首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
The effects of amino acid substitutions for Gly 13 on the structure of the transforming region (Leu 6-Gly 15) of the P21 proteins have been explored using conformational energy calculations. It has been found that the substitution of Asp for Gly at this position results in a protein capable of transforming cells into malignant ones. Proteins that contain Ser at position 13 (but no other substitutions), however, transform cells with a greatly reduced activity. The transforming peptide with Asp 13 adopts a conformation that is different from the one for the peptide from the normal protein (with Gly 12 and Gly 13) and that may result in expression of a higher energy malignancy-producing form. The Ser-containing peptide adopts as its lowest energy conformation one that is identical to that of the peptide from the normal protein, thus explaining its lack of transforming activity. From analysis of the interactions preventing the Asp 13-containing peptide from adopting the normal conformation, it is predicted that substitutions of amino acids with branched side chains atC , such as Val, Ile, and Thr, should promote cell transformation. This prediction with Val has recently been confirmed in genetic experiments.  相似文献   

2.
The effect of the substitution of Arg for Gly 13 on the structure of the transforming region decapeptide (Leu 6-Gly 15) of the ras oncogene encoded P21 protein has been investigated using conformational energy analysis. A human malignancy has been identified that contains a ras gene with a single mutation in the thirteenth codon such that the encoded protein would have Arg substituted for Gly at this position, and transfection of cells in culture with this gene results in malignant transformation. Conformational analysis demonstrates that the Arg 13 decapeptide adopts a conformation identical to that for other peptides with substitutions at position 13 (Asp 13, Val 13) from transforming proteins that is distinctively different from that for peptides (Gly 13, Ser 13) from normal, nontransforming proteins. This is found to be an indirect effect resulting from changes in the conformation of Gly 12 produced by substitutions at position 13. These results are consistent with recent analysis of crystallographic data of proteins on conformational preferences for glycine in tripeptide sequences.  相似文献   

3.
The structural effects of amino acid substitutions at positions 12 and 16 in the amino-terminal segment (Tyr 4-Ala 18) of the ras-oncogene-encoded P21 proteins have been investigated using conformational energy analysis. The P21 protein with Val at position 12 and Lys at position 16 is known to have high transforming ability, while the P21 protein with Val at position 12 and Asn at position 16 is known to have poor transforming ability, similar to that of the normal protein (with Gly at 12 and Lys at 16.) The current results demonstrate a significant conformational change at position 15 induced by the substitution of Asn for Lys at position 16, which could explain this alteration in transformation potential. These findings are consistent with previous results suggesting the existence of a normal and a malignancy-causing conformation for the P21 proteins and suggest that the critical transforming region may encompass residues 12–15.  相似文献   

4.
The effect of the substitution of Arg for Gly 13 on the structure of the transforming region decapeptide (Leu 6-Gly 15) of the ras oncogene encoded P21 protein has been investigated using conformational energy analysis. A human malignancy has been identified that contains a ras gene with a single mutation in the thirteenth codon such that the encoded protein would have Arg substituted for Gly at this position, and transfection of cells in culture with this gene results in malignant transformation. Conformational analysis demonstrates that the Arg 13 decapeptide adopts a conformation identical to that for other peptides with substitutions at position 13 (Asp 13, Val 13) from transforming proteins that is distinctively different from that for peptides (Gly 13, Ser 13) from normal, nontransforming proteins. This is found to be an indirect effect resulting from changes in the conformation of Gly 12 produced by substitutions at position 13. These results are consistent with recent analysis of crystallographic data of proteins on conformational preferences for glycine in tripeptide sequences.  相似文献   

5.
Substitutions of amino acids for Gly 12 or Gly 13 in theras oncogene-encoded P21 proteins have been demonstrated to produce unique structural changes in these proteins that correlate with their ability to produce cell transformation. For example, the P21 proteins with Arg 12 or Val 13 are both known to be actively transforming. Recent site-specific mutagenesis experiments on the transforming Arg 12 protein have found that the substitution of Val for Gly 10 has no effect on transforming activity whereas the substitution of Val for Gly 13 led to a loss of transforming activity. In this study, we examine the structural effects of these substitutions on the amino terminal hydrophobic decapeptide (Leu 6-Gly 15) of P21 using conformational energy analysis. The results show that the transforming proteins with Gly 10 and Arg 12 or Val 10 and Arg 12 can both adopt the putative malignancy-causing conformation, whereas, for the nontransforming protein with Arg 12 and Val 13, this conformation is energetically disallowed. These results further support the theory that due to structural changes the transforming P21 proteins are unable to bind to some regulatory cellular element which may be the recently identified binding protein responsible for the induction of increased GTPase activity in normal P21 compared with transforming mutants.  相似文献   

6.
Oncogenic p21 protein, encoded by theras-oncogene, that causes malignant transformation of normal cells and many human tumors, is almost identical in sequence to its normal protooncogene-encoded counterpart protein, except for the substitution of arbitrary amino acids for the normally occurring amino acids at critical positions such as Gly 12 and Gin 61. Since p21 is normally activated by the binding of GTP in place of GDP, it has been postulated that oncogenic forms must retain bound GTP for prolonged time periods. However, two multiply substituted p21 proteins have been cloned, neither of which binds GDP or GTP. One of these mutant proteins with Val for Gly 10, Arg for Gly 12, and Thr for Ala 59 causes cell transformation, while the other, similar protein with Gly 10, Arg 12, Val for Gly 13 and Thr 59 does not transform cells. To define the critical conformational changes that occur in the p21 protein that cause it to become oncogenic, we have calculated the low energy conformations of the two multiply substituted mutant p21 proteins using a new adaptation of the electrostatically driven Monte Carlo (EDMC) technique, based on the program ECEPP. We have used this method to explore the conformational space available to both proteins and to compute the average structures for both using statistical mechanical averaging. Comparison of the average structures allows us to detect the major differences in conformation between the two proteins. Starting structures for each protein were calculated using the recently deposited x-ray crystal coordinates for the p21 protein, that was energy-refined using ECEPP, and then perturbed using the EDMC method to compute its average structure. The specific amino acid substitutions for both proteins were then generated into the lowest energy structure generated by this procedure, subjected to energy minimization and then to full EDMC perturbations. We find that both mutant proteins exhibit major differences in conformation in specific regions, viz., residues 35–47, 55–78, 81–93, 96–110, 115–126, and 123–134, compared with the EDMC-refined x-ray structure of the wild-type protein. These regions have been found to be the most flexible in the p21 protein bound to GDP from prior molecular dynamics calculations (Dykeset al., 1993). Comparison of the EDMC-average structure of the transforming mutant with that of the nontransforming mutant reveals major structural differences at residues 10–16, 32–40, and 60–68. These structural differences appear to be the ones that are critical in activation of the p21 protein. Analysis of the correlated motions of the different regions of the two mutant proteins reveals that changes in the conformation of regions in the carboxyl half of the protein are caused by changes in conformation around residues 10–16 and are transmitted by means of residues around Gln 61. The latter region therefore constitutes a molecular switch unit, in agreement with conclusions from prior work.On leave from the Department of Chemistry, University of Gdask, ul. Sobieskiego 18, 80-952 Gdask, Poland.  相似文献   

7.
Summary Chou-Fasman parameters, measuring preferences of each amino acid for different conformational regions in proteins, were used to obtain an amino acid difference index of conformational parameter distance (CPD) values. CPD values were found to be significantly lower for amino acid exchanges representing in the genetic code transitions of purines, GA than for exchanges representing either transitions of pyrimidines, CU, or transversions of purines and pyrimidines. Inasmuch as the distribution of CPD values in these non GA exchanges resembles that obtained for amino acid pairs with double or triple base differences in their underlying codons, we conclude that the genetic code was not particularly designed to minimize effects of mutation on protein conformation. That natural selection minimizes these changes, however, was shown by tabulating results obtained by the maximum parsimony method for eight protein genealogies with a total occurrence of 4574 base substitutions. At the beginning position of the codons GA transitions were in very great excess over other base substitutions, and, conversely, CU transitions were deficient. At the middle position of the codons only fast evolving proteins showed an excess of GA transitions, as though selection mainly preserved conformation in these proteins while weeding out mutations affecting chemical properties of functional sites in slow evolving proteins. In both fast and slow evolving proteins the net direction of transitions and transversions was found to be from G beginning codons to non-G beginning codons resulting in more commonly occurring amino acids, especially alanine with its generalized conformational properties, being replaced at suitable sites by amino acids with more specialized conformational and chemical properties. Historical circumstances pertaining to the origin of the genetic code and the nature of primordial proteins could account for such directional changes leading to increases in the functional density of proteins.In order to further explore the course of protein evolution, a modified parsimony algorithm was developed for constructing protein genealogies on the basis of minimum CPD length. The algorithm's ability to judge with finer discrimination that in protein evolution certain pathways of amino acid substitution should occur more readily than others was considered a potential advantage over strict maximum parsimony. In developing this CPD algorithm, the path of minimum CPD length through intermediate amino acids allowed by the genetic code for each pair of amino acids was determined. It was found that amino acid exchanges representing two base changes have a considerably lower average CPD value per base substitution than the amino acid exchanges representing single base changes. Amino acid exchanges representing three base changes have yet a further marked reduction in CPD per base change. This shows how extreme constraining effects of stabilizing selection can be circumvented, for by way of intermediate amino acids almost any amino acid can ultimately be substituted for another without damage to an evolving protein's conformation during the process.  相似文献   

8.
The P-glycoprotein of themdr 1 gene is responsible for the phenomenon of multidrug resistance in human cells. The presumed drug-binding site of the wild-type P-glycoprotein contains a glycine at position 185. A mutant P-glycoprotein which contains valine at this position causes cells to retain resistance to colchichine, but to lose cross-resistance to other drugs such as the chemotherapeutic agents vinblastine and Adriamycin. This has been hypothesized to be due to a conformational change in the protein induced by the amino acid substitution. Using conformational energy analysis, we have determined the allowed three-dimensional structures for the wild-type and mutant proteins in the region of position 185. The results indicate that the wild-type protein adopts a unique left-handed conformation at position 185 which is energetically unfavorable for the protein withl-amino acids (including valine) at this position. This conformational change induced by amino acid substitutions for Gly 185 could explain the differences in binding to the P-glycoprotein of various drugs and, hence, the differences in drug resistance exhibited by various cell lines expressing these proteins.  相似文献   

9.
Theneu oncogene is frequently found in certain types of human carcinomas and has been shown to be activated in animal models by nitrosourea-induced mutation. The activating mutation in theneu oncogene results in the substitution of a glutamic acid for a valine at position 664 in the transmembrane domain of the encoded protein product of 185 kda (designated p185), which, on the basis of homology studies, is presumed to be a receptor for an as yet unidentified growth factor. It has been proposed that activating amino acid substitutions in this region of p185 lead to a conformational change in the protein which causes signal transduction via an increase in tyrosine kinase activity in the absence of any external signal. Using conformational energy analysis, we have determined the preferred three-dimensional structures for the transmembrane decapeptide (residues 658–667) of the p185 protein with valine and glutamic acid at the critical position 664. The results indicate that the global minimum energy conformation of the decapeptide from the normal protein with Val at position 664 is an -helix with a sharp bend (CD* conformation at residues 664 and 665) in this region, whereas the global minimum conformation for the decapeptide from the mutant transforming protein with Glu at position 664 assumes an all -helical configuration. Furthermore, the second highest energy conformation for the decapeptide from the normal protein is identical to the global minimum energy conformation for the decapeptide from the transforming protein, providing a possible explanation why overexpression of the normal protein also has a transforming effect. These results suggest there may be a normal and a transforming conformation for theneu-encoded p185 proteins which may explain their differences in transforming activity.  相似文献   

10.
It has been shown that malignant activation of ras proto-oncogenes was mediated by point mutations which resulted in the single amino acid conversions at positions 12, 13 or 61 of the ras gene products (p21 proteins). By analyzing randomly mutated ras genes, it has been demonstrated that amino acid substitutions at residues 12, 13, 59 and 63 activated p21. Furthermore, it has been shown that residues 16, 116 and 119 in p21 played critical roles in the guanine nucleotide binding and, consequently, the ability of the protein to induce changes characteristic of cellular transformation. By using the protein conformational prediction method of Chou and Fasman, the present work predicts that these critical amino acids, except glutamic acid at position 63, are located within beta-turns. The major "hot spots" for ras activation are codons 12 and 61. The author has predicted in an earlier paper that the single amino acid conversions at positions 12 and 61 would occur at beta-turn conformation consisting of residues 10-13 and 58-61, respectively. In the present study, probabilities of beta-turn occurrence at residues 10-13 or 58-61 of the p21 proteins encoded by various ras genes are compared. The probability for the normal p21 containing glycine as residue 12 is greatest, and the cancer-associated variants show less probabilities. The single amino acid substitutions at position 61 do not cause so decreased probabilities of beta-turn potential at residues 58-61, except the replacement by histidine. Histidine at position 61 is not predicted as occurring within a beta-turn.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
    
Summary The naturally occurring heptapeptide deltorphin I (Tyr-d-Ala-Phe-Asp-Val-Val-Gly-NH2) exhibits extremely high affinity and selectivity for the opioid receptor. In an ongoing investigation of the features of this compound that confer these properties, seven new analogs of the peptide, in which phenylalanine at position three was replaced with amino acids containing alkyl side chains, were synthesized and tested for binding to , , and opioid receptors. These substitutions, including tert-leucine, tert-butylalanine, -aminobutyric acid, norvaline, norleucine, -cyclopentylalanine and octahydroindole-2-carboxylic acid, assessed the importance of aromaticity and lipophilicity/steric distribution of the side chain at this position in the binding interaction. Findings indicated that: (i) aromaticity at position three is not required for binding, and (ii) hydrophobic character, size, steric distribution and conformational flexibility influence affinity at the receptor. The data suggest that substitutions at the -carbon of this residue disrupt the binding conformation of the peptide and possibly provide adverse steric effects.  相似文献   

12.
The GTP-binding p21 protein encoded by the ras-oncogene can be activated to cause malignant transformation of cells by substitution of a single amino acid at critical positions along the polypeptide chain. Substitution of any non-cyclic L-amino acid for Gly 12 in the normal protein results in a transforming protein. This substitution occurs in a hydrophobic sequence (residues 6-15) which is known to be involved in binding the phosphate moities of GTP (and GDP). We find, using conformational energy calculations, that the 6-15 segment of the normal protein (with Gly 12) adopts structures that contain a bend at residues 11 and 12 with the Gly in the D* conformation, not allowed energetically for L-amino acids. Substitution of non-cyclic L-amino acids for Gly 12 results in shifting this bend to residues 12 and 13. We show that many computed structures for the Gly 12-containing phosphate binding loop, segment 9-15, are superimposable on the corresponding segment of the recently determined X-ray crystallographic structure for residues 1-171 of the p21 protein. All such structures contain bends at residues 11 and 12 and most of these contain Gly 12 in the C* or D* conformational state. Other computed conformations for the 9-15 segment were superimposable on the structure of the corresponding 18-23 segment of EFtu, the bacterial chain elongation factor having structural similarities to the p21 protein in the phosphate-binding regions. This segment contains a Val residue where a Gly occurs in the p21 protein. As previously predicted, all of these superimposable conformations contain a bend at positions 12 and 13, not 11 and 12. If these structures that are superimposable on EFtu are introduced into the p21 protein structure, bad contacts occur between the sidechain of the residue (here Val) at position 12 and another phosphate binding loop region around position 61. These bad contacts between the two segments can be removed by changing the conformation of the 61 region in the p21 protein to the corresponding position of the homologous region in EFtu. In this new conformation, a large site becomes available for the binding of phosphate residues. In addition, such phenomena as autophosphorylation of the p21 protein by GTP can be explained with this new model structure for the activated protein which cannot be explained by the structure for the non-activated protein.  相似文献   

13.
The P-glycoprotein of themdr 1 gene is responsible for the phenomenon of multidrug resistance in human cells. The presumed drug-binding site of the wild-type P-glycoprotein contains a glycine at position 185. A mutant P-glycoprotein which contains valine at this position causes cells to retain resistance to colchichine, but to lose cross-resistance to other drugs such as the chemotherapeutic agents vinblastine and Adriamycin. This has been hypothesized to be due to a conformational change in the protein induced by the amino acid substitution. Using conformational energy analysis, we have determined the allowed three-dimensional structures for the wild-type and mutant proteins in the region of position 185. The results indicate that the wild-type protein adopts a unique left-handed conformation at position 185 which is energetically unfavorable for the protein withl-amino acids (including valine) at this position. This conformational change induced by amino acid substitutions for Gly 185 could explain the differences in binding to the P-glycoprotein of various drugs and, hence, the differences in drug resistance exhibited by various cell lines expressing these proteins.  相似文献   

14.
A complete three-dimensional structure for the ras-gene-encoded p21 protein with Gly 12 and Gln 61, bound to GDP, has been constructed in four stages using the available alpha-carbon coordinates as deposited in the Brookhaven National Laboratories Protein Data Bank. No all-atom structure has been made available despite the fact that the first crystallographic structure for the p21 protein was reported almost four years ago. In the p21 protein, if amino acid substitutions are made at any one of a number of different positions in the amino acid sequence, the protein becomes permanently activated and causes malignant transformation of normal cells or, in some cell lines, differentiation and maturation. For example, all amino acids except Gly and Pro at position 12 result in an oncogenic protein; all amino acids except Gln, Glu and Pro at position 61 likewise cause malignant transformation of cells. We have constructed our all-atom structure of the non-oncogenic protein from the x-ray structure in order to determine how oncogenic amino acid substitutions affect the three-dimensional structure of this protein. In Stage 1 we generated a poly-alanine backbone (except at Gly and Pro residues) through the alpha-carbon structure, requiring the individual Ala, Pro or Gly residues to conform to standard amino acid geometry and to form trans-planar peptide bonds. Since no alpha-carbon coordinates for residues 60-65 have been determined, these residues were modeled by generating them in the extended conformation and then subjecting them to molecular dynamics using the computer application DISCOVER and energy minimization using DISCOVER and the ECEPP (Empirical Conformational Energies for Peptides Program). In Stage 2, the positions of residues that are homologous to corresponding residues of bacterial elongation factor Tu (EF-Tu) to which p21 bears an overall 40% sequence homology, were determined from their corresponding positions in a high-resolution structure of EF-Tu. Non-homologous loops were taken from the structure generated in Stage 1 and were placed between the appropriate homologous segments so as to connect them. In Stage 3, all bad contacts that occurred in this resulting structure were removed, and the coordinates of the alpha-carbon atoms were forced to superimpose as closely as possible on the corresponding atoms of the reference (x-ray) structure. Then the side chain positions of residues of the non-homologous loop regions were modeled using a combination of molecular dynamics and energy minimization using DISCOVER and ECEPP respectively.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
An approach to the design of peptide-hormone analogues in which amino acid substitutions are based on predicted effects on secondary structure was investigated. The structural requirements for parathyroid-hormone (PTH) action are distinct from the determinants necessary for receptor binding alone without subsequent activation of adenylate cyclase. Two analogues of PTH containing substitutions in the principal binding domain of PTH, the region 25–34, were synthesized by the solid-phase method and evaluated for bioactivity. The sequence 25–34 was predicted to have nearly equal conformational potential for both -helix and -sheet using Chou and Fasman parameters. A previously studied analogue, [Tyr34]bPTH(1–34) amide, containing substitutions in this region, was more active than was bPTH-(1–34). The substitution of tyrosine for phenylalanine at position 34 in this analogue is predicted to promote -sheet conformation. The analogues [Ile28, Tyr30, Tyr34]bPTH-(1–34) amide and [Arg32, Tyr34]bPTH-(1–34) amide each contain substitutions predicted to further enhance or stabilize -sheet formation. The solution conformation of these analogues, determined by circular dichroism studies in an aqueous buffer and an organic solvent, indicated promotion of -sheet secondary structural content in both analogues in a hydrophobic environment chosen to simulate that of the interaction of the peptide and the membrane receptor. In contrast, the native sequence lacks -structure. Biological activity of these analogues in the rat renal adenylate cyclase assay in vitro and binding affinity in a radioreceptor assay were threefold those of unsubstituted PTH-(1–34). Peptide analogue design based on conformational prediction, rather than substitution of primary structure alone, offers an attractive alternative approach to the development of hormone analogues and antagonists.  相似文献   

16.
The human intestinal fatty acid binding protein (I-FABP) is a small (131 amino acids) proteinwhich binds dietary long-chain fatty acids in the cytosol of enterocytes. Recently, an alanineto threonine substitution at position 54 in I-FABP has been identified which affects fatty acidbinding and transport, and is associated with the development of insulin resistance in severalpopulations including Mexican-Americans and Pima Indians. To investigate the molecularbasis of the binding properties of I-FABP, the 3D solution structure of the more commonform of human I-FABP (Ala54) was studied by multidimensional NMR spectroscopy.Recombinant I-FABP was expressed from E. coli in the presence and absence of 15N-enriched media. The sequential assignments for non-delipidated I-FABP were completed byusing 2D homonuclear spectra (COSY, TOCSY and NOESY) and 3D heteronuclear spectra(NOESY-HMQC and TOCSY-HMQC). The tertiary structure of human I-FABP wascalculated by using the distance geometry program DIANA based on 2519 distance constraintsobtained from the NMR data. Subsequent energy minimization was carried out by using theprogram SYBYL in the presence of distance constraints. The conformation of human I-FABPconsists of 10 antiparallel -strands which form two nearly orthogonal -sheets offive strands each, and two short -helices that connect the -strands A and B. Theinterior of the protein consists of a water-filled cavity between the two -sheets. TheNMR solution structure of human I-FABP is similar to the crystal structure of rat I-FABP.The NMR results show significant conformational variability of certain backbone segmentsaround the postulated portal region for the entry and exit of fatty acid ligand.  相似文献   

17.
18.
It has been recently proposed that certain DNA binding proteins (including C/EBP, GCN4 and themyc, jun, andfos oncogene proteins) share a common structural motif based on helix-promoting regions containing heptad repeat sequences of leucines. It has been suggested that this structure is critical to the biological activity of these proteins, since it facilitates the formation of functional dimers held together by interdigitating leucine side-chains along the hydrophobic interfaces between long -helical regions of the polypeptide chains in a configuration termed the leucine zipper. In this paper, conformational energy analysis is used to determine the preferred three-dimensional structures of the leucine repeat regions of these proteins. The results indicate that, in all cases, the global minimum energy conformation for these regions is an amphipathic -helix with the leucine side-chains arrayed on one side in such a way to favor leucine zipper dimerization. Furthermore, amino acid substitutions in these regions (such as Pro for Leu), that are known to inhibit dimer formation and prevent DNA binding, are found to produce significant conformational changes that disrupt the amphipathic helical structure. Thus, these results provide support for the proposed leucine zipper configuration as a critical structural feature of this class of DNA binding proteins.  相似文献   

19.
The amino acid sequence of satyr tragopan lysozyme and its activity was analyzed. Carboxymethylated lysozyme was digested with trypsin and the resulting peptides were sequenced. The established amino acid sequence had three amino acid substitutions at positions 103 (Asn to Ser), 106 (Ser to Asn), and 121 (His to Gln) comparing with Temminck's tragopan lysozyme and five amino acid substitutions at positions 3 (Phe to Tyr), 15 (His to Leu), 41 (Gln to His), 101 (Asp to Gly) and 103 (Asn to Ser) with chicken lysozyme. The time course analysis using N-acetylglucosamine pentamer as a substrate showed a decrease of binding free energy change, 1.1 kcal/mol at subsite A and 0.2 kcal/mol at subsite B, between satyr tragopan and chicken lysozymes. This was assumed to be responsible for the amino acid substitutions at subsite A-B at position 101 (Asp to Gly), however another substitution at position 103 (Asn to Ser) considered not to affect the change of the substrate binding affinity by the observation of identical time course of satyr tragopan lysozyme with turkey and Temminck's tragopan lysozymes that carried the identical amino acids with chicken lysozyme at this position. These results indicate that the observed decrease of binding free energy change at subsites A-B of satyr tragopan lysozyme was responsible for the amino acid substitution at position 101 (Asp to Gly).  相似文献   

20.
The clinical severity of Osteogenesis Imperfecta (OI), also known as the brittle bone disease, relates to the extent of conformational changes in the collagen triple helix induced by Gly substitution mutations. The lingering question is why Gly substitutions at different locations of collagen cause different disruptions of the triple helix. Here, we describe markedly different conformational changes of the triple helix induced by two Gly substitution mutations placed only 12 residues apart. The effects of the Gly substitutions were characterized using a recombinant collagen fragment modeling the 63-residue segment of the alpha1 chain of type I collagen containing no Hyp (residues 877-939) obtained from Escherichia coli. Two Gly --> Ser substitutions at Gly-901 and Gly-913 associated with, respectively, mild and severe OI variants were introduced by site-directed mutagenesis. Biophysical characterization and limited protease digestion experiments revealed that while the substitution at Gly-901 causes relatively minor destabilization of the triple helix, the substitution at Gly-913 induces large scale unfolding of an unstable region C-terminal to the mutation site. This extensive unfolding is caused by the intrinsic low stability of the C-terminal region of the helix and the mutation induced disruption of a set of salt bridges, which functions to lock this unstable region into the triple helical conformation. The extensive conformational changes associated with the loss of the salt bridges highlight the long range impact of the local interactions of triple helix and suggest a new mechanism by which OI mutations cause severe conformational damages in collagen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号