首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The actions of cell adhesion molecules, in particular, cadherins during embryonic development and morphogenesis more generally, regulate many aspects of cellular interactions, regulation and signaling. Often, a gradient of cadherin expression levels drives collective and relative cell motions generating macroscopic cell sorting. Computer simulations of cell sorting have focused on the interactions of cells with only a few discrete adhesion levels between cells, ignoring biologically observed continuous variations in expression levels and possible nonlinearities in molecular binding. In this paper, we present three models relating the surface density of cadherins to the net intercellular adhesion and interfacial tension for both discrete and continuous levels of cadherin expression. We then use then the Glazier-Graner-Hogeweg (GGH) model to investigate how variations in the distribution of the number of cadherins per cell and in the choice of binding model affect cell sorting. We find that an aggregate with a continuous variation in the level of a single type of cadherin molecule sorts more slowly than one with two levels. The rate of sorting increases strongly with the interfacial tension, which depends both on the maximum difference in number of cadherins per cell and on the binding model. Our approach helps connect signaling at the molecular level to tissue-level morphogenesis.  相似文献   

2.
Recent work has shown that cadherins at cell-cell junctions bear tensile forces. Using novel FRET-based tension sensors, we showed first that in response to shear stress, endothelial cells rapidly reduce mechanical tension on vascular endothelial (VE)-cadherin. Second, we observed a simultaneous increase in tension on platelet endothelial cell adhesion molecule (PECAM)-1, induced by an interaction with vimentin. In this commentary, we discuss how our results fit with existing data on cadherins as important mediators of mechanotransduction, in particular, in cell migration where mechanical tension across cadherins may communicate the direction of movement. The ability of PECAM-1 to bear mechanical tension may also be important in other PECAM-1 functions, such as leukocyte transmigration through the endothelium. Additionally, our observation that vimentin expression was required for PECAM-1 tension and mechanotransduction of fluid flow suggests that intermediate filaments are capable of transmitting tension. Overall, our results argue against models where an external force is passively transferred across the cytoskeleton, and instead suggest that cells actively respond to extracellular forces by modulating tension across junctional proteins.  相似文献   

3.
Regulation of Cadherin Trafficking   总被引:2,自引:0,他引:2  
Cadherins are a large family of cell–cell adhesion molecules that tether cytoskeletal networks of actin and intermediate filaments to the plasma membrane. This function of cadherins promotes tissue organization and integrity, as demonstrated by numerous disease states that are characterized by the loss of cadherin-based adhesion. However, plasticity in cell adhesion is often required in cellular processes such as tissue patterning during development and epithelial migration during wound healing. Recent work has revealed a pivotal role for various membrane trafficking pathways in regulating cellular transitions between quiescent adhesive states and more dynamic phenotypes. The regulation of cadherins by membrane trafficking is emerging as a key player in this balancing act, and studies are beginning to reveal how this process goes awry in the context of disease. This review summarizes the current understanding of how cadherins are routed and how the interface between cadherins and membrane trafficking pathways regulates cell surface adhesive potential. Particular emphasis is placed on the regulation of cadherin trafficking by catenins and the interplay between growth factor signaling pathways and cadherin endocytosis.  相似文献   

4.
Integrins and other cell adhesion molecules   总被引:146,自引:0,他引:146  
S M Albelda  C A Buck 《FASEB journal》1990,4(11):2868-2880
Cell-cell and cell-substratum interactions are mediated through several different families of receptors. In addition to targeting cell adhesion to specific extracellular matrix proteins and ligands on adjacent cells, these receptors influence many diverse processes including cellular growth, differentiation, junction formation, and polarity. Several families of adhesion receptors have been identified. These include: 1) the integrins, heterodimeric molecules that function both as cell-substratum and cell-cell adhesion receptors; 2) the adhesion molecules of the immunoglobulin superfamily, which are involved in cell-cell adhesion and especially important during embryo-genesis, wound healing, and the inflammatory response; 3) the cadherins, developmentally regulated, calcium-dependent homophilic cell-cell adhesion proteins; 4) the LEC-CAMs, cell adhesion molecules with lectin-like domains that mediate white blood cell/endothelial cell adhesion; and 5) homing receptors that target lymphocytes to specific lymphoid tissue. In this review we summarize recent data describing the structure and function of some of these cell adhesion molecules (with special emphasis on the integrin family) and discuss the possible role of these molecules in development, inflammation, wound healing, coagulation, and tumor metastasis.  相似文献   

5.
Classical cadherins are the transmembrane proteins of the adherens junction and mediate cell-cell adhesion via homotypic interactions in the extracellular space. In addition, they mediate connections to the cytoskeleton by means of their association with catenins. Decreased cadherin-mediated adhesion has been implicated as an important component of tumorigenesis. Cadherin switching is central to the epithelial to mesenchymal transitions that drive normal developmental processes. Cadherin switching has also been implicated in tumorigenesis, particularly in metastasis. Recently, cadherins have been shown to be engaged in cellular activities other than adhesion, including motility, invasion, and signaling. In this study, we show that inappropriate expression of R-cadherin in tumor cells results in decreased expression of endogenous cadherins (cadherin switching) and sustained signaling through Rho GTPases. In addition, we show that R-cadherin induces cell motility when expressed in epithelial cells and that this increased motility is dependent upon Rho GTPase activity.  相似文献   

6.
The cadherins are a family of adhesive proteins involved in cell-cell homophilic interactions. VE-cadherin, expressed in endothelial cells, is involved in morphogenesis, regulation of permeability, and cellular proliferation. The cytoplasmic tails of cadherins contain two major domains, the juxtamembrane domain that plays a role in the intercellular localization of the protein and also serves for binding of p120ctn, and a C-terminal domain that associates with beta- or gamma-catenin. A highly conserved region present in the juxtamembrane domain of the cadherins has been shown to be necessary for p120ctn binding in E-cadherin. Using a mutant VE-cadherin lacking a highly conserved octapeptide, we demonstrated that it is required for p120ctn binding to VE-cadherin as determined by immunoprecipitation and colocalization studies. By immunofluorescence, this mutant protein has a topographical distribution similar to that of the wild-type VE-cadherin and, therefore, we conclude that the topographical distribution of VE-cadherin is independent of this motif. In addition, although cell-cell association is present in cells expressing this mutant form of VE-cadherin, we found that the strength of adhesion is decreased. Finally, our results for the first time demonstrate that the interaction of VE-cadherin with p120 catenin plays an important role in cellular growth, suggesting that the binding of p120 catenin to cadherins may regulate cell proliferation.  相似文献   

7.
The organisation and differentiation of striated skeletal muscles and their innervation is a particularly complex process implicating cells of mesodermic (myoblasts and fibroblasts) and neuroectoderrmic origin (neurons and glial cells). Myogenic and motor neuron precursors, the two major cell types participating in the formation of the neuromuscular axis, migrate, segregate, reassociate and differentiate in a coordinated fashion. The subsequent organisation of muscle cells and the establishment of muscle innervation rely on a complex tissular and cellular architectural organisation, which cannot be understood without taking into account juxtacrine cell interactions, and especially cell adhesion. Cell adhesion receptors of the cadherin family are widely expressed and dynamically regulated in space and time throughout neuromuscular development. A single cell expresses in general more than one cadherin at its surface and it is the combination of these molecules and their level of expression that determine their action within a given cell population. We focused in this review on the expression and roles of classical cadherins in relation to muscle cell and motoneuron differentiation. We also review the latest results on the mode of action of cadherins allowing to propose cellular and molecular cues on the mechanisms by which these cell adhesion receptors control muscle and neuronal cell shape, migration and differentiation.  相似文献   

8.
Cadherins are calcium‐dependent cell adhesion receptors with strong morphoregulatory functions. To mediate functional adhesion, cadherins must interact with actin cytoskeleton. Catenins are cytoplasmic proteins that mediate the interactions between cadherins and the cytoskeleton. In addition to their role in cell–cell adhesion, catenins also participate in signaling pathways that regulate cell growth and differentiation. Cadherins and catenins appear to be involved in melanocyte development and transformation. Here, we investigated the function of cadherin–catenin complexes in the normal development and transformation of melanocytes by studying the patterns of expression of the cell–cell adhesion molecules, E‐, N‐ and P‐cadherin, and the expression of their cytoplasmic partners, α‐, β‐ and Γ‐catenin, during murine development. Similar analyses were performed in vitro using murine melanoblast, melanocyte, and melanoma cell lines in the presence and absence of keratinocytes, the cells with which melanocytes interact in vivo. Overall, the results suggest that the expression of cadherins and catenins is very plastic and depends on their environment as well as the transformation status of the cells. This plasticity is important in fundamental cellular mechanisms associated with normal and pathological ontogenesis, as well as with tumorigenesis.  相似文献   

9.
Cadherins are a family of cell adhesion molecules that exhibit calcium-dependent, homophilic binding. Their function depends on both an HisAlaVal sequence in the first extracellular domain, EC1, and the interaction of a conserved cytoplasmic region with intracellular proteins. T-cadherin is an unusual member of the cadherin family that lacks the HisAlaVal motif and is anchored to the membrane through a glycosyl phosphatidylinositol moiety (Ranscht, B., and M. T. Dours-Zimmermann. 1991. Neuron. 7:391-402). To assay the function of T-cadherin in cell adhesion, we have transfected T-cadherin cDNA into CHO cells. Two proteins, mature T-cadherin and the uncleaved T-cadherin precursor, were produced from T-cadherin cDNA. The T-cadherin proteins differed from classical cadherins in several aspects. First, the uncleaved T-cadherin precursor was expressed, together with mature T-cadherin, on the surface of the transfected cells. Second, in the absence of calcium, T-cadherin was more resistant to proteolytic cleavage than other cadherins. Lastly, in contrast to classical cadherins, T-cadherin was not concentrated into cell-cell contacts between transfected cells in monolayer cultures. In cellular aggregation assays, T-cadherin induced calcium-dependent, homophilic adhesion which was abolished by treatment of T-cadherin-transfected cells with phosphatidylinositol-specific phospholipase C. These results demonstrate that T-cadherin is a functional cadherin that differs in several properties from classical cadherins. The function of T-cadherin in homophilic cell recognition implies that the mechanism of T-cadherin-induced adhesion is distinct from that of classical cadherins.  相似文献   

10.
Cadherins in neural crest cell development and transformation   总被引:6,自引:0,他引:6  
Cadherins constitute a superfamily of cell adhesion molecules involved in cell-cell interaction, histogenesis and cellular transformation. They have been implicated in the development of various lineages, including derivatives of the neural crest. Neural crest cells (NCC) emerge from the dorsal part of the neural tube after an epithelio-mesenchymal transition (EMT) and migrate through the embryo. After homing and differentiation, NCC give rise to many cell types, such as neurons, Schwann cells and melanocytes. During these steps, the pattern of expression of the various cadherins studied is very dynamic. Cadherins also display plasticity of expression during the transformation of neural crest cell derivatives. Here, we review the pattern of expression and the role of the main cadherins involved in the development and transformation of neural crest cell derivatives.  相似文献   

11.
Plasticity of cadherin-catenin expression in the melanocyte lineage   总被引:6,自引:0,他引:6  
Cadherins are calcium-dependent cell adhesion receptors with strong morphoregulatory functions. To mediate functional adhesion, cadherins must interact with actin cytoskeleton. Catenins are cytoplasmic proteins that mediate the interactions between cadherins and the cytoskeleton. In addition to their role in cell-cell adhesion, catenins also participate in signaling pathways that regulate cell growth and differentiation. Cadherins and catenins appear to be involved in melanocyte development and transformation. Here, we investigated the function of cadherin-catenin complexes in the normal development and transformation of melanocytes by studying the patterns of expression of the cell-cell adhesion molecules, E-, N- and P-cadherin, and the expression of their cytoplasmic partners, alpha-, beta- and gamma-catenin during murine development. Similar analyses were performed in vitro using murine melanoblast, melanocyte, and melanoma cell lines in the presence and absence of keratinocytes, the cells with which melanocytes interact in vivo. Overall, the results suggest that the expression of cadherins and catenins is very plastic and depends on their environment as well as the transformation status of the cells. This plasticity is important in fundamental cellular mechanisms associated with normal and pathological ontogenesis, as well as with tumorigenesis.  相似文献   

12.
Identification of a cadherin cell adhesion recognition sequence   总被引:24,自引:1,他引:23  
The molecular mechanisms by which the cadherins interact with one another to promote cell adhesion have not been elucidated. In particular, the amino acid sequences of the cadherin cell adhesion recognition sites have not been determined. Here we demonstrate that synthetic peptides containing the sequence HAV, which is common to all of the cadherins, inhibit two processes (compaction of eight-cell-stage mouse embryos and rat neurite outgrowth on astrocytes) that are known to be mediated by cadherins. The data suggest that the tripeptide HAV is a component of a cadherin cell adhesion recognition sequence.  相似文献   

13.
Desmosomal cadherins mediate intercellular adhesion and control epithelial homeostasis. Recent studies show that proteinases play an important role in the pathobiology of cancer by targeting epithelial intercellular junction proteins such as cadherins. Here we describe the proinflammatory cytokine-induced activation of matrix metalloproteinase 9 and a disintegrin and metalloproteinase domain–containing protein 10, which promote the shedding of desmosomal cadherin desmoglein-2 (Dsg2) ectodomains in intestinal epithelial cells. Epithelial exposure to Dsg2 ectodomains compromises intercellular adhesion by promoting the relocalization of endogenous Dsg2 and E-cadherin from the plasma membrane while also promoting proliferation by activation of human epidermal growth factor receptor 2/3 signaling. Cadherin ectodomains were detected in the inflamed intestinal mucosa of mice with colitis and patients with ulcerative colitis. Taken together, our findings reveal a novel response pathway in which inflammation-induced modification of columnar epithelial cell cadherins decreases intercellular adhesion while enhancing cellular proliferation, which may serve as a compensatory mechanism to promote repair.  相似文献   

14.
Desmosomal cadherins constitute the adhesive core of desmosomes. Different desmosomal cadherins are differentially expressed in a tissue-specific as well as differentiation-dependent manner. The skin and the heart are two examples of tissues whose vital functions require the ability to endure mechanical stress, and therefore, rely on the integrity of desmosomal adhesion. When this adhesion is compromised via mutations in genes encoding desmosomal cadherins or associated plaque proteins, both tissues can suffer the consequences. Open questions revolve around whether the resulting phenotypes are solely because of physical disruption of cell adhesion or whether these events are coupled with signaling mechanisms that influence many additional cellular processes. In this review, we focus on new developments in desmosomal adhesion with an emphasis on the skin, hair, and heart.  相似文献   

15.
Nectins are Ca(2+)-independent Ig-like cell adhesion molecules (CAMs) which homophilically and heterophilically interact in trans with nectins and form cell-cell adhesion. This cell-cell adhesion is involved in the formation of many types of cell-cell junctions such as adherens junctions, tight junctions, and synaptic junctions, cooperatively with other CAMs such as cadherins and claudins. Nectins transduce signals cooperatively with integrin alpha(v)beta(3), and regulate formation of cell-cell junctions. In addition, nectin interacts in cis with PDGF receptor and regulates its signaling for anti-apoptosis. Furthermore, nectin interacts in trans with nectin-like molecule-5 (Necl-5) and regulate cell movement and proliferation. We describe cooperative roles of nectins with other CAMs and growth factor receptors.  相似文献   

16.
Precisely controlled organisation at the cellular and tissue level is crucial to establish and maintain complex organisms. The atypical cadherins Fat (Ft), Fat2 and Dachsous (Ds) contribute to this organisation by regulating growth and planar cell polarity. Here we describe the recent advances in understanding how these large cadherins coordinate these processes, and discuss additional progress extending their function in regulation of microtubules, migration and disease.  相似文献   

17.
Summary A thermodynamic model of particle adhesion from a suspension onto a solid surface is used to predict the extent of adhesion of suspension-cultured Catharanthus roseus cells to the following polymer substrates: fluorinated ethylene-propylene (FEP), polystyrene (PS), polyethylene terephthalate (PET), sulphonated polystyrene (SPS), and glass. According to this model, the extent of adhesion is determined by the surface tensions of the plant cells, the polymer substrates, and the suspending liquid medium. Experimentally, adhesion of the washed plant cells was found to decrease with increasing substrate surface tension, following the sequence FEP>PS>PET>SPS>glass, when the surface tension of the liquid was greater than that of the plant cells, in agreement with the model. However, adhesion increased with increasing substrate surface tension when the liquid surface tension was lower than the cellular surface tension, also in agreement with the model. When the liquid and cellular tensions were equal the extent of adhesion was independent of the substrate surface tension. This also agrees with model predictions and leads to a value for the surface tension of C. roseus cells of approximately 54 ergs/cm2 which is in agreement with a value obtained from contact angle measurements on layers of cells and sedimentation volume analysis. The cellular surface tension determined by the sedimentation volume method showed a biphasic alteration during growth cycles of C. roseus cell cultures. These variations (between 55 and 58 ergs/cm2) agree with the pattern of adhesion previously described.  相似文献   

18.
The native extracellular matrix (ECM) and the cells that comprise human tissues are together engaged in a complex relationship; cells alter the composition and structure of the ECM to regulate the material and biologic properties of the surrounding environment while the composition and structure of the ECM modulates cellular processes that maintain healthy tissue and repair diseased tissue. This reciprocal relationship occurs via cell adhesion molecules (CAMs) such as integrins, selectins, cadherins and IgSF adhesion molecules. To study these cell-ECM interactions, researchers use two-dimensional substrates or three-dimensional matrices composed of native proteins or bioactive peptide sequences to study single cell function. While two-dimensional substrates provide valuable information about cell-ECM interactions, three-dimensional matrices more closely mimic the native ECM; cells cultured in three-dimensional matrices have demonstrated greater cell movement and increased integrin expression when compared to cells cultured on two-dimensional substrates. In this article we review a number of cellular processes (adhesion, motility, phagocytosis, differentiation and survival) and examine the cell adhesion molecules and ECM proteins (or bioactive peptide sequences) that mediate cell functionality.  相似文献   

19.
Neural cell contact and axonal growth.   总被引:6,自引:0,他引:6  
The past year has seen significant advances in the identification and characterization of novel vertebrate cell-surface components implicated in neural cell adhesion and axonal growth. These new cell-surface-associated proteins can be categorized into three major structural groups: the cadherins, the integrins and the immunoglobulin superfamily. Studies on the biological function of these proteins indicate that they participate in developmental events of the embryonic nervous system.  相似文献   

20.
Nectins and cadherins, members of cell adhesion molecules (CAMs), are the primary mediators for various types of cell-cell junctions. Here, intermolecular force microscopy (IFM) with force sensitivity at sub-picoNewtons is used to characterize the extracellular trans-interactions between paired nectins and paired cadherins at the single molecule level. Three and four different bound states between paired nectins and paired cadherins are, respectively, identified and characterized based on bond strength distributions where each bound state has a unique lifetime and bond length. The results indicate that multiple domains of nectins act uncooperatively, as a zipper-like multiply bonded system whereas those of cadherins act cooperatively, as a parallel-like multiply bonded system, consistent with a "fork initiation and zipper" hypothesis for the formation of cell-cell adhesion. The observed dynamic properties among multiple bonds are expected to be advantageous such that nectins search adaptively in the cell-cell exploratory recognition process while cadherins slowly stabilize in the cell-cell zippering process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号