首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanisms of transport and distribution of nucleotide sugars in the cell remain unclear. In an attempt to further characterize nucleotide sugar transporters (NSTs), we determined the subcellular localization of overexpressed epitope-tagged canine UDP-GlcNAc transporter, human UDP-Gal transporter splice variants (UGT1 and UGT2), and human SLC35B4 transporter splice variants (longer and shorter version) by indirect immunofluorescence using an experimental model of MDCK wild-type and MDCK-RCA(r) mutant cells. Our studies confirmed that the UDP-GlcNAc transporter was localized to the Golgi apparatus only and its localization was independent of the presence of endogenous UDP-Gal transporter. After overexpression of UGT1, the protein colocalized with the Golgi marker only. When UGT2 was overexpressed, the protein colocalized with the endoplasmic reticulum (ER) marker only. When UGT1 and UGT2 were overexpressed in parallel, UGT1 colocalized with the ER and Golgi markers and UGT2 with the ER marker only. This suggests that localization of the UDP-Gal transporter may depend on the presence of the partner splice variant. Our data suggest that proteins involved in nucleotide sugar transport may form heterodimeric complexes in the membrane, exhibiting different localization which depends on interacting protein partners. In contrast to previously published data, both splice variants of the SLC35B4 transporter were localized to the ER, independently of the presence of endogenous UDP-Gal transporter.  相似文献   

2.
We previously isolated the Saccharomyces cerevisiae HKR1 gene that confers on S. cerevisiae cells resistance to HM-1 killer toxin secreted by Hansenula mrakii (S. Kasahara, H. Yamada, T. Mio, Y. Shiratori, C. Miyamoto, T. Yabe, T. Nakajima, E. Ichishima, and Y. Furuichi, J. Bacteriol. 176:1488-1499, 1994). HKR1 encodes a type 1 membrane protein that contains a calcium-binding consensus sequence (EF hand motif) in the cytoplasmic domain. Although the null mutation of HKR1 is lethal, disruption of the 3' part of the coding region, which would result in deletion of the cytoplasmic domain of Hkr1p, did not affect the viability of yeast cells. This partial disruption of HKR1 significantly reduced beta-1,3-glucan synthase activity and the amount of beta-1,3-glucan in the cell wall and altered the axial budding pattern of haploid cells. Neither chitin synthase activity nor chitin content was significantly affected in the cells harboring the partially disrupted HKR1 allele. Immunofluorescence microscopy with an antibody raised against Hkr1p expressed in Escherichia coli revealed that Hkr1p was predominantly localized on the cell surface. The cell surface localization of Hkr1p required the N-terminal signal sequence because the C-terminal half of Hkr1p was detected uniformly in the cells. These results demonstrate that HKR1 encodes a cell surface protein that regulates both cell wall beta-glucan synthesis and budding pattern and suggest that bud site assembly is somehow related to beta-glucan synthesis in S. cerevisiae.  相似文献   

3.
4.
The enzyme, l-glutamine d-fructose 6-phosphate amidotransferase (EC 2.6.1.16) of Neurospora crassa, which catalyzes the formation of glucosamine 6-phosphate was shown to be subject to feedback inhibition by uridine diphosphate N-acetyl-d-glucosamine (UDP-GlcNAc). The conclusion is based on the following observations. UDP-GlcNAc, the direct precursor of chitin, did not accumulate in the cell even when its utilization for the synthesis of cell wall chitin was interrupted by the antibiotic polyoxin D, a competitive inhibitor of the chitin synthetase (EC 2.4.1.16). Furthermore, the cellular level of UDP-GlcNAc rose in a short period of time when the amidotransferase was bypassed in vivo by the addition of glucosamine to the growing medium of the fungus. The amidotransferase was purified from N. crassa approximately 85-fold. Kinetic studies showed that UDP-GlcNAc was a potent and specific inhibitor of the amidotransferase, and that it did not alter the Michaelis constant for either l-glutamine or d-fructose 6-phosphate, suggesting that the inhibitor binds at a site on the enzyme distinct from the active site.  相似文献   

5.
The synthesis and biological evaluation of a new UDP-GlcNAc competitor (I), designed to mimic the transition state of the sugar donor in the enzymatic reaction catalysed by chitin synthetase, is described. Compound (I) was found to competitively inhibit chitin synthetase from Saccharomyces cerevisiae with respect to UDP-GlcNAc, but displayed minimal antifungal activity.  相似文献   

6.
The Kluyveromyces lactis UDP-GlcNAc transporter (KlMnn2-2p) is responsible for the biosynthesis of N-glycans containing N-acetylglucosamine. A putative gene of Hansenula polymorpha encoding a KlMnn2-2p homologue, HpMNN2-2, was identified and investigated for its function. The deletion mutant strain of HpMNN2-2 (Hpmnn2-2Δ) showed increased sensitivity to geneticin, hygromycin B, and tunicamycin. However, the Hpmnn2-2Δ strain exhibited increased resistance to Calcofluor white, an inhibitor of chitin biosynthesis, along with a reduced chitin content. The localization of HpMnn2-2p at the endoplasmic reticulum-enriched membrane, different from the Golgi localization of a K. lactis homologue, further supports the involvement of HpMnn2-2p in cell wall chitin biosynthesis.  相似文献   

7.
Calcofluor is a fluorochrome that exhibits antifungal activity and a high affinity for yeast cell wall chitin. We isolated Saccharomyces cerevisiae mutants resistant to Calcofluor. The resistance segregated in a Mendelian fashion and behaved as a recessive character in all the mutants analyzed. Five loci were defined by complementation analysis. The abnormally thick septa between mother and daughter cells caused by Calcofluor in wild-type cells were absent in the mutants. The Calcofluor-binding capacity, observed by fluorescence microscopy, in a S. cerevisiae wild-type cells during alpha-factor treatment was also absent in some mutants and reduced in others. Staining of cell walls with wheat germ agglutinin-fluorescein complex indicated that the chitin uniformly distributed over the whole cell wall in vegetative or in alpha-factor-treated cells was almost absent in three of the mutants and reduced in the two others. Cell wall analysis evidenced a five- to ninefold reduction in the amount of chitin in mutants compared with that in the wild-type strain. The total amounts of cell wall mannan and beta-glucan in wild-type and mutant strains were similar; however, the percentage of beta-glucan that remained insoluble after alkali extraction was considerably reduced in mutant cells. The susceptibilities of the mutants and the wild-type strains to a cell wall enzymic lytic complex were rather similar. The in vitro levels of chitin synthase 2 detected in all mutants were similar to that in the wild type. The significance of these results is discussed in connection with the mechanism of chitin synthesis and cell wall morphogenesis in S. cerevisiae.  相似文献   

8.
In a screen for cell wall defects in Saccharomyces cerevisiae, we isolated a strain carrying a mutation in the Cdc28-activating kinase CAK1. The cak1P212S mutant cells exhibit multiple, elongated and branched buds, beta(1,3)glucan-poor regions of the cell periphery and lysed upon osmotic shock after treatment with the chitin synthase III inhibitor Nikkomycin Z. Ultrastructural examination of cak1P212S mutants revealed a thin, uneven cell wall and marked abnormalities in septum formation. In all of the above aspects, the cak1P212S mutants are similar to previously described cla4 mutants, suggesting that the cell wall defects are common to mutants with hyperpolarized growth. In cak1P212S mutants, chitin accumulates all over the surface of the cells and glucan synthase activity is located preferentially to the tips of elongated buds. We conclude that the cell wall weakness in cak1P212S mutants is caused by hyperpolarized secretion of glucan synthase and lack of reinforcement of the lateral cell walls. Showing that the defect depends at least in part on Cdc28, the cak1P212S hyperpolarized growth phenotype can be suppressed by a Cak1-independent Cdc28-allele. The results underline the importance of a minor cell wall component, the chitin of lateral walls, for the integrity of the cell in a stress situation.  相似文献   

9.
Glycosylphosphatidylinositol (GPI)-anchored proteins are cell surface-localized proteins that serve many important cellular functions. The pathway mediating synthesis and attachment of the GPI anchor to these proteins in eukaryotic cells is complex, highly conserved, and plays a critical role in the proper targeting, transport, and function of all GPI-anchored protein family members. In this article, we demonstrate that MCD4, an essential gene that was initially identified in a genetic screen to isolate Saccharomyces cerevisiae mutants defective for bud emergence, encodes a previously unidentified component of the GPI anchor synthesis pathway. Mcd4p is a multimembrane-spanning protein that localizes to the endoplasmic reticulum (ER) and contains a large NH2-terminal ER lumenal domain. We have also cloned the human MCD4 gene and found that Mcd4p is both highly conserved throughout eukaryotes and has two yeast homologues. Mcd4p's lumenal domain contains three conserved motifs found in mammalian phosphodiesterases and nucleotide pyrophosphases; notably, the temperature-conditional MCD4 allele used for our studies (mcd4-174) harbors a single amino acid change in motif 2. The mcd4-174 mutant (1) is defective in ER-to-Golgi transport of GPI-anchored proteins (i.e., Gas1p) while other proteins (i.e., CPY) are unaffected; (2) secretes and releases (potentially up-regulated cell wall) proteins into the medium, suggesting a defect in cell wall integrity; and (3) exhibits marked morphological defects, most notably the accumulation of distorted, ER- and vesicle-like membranes. mcd4-174 cells synthesize all classes of inositolphosphoceramides, indicating that the GPI protein transport block is not due to deficient ceramide synthesis. However, mcd4-174 cells have a severe defect in incorporation of [3H]inositol into proteins and accumulate several previously uncharacterized [3H]inositol-labeled lipids whose properties are consistent with their being GPI precursors. Together, these studies demonstrate that MCD4 encodes a new, conserved component of the GPI anchor synthesis pathway and highlight the intimate connections between GPI anchoring, bud emergence, cell wall function, and feedback mechanisms likely to be involved in regulating each of these essential processes. A putative role for Mcd4p as participating in the modification of GPI anchors with side chain phosphoethanolamine is also discussed.  相似文献   

10.
In Candida albicans wild-type cells, the beta1, 6-glucanase-extractable glycosylphosphatidylinositol (GPI)-dependent cell wall proteins (CWPs) account for about 88% of all covalently linked CWPs. Approximately 90% of these GPI-CWPs, including Als1p and Als3p, are attached via beta1,6-glucan to beta1,3-glucan. The remaining GPI-CWPs are linked through beta1,6-glucan to chitin. The beta1,6-glucanase-resistant protein fraction is small and consists of Pir-related CWPs, which are attached to beta1,3-glucan through an alkali-labile linkage. Immunogold labelling and Western analysis, using an antiserum directed against Saccharomyces cerevisiae Pir2p/Hsp150, point to the localization of at least two differentially expressed Pir2 homologues in the cell wall of C. albicans. In mnn9Delta and pmt1Delta mutant strains, which are defective in N- and O-glycosylation of proteins respectively, we observed enhanced chitin levels together with an increased coupling of GPI-CWPs through beta1,6-glucan to chitin. In these cells, the level of Pir-CWPs was slightly upregulated. A slightly increased incorporation of Pir proteins was also observed in a beta1, 6-glucan-deficient hemizygous kre6Delta mutant. Taken together, these observations show that C. albicans follows the same basic rules as S. cerevisiae in constructing a cell wall and indicate that a cell wall salvage mechanism is activated when Candida cells are confronted with cell wall weakening.  相似文献   

11.
In Saccharomyces cerevisiae most chitin is synthesized by Chs3p, which deposits chitin in the lateral cell wall and in the bud-neck region during cell division. We have recently found that addition of glucosamine (GlcN) to the growth medium leads to a three- to fourfold increase in cell wall chitin levels. We compared this result to the increases in cellular chitin levels associated with cell wall stress and with treatment of yeast with mating pheromone. Since all three phenomena lead to increases in precursors of chitin, we hypothesized that chitin synthesis is at least in part directly regulated by the size of this pool. This hypothesis was strengthened by our finding that addition of GlcN to the growth medium causes a rapid increase in chitin synthesis without any pronounced change in the expression of more than 6,000 genes monitored with Affymetrix gene expression chips. In other studies we found that the specific activity of Chs3p is higher in the total membrane fractions from cells grown in GlcN and from mutants with weakened cell walls. Sucrose gradient analysis shows that Chs3p is present in an inactive form in what may be Golgi compartments but as an active enzyme in other intracellular membrane-bound vesicles, as well as in the plasma membrane. We conclude that Chs3p-dependent chitin synthesis in S. cerevisiae is regulated both by the levels of intermediates of the UDP-GlcNAc biosynthetic pathway and by an increase in the activity of the enzyme in the plasma membrane.  相似文献   

12.
The Candida albicans plasma membrane plays important roles in cell growth and as a target for antifungal drugs. Analysis of Ca-Sur7 showed that this four transmembrane domain protein localized to stable punctate patches, similar to the plasma membrane subdomains known as eisosomes or MCC that were discovered in S. cerevisiae. The localization of Ca-Sur7 depended on sphingolipid synthesis. In contrast to S. cerevisiae, a C. albicans sur7Δ mutant displayed defects in endocytosis and morphogenesis. Septins and actin were mislocalized, and cell wall synthesis was very abnormal, including long projections of cell wall into the cytoplasm. Several phenotypes of the sur7Δ mutant are similar to the effects of inhibiting β-glucan synthase, suggesting that the abnormal cell wall synthesis is related to activation of chitin synthase activity seen under stress conditions. These results expand the roles of eisosomes by demonstrating that Sur7 is needed for proper plasma membrane organization and cell wall synthesis. A conserved Cys motif in the first extracellular loop of fungal Sur7 proteins is similar to a characteristic motif of the claudin proteins that form tight junctions in animal cells, suggesting a common role for these tetraspanning membrane proteins in forming specialized plasma membrane domains.  相似文献   

13.
The transport of nucleotide sugars from the cytoplasm into the Golgi apparatus is mediated by specialized type III proteins, the nucleotide sugar transporters (NSTs). Transport assays carried out in vitro with Golgi vesicles from mammalian cells showed specific uptake for a total of eight nucleotide sugars. When this study was started, NSTs with transport activities for all but two nucleotide sugars (UDP-Xyl and UDP-Glc) had been cloned. Aiming at identifying these elusive NSTs, bioinformatic methods were used to display putative NST sequences in the human genome. Ten open reading frames were identified, cloned, and heterologously expressed in yeast. Transport capabilities for UDP-Glc and UDP-Xyl were determined with Golgi vesicles isolated from transformed cells. Although a potential UDP-Glc transporter could not be identified due to the high endogenous transport background, the measurement of UDP-Xyl transport was possible on a zero background. Vesicles from yeast cells expressing the human gene SLC35B4 showed specific uptake of UDP-Xyl, and subsequent testing of other nucleotide sugars revealed a second activity for UDP-GlcNAc. Expression of the epitope-tagged SLC35B4 in mammalian cells demonstrated strict Golgi localization. Because decarboxylation of UDP-GlcA is known to produce UDP-Xyl directly in the endoplasmic reticulum and Golgi lumen, our data demonstrate that two ways exist to deliver UDP-Xyl to the Golgi apparatus.  相似文献   

14.
In Saccharomyces cerevisiae, the synthesis of chitin, a cell-wall polysaccharide, is temporally and spatially regulated with respect to the cell cycle and morphogenesis. Using immunological reagents, we found that steady-state levels of Chs1p and Chs3p, two chitin synthase enzymes, did not fluctuate during the cell cycle, indicating that they are not simply regulated by synthesis and degradation. Previous cell fractionation studies demonstrated that chitin synthase I activity (CSI) exists in a plasma membrane form and in intracellular membrane-bound particles called chitosomes. Chitosomes were proposed to act as a reservoir for regulated transport of chitin synthase enzymes to the division septum. We found that Chs1p and Chs3p resided partly in chitosomes and that this distribution was not cell cycle regulated. Pulse-chase cell fractionation experiments showed that chitosome production was blocked in an endocytosis mutant (end4-1), indicating that endocytosis is required for the formation or maintenance of chitosomes. Additionally, Ste2p, internalized by ligand-induced endocytosis, cofractionated with chitosomes, suggesting that these membrane proteins populate the same endosomal compartment. However, in contrast to Ste2p, Chs1p and Chs3p were not rapidly degraded, thus raising the possibility that the temporal and spatial regulation of chitin synthesis is mediated by the mobilization of an endosomal pool of chitin synthase enzymes.  相似文献   

15.
It has been proposed that synthesis of beta-1,6-glucan, one of Saccharomyces cerevisiae cell wall components, is initiated by a uridine diphosphate (UDP)-glucose-dependent reaction in the lumen of the endoplasmic reticulum (ER). Because this sugar nucleotide is not synthesized in the lumen of the ER, we have examined whether or not UDP-glucose can be transported across the ER membrane. We have detected transport of this sugar nucleotide into the ER in vivo and into ER-containing microsomes in vitro. Experiments with ER-containing microsomes showed that transport of UDP-glucose was temperature dependent and saturable with an apparent Km of 46 microM and a Vmax of 200 pmol/mg protein/3 min. Transport was substrate specific because UDP-N-acetylglucosamine did not enter these vesicles. Demonstration of UDP-glucose transport into the ER lumen in vivo was accomplished by functional expression of Schizosaccharomyces pombe UDP-glucose:glycoprotein glucosyltransferase (GT) in S. cerevisiae, which is devoid of this activity. Monoglucosylated protein-linked oligosaccharides were detected in alg6 or alg5 mutant cells, which transfer Man9GlcNAc2 to protein; glucosylation was dependent on the inhibition of glucosidase II or the disruption of the gene encoding this enzyme. Although S. cerevisiae lacks GT, it contains Kre5p, a protein with significant homology and the same size and subcellular location as GT. Deletion mutants, kre5Delta, lack cell wall beta-1,6 glucan and grow very slowly. Expression of S. pombe GT in kre5Delta mutants did not complement the slow-growth phenotype, indicating that both proteins have different functions in spite of their similarities.  相似文献   

16.
The activities of signaling pathways are critical for fungi to survive antifungal attack and to maintain cell integrity. However, little is known about how fungi respond to antifungals, particularly if these interact with multiple cellular targets. The antifungal protein AFP is a very potent inhibitor of chitin synthesis and membrane integrity in filamentous fungi and has so far not been reported to interfere with the viability of yeast strains. With the hypothesis that the susceptibility of fungi toward AFP is not merely dependent on the presence of an AFP-specific target at the cell surface but relies also on the cell's capacity to counteract AFP, we used a genetic approach to decipher defense strategies of the naturally AFP-resistant strain Saccharomyces cerevisiae. The screening of selected strains from the yeast genomic deletion collection for AFP-sensitive phenotypes revealed that a concerted action of calcium signaling, TOR signaling, cAMP-protein kinase A signaling, and cell wall integrity signaling is likely to safeguard S. cerevisiae against AFP. Our studies uncovered that the yeast cell wall gets fortified with chitin to defend against AFP and that this response is largely dependent on calcium/Crz1p signaling. Most importantly, we observed that stimulation of chitin synthesis is characteristic for AFP-resistant fungi but not for AFP-sensitive fungi, suggesting that this response is a successful strategy to protect against AFP. We finally propose the adoption of the damage-response framework of microbial pathogenesis for the interactions of antimicrobial proteins and microorganisms in order to comprehensively understand the outcome of an antifungal attack.  相似文献   

17.
Congo red binds to the cell wall and inhibits the growth of yeast. In a screening for multicopy suppressor genes of Congo red hypersensitivity of erd1Delta mutant, we found that a previously uncharacterized gene, YBR005w, makes most of the Saccharomyces cerevisiae strains resistant to Congo red. This gene was named RCR1 (resistance to Congo red 1). An rcr1Delta null mutant showed an increased sensitivity to Congo red. RCR1 encodes a novel ER membrane protein with a single transmembrane domain. Molecular dissection suggested that the transmembrane domain and a part of the C-terminal polypeptide are sufficient for the activity. We examined the effect of RCR1 in various null mutants of genes related to the cell wall. The resistance of mutants to Congo red correlates with a reduction of chitin content. Multicopy RCR1 caused a significant decrease in the chitin content while the amount of alkali-soluble glucan did not change. The binding of Calcofluor white to the cell wall significantly decreased in these cells. Our results show that RCR1 regulates the chitin deposition and add firm genetic and biochemical evidences that the primary target of Congo red is chitin in S. cerevisiae.  相似文献   

18.
The cell wall of Saccharomyces cerevisiae consists of glucan, chitin and various kinds of mannoproteins. Major parts of mannoproteins are synthesized as glycosylphosphatidylinositol (GPI)-anchored proteins and are then transferred to cell wall beta-1,6-glucan. A glycosyltransferase has been hypothesized to catalyse this transfer reaction. A database search revealed that the products of YKL046c and DFG5 are homologous to bacterial mannosidase. These genes are homologous to each other and have primary structures characteristic of GPI-anchored proteins. Although single disruptants of ykl046c and dfg5 were viable, ykl046cDelta was hypersensitive to a cell wall-digesting enzyme (zymolyase), suggesting that this gene is involved in cell wall biosynthesis. We therefore designated this gene as DCW1 (defective cell wall). A double disruptant of dcw1 and dfg5 was synthetically lethal, indicating that the functions of these gene products are redundant, and at least one of them is required for cell growth. Cells deficient in both Dcw1p and Dfg5p were round and large, had cell walls that contained an increased amount of chitin and secreted a major cell wall protein, Cwp1p, into the medium. Biochemical analyses showed that epitope-tagged Dcw1p is an N-glycosylated, GPI-anchored membrane protein and is localized in the membrane fraction including the cell surface. These results suggest that both Dcw1p and Dfg5p are GPI-anchored membrane proteins and are required for normal biosynthesis of the cell wall.  相似文献   

19.
20.
The GGP1/GAS1 gene codes for a glycosylphosphatidylinositol-anchored plasma membrane glycoprotein of Saccharomyces cerevisiae. The ggp1delta mutant shows morphogenetic defects which suggest changes in the cell wall matrix. In this work, we have investigated cell wall glucan levels and the increase of chitin in ggp1delta mutant cells. In these cells, the level of alkali-insoluble 1,6-beta-D-glucan was found to be 50% of that of wild-type cells and was responsible for the observed decrease in the total alkali-insoluble glucan. Moreover, the ratio of alkali-soluble to alkali-insoluble glucan almost doubled, suggesting a change in glucan solubility. The increase of chitin in ggp1delta cells was found to be essential since the chs3delta ggp1delta mutations determined a severe reduction in the growth rate and in cell viability. Electron microscopy analysis showed the loss of the typical structure of yeast cell walls. Furthermore, in the chs3delta ggp1delta cells, the level of alkali-insoluble glucan was 57% of that of wild-type cells and the alkali-soluble/alkali-insoluble glucan ratio was doubled. We tested the effect of inhibition of chitin synthesis also by a different approach. The ggp1delta cells were treated with nikkomycin Z, a well-known inhibitor of chitin synthesis, and showed a hypersensitivity to this drug. In addition, studies of genetic interactions with genes related to the construction of the cell wall indicate a synthetic lethal effect of the ggp1delta kre6delta and the ggp1delta pkc1delta combined mutations. Our data point to an involvement of the GGP1 gene product in the cross-links between cell wall glucans (1,3-beta-D-glucans with 1,6-beta-D-glucans and with chitin). Chitin is essential to compensate for the defects due to the lack of Ggp1p. Moreover, the activities of Ggp1p and Chs3p are essential to the formation of the organized structure of the cell wall in vegetative cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号