemic and the late infarction stages. Therefore, the present study using non-human primate model of myocardial ischemic infarction identified the decreases in the R wave and the QT interval as early predictors of myocardial infarction. Validation of these parameters in clinical studies would greatly help identifying patients with myocardial ischemia at high risk for the subsequent development of myocardial infarction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号