首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The plasma membrane of Spiroplasma apis contains a 28-kDa major protein (P28), like other spiroplasmas which also possess a main 26- to 28-kDa membrane polypeptide, called spiralin. In the work described here, we have developed a simple and efficient method for the purification of P28 of this mollicute, a wall-less eubacteria. Proteins were first selectively extracted from the isolated membrane with the mild detergents (i) sodium N-lauroylsarcosinate (Sarkosyl) and (ii) 3-[(3-cholamidopropyl)dimethylamonio]-1-propyl sulfonate (Chaps) and subjected to size-exclusion HPLC in the presence of Chaps. The P28-enriched fraction was thereafter subjected to the second chromatographic step involving cation exchange HPLC in the presence of the same detergent. P28 was purified at the milligram level (yield, 40%). Metabolite labeling with [14C]palmitic acid and chemical analysis of P28 indicated that it is covalently modified by two O-ester-bound fatty acids and one amide-linked chain and contains a S-glycerylcysteine at the N-terminus. By charge-shift electrophoresis, Triton X-114 phase separation, and growth inhibition tests it was shown that P28 is a typical amphiphilic protein exposed, at least partly, at the cell surface. Together, our data provided evidence that P28 is a "classical" lipoprotein (i.e., triacylated) like the members of the spiralin family.  相似文献   

2.
Myosin was partially purified from ciliated protozoan Tetrahymena pyriformis. Tetrahymena myosin has a fibrous tail with two globular heads at one end and contains 220-kDa heavy chains. The tail length of the molecule (200 nm) is longer than that of myosins from other animals (approximately 160 nm). A sample after HPLC column chromatography containing 220-kDa peptide showed a myosin-specific K+-/NH4+-EDTA-ATPase activity. Polyclonal anti-crayfish myosin heavy chain antibody reacted with Tetrahymena 220-kDa myosin heavy chain, and monoclonal anti-pan myosin antibody reacted with Tetrahymena 180-kDa peptide. The isolated 180-kDa peptide was identified as a clathrin heavy chain.  相似文献   

3.
Acid α-glucosidase (GAA) is a lysosomal enzyme that hydrolyzes glycogen to glucose. Deficiency of GAA causes Pompe disease. Mammalian GAA is synthesized as a precursor of ~ 110,000 Da that is N-glycosylated and targeted to the lysosome via the M6P receptors. In the lysosome, human GAA is sequentially processed by proteases to polypeptides of 76-, 19.4-, and 3.9-kDa that remain associated. Further cleavage between R200 and A204 inefficiently converts the 76-kDa polypeptide to the mature 70-kDa form with an additional 10.4-kDa polypeptide. GAA maturation increases its affinity for glycogen by 7-10 fold. In contrast to human GAA, processing of bovine and hamster GAA to the 70-kDa form is more rapid. A comparison of sequences surrounding the cleavage site revealed human GAA contains histidine at 201 while other species contain hydrophobic amino acids at position 201 in the otherwise conserved sequence. Recombinant human GAA (rhGAA) containing the H201L substitution was expressed in 293 T cells by transfection. Pulse chase experiments in 293 T cells expressing rhGAA with or without the H201L substitution revealed rapid processing of rhGAAH201L but not rhGAAWT to the 70-kDa form. Similarly, when GAA precursor was endocytosed by human Pompe fibroblasts rhGAAH201L but not rhGAAWT was rapidly converted to the 70-kDa mature GAA. These studies indicate that the amino acid at position 201 influences the rate of conversion of 76-kDa GAA to 70-kDa GAA. The GAA sequence rather than the lysosomal protease environment explains the predominance of the 76-kDa form in human tissues.  相似文献   

4.
Spiroplamas are helical, cell wall‐less bacteria belonging to the Class Mollicutes, a group of microorganisms phylogenetically related to low G+C, Gram‐positive bacteria. Spiroplasma species are all found associated with arthropods and a few, including Spiroplasma citri are pathogenic to plant. Thus S. citri has the ability to colonize cells of two very distinct hosts, the plant and the insect vector. While spiroplasmal factors involved in transmission by the leafhopper Circulifer haematoceps have been identified, their specific contribution to invasion of insect cells is poorly understood. In this study we provide evidence that the lipoprotein spiralin plays a major role in the very early step of cell invasion. Confocal laser scanning immunomicroscopy revealed a relocalization of spiralin at the contact zone of adhering spiroplasmas. The implication of a role for spiralin in adhesion to insect cells was further supported by adhesion assays showing that a spiralin‐less mutant was impaired in adhesion and that recombinant spiralin triggered adhesion of latex beads. We also showed that cytochalasin D induced changes in the surface‐exposed glycoconjugates, as inferred from the lectin binding patterns, and specifically improved adhesion of S. citri wild‐type but not of the spiralin‐less mutant. These results indicate that cytochalasin D exposes insect cell receptors of spiralin that are masked in untreated cells. In addition, competitive adhesion assays with lectins strongly suggest spiralin to exhibit glycoconjugate binding properties similar to that of the Vicia villosa agglutinin (VVA) lectin.  相似文献   

5.
Topology and acylation of spiralin.   总被引:4,自引:2,他引:2       下载免费PDF全文
Of the 51 polypeptides detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the plasma membrane of the helical mollicute Spiroplasma melliferum, 21 are acylated, predominantly with myristic (14:0) and palmitic (16:0) chains. This is notably the case for spiralin, the major membrane protein of this bacterium, which contains an average of 0.7 acyl chains per polypeptide, attached very probably by ester bonds to alcohol amino acids. The amphiphilicity of spiralin was demonstrated by the behavior of the protein in charge-shift electrophoresis, its incorporation into liposomes, and its ability to form in the absence of lipids and detergents, globular protein micelles (diameter, approximately 15 nm). The presence of epitopes on the two faces of the cell membrane, as probed by antibody adsorption and crossed immunoelectrophoresis, and the strong interaction between spiralin and the intracytoplasmic fibrils show that spiralin is a transmembrane protein. The mean hydropathy of the amino acid composition of spiralin (-0.30) is on the hydrophilic side of the scale. Surprisingly, the water-insoluble core of spiralin micelles, which is the putative membrane anchor, has a still more hydrophilic amino acid composition (mean hydropathy, -0.70) and is enriched in glycine and serine residues. Taking into account all these properties, we propose a topological model for spiralin featuring a transbilayer localization with hydrophilic domains protruding on the two faces of the membrane and connected by a small domain embedded within the apolar region of the lipid bilayer. In this model, the membrane anchoring of the protein is strengthened by a covalently bound acyl chain.  相似文献   

6.
The cyclic lipopeptide globomycin, a specific inhibitor of signal-peptidase II (Lsp A), proved toxic for the mollicute Spiroplasma melliferum with a minimal inhibitory concentration (MIC) in the range 6.25–12.5 μM, about one order of magnitude higher (that is, less efficient) than bee-venom mellitin. SDS-PAGE analysis of cell proteins followed by immunolabeling (“Western blotting”) and by crossed immunoelectrophoresis demonstrated that the cleavage of the prespiralin leader peptide was prevented by globomycin. Cell fractionation experiments showed that prespiralin was membrane bound and did not accumulate in the cytoplasm or in the culture medium. Furthermore, the use of the potential-sensitive fluorescent dye 3,3′-dipropyl-2,2′-thiadicarbocyanine iodide (diS-C3-[5]) revealed that, in contrast to valinomycin and mellitin, globomycin up to 30 μM has no effect on the electrical transmembrane potential of S. melliferum. This indicates that the toxicity of globomycin for spiroplasma cells is mainly if not exclusively owing to the inhibition of spiralin processing. Added to previously published data, these results suggest that spiralin and probably other lipoproteins of mollicutes are acylated and membrane targeted by a mechanism involving notably the processing of the prelipoprotein precursor by a type II, globomycin-sensitive signal peptidase. Received: 19 April 1996 / Accepted: 28 May 1996  相似文献   

7.
Opsin stability and folding: modulation by phospholipid bicelles   总被引:1,自引:0,他引:1  
Integral membrane proteins do not fare well when extracted from biological membranes and are unstable or lose activity in detergents commonly used for structure and function investigations. We show that phospholipid bicelles provide a valuable means of preserving alpha-helical membrane proteins in vitro by supplying a soluble lipid bilayer fragment. Both 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)/3-[(cholamidopropyl)dimethyl-ammonio]-1-propane sulfonate (Chaps) and DMPC/l-α-1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) bicelles dramatically increase the stability of the mammalian vision receptor rhodopsin as well as its apoprotein, opsin. Opsin is particularly unstable in detergent solution but can be directly purified into DMPC/Chaps. We show that opsin can also be directly purified in DMPC/DHPC bicelles to give correctly folded functional opsin, as shown by the ability to regenerate rhodopsin to  70% yield. These well-characterised DMPC/DHPC bicelles enable us to probe the influence of bicelle properties on opsin stability. These bicelles are thought to provide DMPC bilayer fragments with most DHPC capping the bilayer edge, giving a soluble bilayer disc. Opsin stability is shown to be modulated by the q value, the ratio of DMPC to DHPC, which reflects changes in the bicelle size and, thus, proportion of DMPC bilayer present. The observed changes in stability also correlate with loss of opsin secondary structure as determined by synchrotron far-UV circular dichroism spectroscopy; the most stable bicelle results in the least helix loss. The inclusion of Chaps rather than DHPC in the DMPC/Chaps bicelles, however, imparts the greatest stability. This suggests that it is not just the DMPC bilayer fragment in the bicelles that stabilises the protein, but that Chaps provides additional stability either through direct interaction with the protein or by altering the DMPC/Chaps bilayer properties within the bicelle. The significant stability enhancements and preservation of secondary structure reported here in bicelles are pertinent to other membrane proteins, notably G-protein-coupled receptors, which are unstable in detergent solution.  相似文献   

8.
The plasma membrane of Spiroplasma melliferum contains a major membrane-associated lipoprotein called spiralin. In this study, the processing pathway of spiralin was investigated by chemical analysis of the purified protein and by using [35S]cysteine, [35S]methionine, [14C]myristic acid (14C-14:0), [14C]palmitic acid (14C-16:0), and globomycin. SDS-PAGE analysis of membrane proteins showed the leader peptide cleavage of prospiralin and provided evidence for an apparent selectivity in the acylation: the unprocessed protein was labelled with 14C-16:0 only (O-ester-linked acyl chains), and the mature form with both 14C-labelled fatty acids (O-ester-linked + amide-linked chains). Chemical analysis of the purified protein revealed that spiralin contains S-glycerylcysteine and is covalently modified with two O-ester-linked acyl chains and one amide-linked fatty acid chain. However, a specific selectivity in the O- and the N-acylations was not confirmed; palmitate and stearate were the major components. The amounts of O-ester- and amide-linked acyl chains, the resistance to Edman degradation and the presence of S-glycerylcysteine together indicate that spiralin is a "classical" lipoprotein (i.e. is triacylated) and is probably processed by a mechanism similar to that described for gram-negative eubacteria. On the basis of these findings, a biogenesis pathway for spiralin is proposed.  相似文献   

9.
1.  A 28-kDa peptide from the brain of the tobacco hornworm,Manduca sexta, was purifiedvia HPLC. The peptide copurified with the insect neurohormone, prothoracicotropic hormone (PTTH), through two HPLC columns.
2.  Immunocyctochemistry using polyclonal antibodies against the 28-kDa peptide revealed that the peptide was produced in the same protocerebral neurons that produce PTTH. Western blot analysis demonstrated that the 28-kDa peptide and big PTTH are different molecules.
3.  A PTTHin vitro bioassay indicated that despite having chromatographic properties similar to those of big PTTH and being produced by the same neurons, the 28-kDa peptide did not have PTTH activity.
4.  Amino acid sequence analysis yielded a 27 N-terminal amino acid sequence that had no similarity with known peptides.
5.  Immunocytochemical studies revealed that the 28-kDa peptide is present as early as 30% embryonic development and is absent by adult eclosion. This is in contrast to big PTTH, which is expressed throughout theManduca life cycle.
6.  These data suggest that the 28-kDa peptide is another secretory phenotype of the lateral neurosecretory cell group III (L-NSC III) which may have functions distinct from those for big PTTH or may act synergistically with big PTTH.
  相似文献   

10.
The 168-kDa adherence protein of M. pneumoniae was solubilized and purified to homogeneity. Optimal yield was obtained by pretreatment of whole M. pneumoniae cells with buffer containing 1% Chaps and subsequent extraction with octylglucosid at a detergent to protein ratio of 5 and at octylglycoside concentrations between 1.5 and 2%. Contaminating membrane proteins with high molecular masses were removed by pretreatment with 1% Chaps and proteins of low molecular masses by size exclusion chromatography.  相似文献   

11.
Beef liver membranes were shown to have different kinds of 3,5,3'-triiodo-L-thyronine binding proteins including the 55-kDa protein which had been reported to have this activity in many cells by affinity labelling with N-bromoacetyl-3,5,3'-[125I]triiodo-L-thyronine. In order to characterize the molecular features of these binding proteins, the 55-kDa protein was purified from a beef liver membrane fraction abundant in the plasma membrane. The protein was solubilized with 0.5% Chaps and purified by chromatography on gel filtration, hydroxyapatite, and Mono Q anion-exchange columns. The purity was confirmed with reversed-phase HPLC and SDS/PAGE. Consequently, 0.4% of the total proteins in the membrane fraction was recovered as the 55-kDa protein. One fourth of the amino acid composition of this protein was Glx (14.6%) plus Asx (11.7%) and the pI of this protein was 4.5. The purified protein has triiodothyronine-binding activity with a Kd of 57 nM which is similar to the high-affinity binding site of the membranes. The anti-(55-kDa protein) sera specifically recognized the 55-kDa protein of beef, rat and human cells. The immunoglobulin G fraction of the anti-(55-kDa protein) sera inhibited triiodothyronine binding to the beef liver membrane fraction. The purified protein also showed the activity of protein disulfide-isomerase (EC 5.3.4.1) as determined by reactivating scrambled ribonuclease. These data strongly suggested that the multi-functional 55-kDa protein which has triiodothyronine-binding activity and the activity of protein disulfide-isomerase, which is also reported to be the beta subunit of prolyl-4-hydroxylase, glycosylation-site-binding protein of oligosaccharyl transferase and iodothyronine 5'-monodeionidase, could be significant in the action of triiodothyronine towards the target cells.  相似文献   

12.
Spiroplasma citri, a helical, wall-less prokaryote, is an insect-borne phytopathogen. Though proteins having domains on the surface ofS. citri cells may be important in pathogenicity or transmissibility, only one surface protein, spiralin (29 KDa), has previously been identified. Intact cells of strain BR3 were treated with chymotrypsin, proteinase K, or trypsin, and the surviving proteins were analyzed by SDS-PAGE. Seven proteins, in addition to spiralin, were degraded, indicative of surface exposure of those polypeptides. Surface immunoprecipitation (SIP) was used to test accessibility of the proteins to anti-S. citri membrane serum, another indication of surface exposure. With unlabeled cells, five such proteins were identified. Four of these have sizes that correspond to those seen with protease treatments. When125I surfacelabeled spiroplasmas were used for SIP, twelve surface proteins were detected, eight of which correspond to bands identified by the other methods. A protein of 89 KDa in strain BR3 was not universally detected in otherS. citri strains and spiroplasma species.  相似文献   

13.
Hicks GR  Rice MS  Lomax TL 《Planta》1993,189(1):83-90
We have previously identified two auxin-binding polypeptides in plasma membrane (PM) preparations from zucchini (Cucurbita pepo L.) (Hicks et al. 1989, Proc. Natl. Acad. Sci. USA 86, 4948–4952). These polypeptides have molecular weights of 40 kDa and 42 kDa and label specifically with the photoaffinity auxin analog 5-N3-7-3H-IAA (azido-IAA). Azido-IAA permits both the covalent and radioactive tagging of auxin-binding proteins and has allowed us to characterize further the 40-kDa and 42-kDa polypeptides, including the nature of their attachment to the PM, their relationship to each other, and their potential function. The azido-IAA-labeled polypeptides remain in the pelleted membrane fraction following high-salt and detergent washes, which indicates a tight and possibly integral association with the PM. Two-dimensional electrophoresis of partially purified azido-IAA-labeled protein demonstrates that, in addition to the major isoforms of the 40-kDa and 42-kDa polypeptides, which possess isoelectric points (pIs) of 8.2 and 7.2, respectively, several less abundant isoforms that display unique pIs are apparent at both molecular masses. Tryptic and chymotryptic digestion of the auxin-binding proteins indicates that the 40-kDa and 42-kDa polypeptides are closely related or are modifications of the same polypeptide. Phase extraction with the nonionic detergent Triton X-114 results in partitioning of the azido-IAA-labeled polypeptides into the aqueous (hydrophilic) phase. This apparently paradoxical behavior is also exhibited by certain integral membrane proteins that aggregate to form channels. The results of gel filtration indicate that the auxin-binding proteins do indeed aggregate strongly and that the polypeptides associate to form a dimer or mutimeric complex in vivo. These characteristics are consistent with the hypothesis that the 40-kDa and 42-kDa polypeptides are subunits of a multimeric integral membrane protein which has an auxin-binding site, and which may possess transporter or channel function.Abbreviations HPLC high-pressure liquid chromatography - IAA indole-3-acetic acid - azido-IAA 5-N3-7-3H-IAA - pI isoelectric point - PM plasma membrane - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis We thank R. Hopkins and I. Gelford for excellent technical work and our colleagues, especially T. Wolpert and D.L. Rayle, for many helpful discussions. This work was supported by grants to T.L.L. from National Science Foundation (DCB 8904114), National Aeronautics and Space Administration (NAGW 1253) and by a grant to D.L. Rayle and T.L.L. from U.S. Department of Agriculture (90-37261-5779). G.R.H. is supported by a National Aeronautics and Space Administration Predoctoral Fellowship (NGT 50455).  相似文献   

14.
ABSTRACT. In Plasmodium falciparum. the rhoptries involved in the invasion process are a pair of flask-shaped organelles located at the apical tip of invading stages. They, along with the more numerous micronemes and dense granules, constitute the apical complex in Plasmodium and other members of the phylum Apicomplexa. Several proteins of varying molecular weight have been identified in P. falciparum rhoptries. These include the 225-, 140/130/110-, 80/60/40-, RAP-1 80-, AMA-1 80-, QF3 80-, and 55-kDa proteins. Some of these proteins are lost during schizont rupture and release of merozoites. Others such as the 140/130/110-kDa complex are transferred to the erythrocyte membrane during invasion. The ring-infected surface antigen (RESA). a 155-kDa polypeptide located in dense granules also associates with the erythrocyte membrane during invasion. Erythrocyte-binding studies have demonstrated that both the 140/130/110-kDa rhoptry complex and RESA bind to inside-out-vesicles (IOVs) prepared from human erythrocytes. The 140/130/110-kDa complex also binds to erythrocyte membranes prepared by hypotonic lysis. These proteins, however, do not bind to intact human erythrocytes. In a heterologous erythrocyte model, both the 140/130/110-kDa complex and RESA are shown to bind directly to mouse erythrocytes. Other studies have shown that RESA associates with spectrin in the erythrocyte cytoskeleton. We have recently developed a liposome-binding assay to demonstrate the lipophilic binding properties of the P. falciparum rhoptry complex of 140/130/110 kDa. The rhoptry complex binds to liposomes containing neutrally, positively, and negatively charged phospholipids. However, liposomes containing phosphatidylethanolamine compete effectively for rhoptry protein binding to mouse erythrocytes. The rhoptry complex also binds to membrane and inside-out-vesicles prepared from human erythrocytes and erythrocytes from other species. The rhoptry complex associated with the erythrocyte membrane in ring-infected erythrocytes is accessible to cleavage by phospholipase A. Studies are in progress to identify the molecular epitopes on the individual proteins within the complex responsible for lipid interaction in the erythrocyte bilayer and to determine the specificity of the phospholipid interaction using erythrocyte phospholipids.  相似文献   

15.
Somatostatin receptors of plasma membranes from beta cells of hamster insulinoma were covalently labelled with 125I-[Leu8,D-Trp22,Tyr25]somatostatin-28 (125I-somatostatin-28) and solubilized with the non-denaturing detergent Triton X-100. Analysis by SDS/PAGE and autoradiography revealed three specific 125I-somatostatin-28 receptor complexes with similar molecular masses (228 kDa, 128 kDa and 45 kDa) to those previously identified [Cotroneo, P., Marie, J.-C. & Rosselin, G. (1988) Eur. J. Biochem. 174, 219-224]. The major labelled complex (128 kDa) was adsorbed to a wheat-germ-agglutinin agarose column and eluted by N-acetylglucosamine. Also, the binding of 125I-somatostatin-28 to plasma membranes was specifically inhibited by the GTP analog, guanosine-5'-O-(3-thiotriphosphate) (GTP[S]) in a dose-dependent manner. Furthermore, when somatostatin-28 receptors were solubilized by Triton X-100 as a reversible complex with 125I-somatostatin-28, GTP[S] specifically dissociated the bound ligand to a larger extent from the soluble receptors than from the plasma-membrane-embedded receptors, the radioactivity remaining bound after 15 min at 37 degrees C being 30% and 83% respectively. After pertussis-toxin-induced [32P]ADP-ribosylation of pancreatic membranes, a 41-kDa [32P]ADP-ribose-labelled inhibitory guanine nucleotide binding protein coeluted with the 128-kDa and 45-kDa receptor complexes. The labelling of both receptor proteins was sensitive to GTP[S]. The labelling of the 228-kDa band was inconsistent. These results support the conclusion that beta cell somatostatin receptors can be solubilized as proteins of 128 kDa and 45 kDa. The major labeled species corresponds to the 128-kDa band and is a glycoprotein. The pancreatic membrane contains a 41-kDa GTP-binding protein that can complex with somatostatin receptors.  相似文献   

16.
The surface of spiroplasmas, helically shaped pathogenic bacteria related to the mycoplasmas, is crowded with the membrane-anchored lipoprotein spiralin whose structure and function are unknown. In this work, the secondary structure of spiralin under the form of detergent-free micelles (average Stokes radius, 87.5 A) in water and at the air/water interface, alone or in interaction with lipid monolayers was analyzed. FT-IR and circular dichroism (CD) spectroscopic data indicate that spiralin in solution contains about 25+/-3% of helices and 38+/-2% of beta sheets. These measurements are consistent with a consensus predictive analysis of the protein sequence suggesting about 28% of helices, 32% of beta sheets and 40% of irregular structure. Brewster angle microscopy (BAM) revealed that, in water, the micelles slowly disaggregate to form a stable and homogeneous layer at the air/water interface, exhibiting a surface pressure up to 10 mN/m. Polarization modulation infrared reflection absorption spectroscopy (PMIRRAS) spectra of interfacial spiralin display a complex amide I band characteristic of a mixture of beta sheets and alpha helices, and an intense amide II band. Spectral simulations indicate a flat orientation for the beta sheets and a vertical orientation for the alpha helices with respect to the interface. The combination of tensiometric and PMIRRAS measurements show that, when spiroplasma lipids are used to form a monolayer at the air/water interface, spiralin is adsorbed under this monolayer and its antiparallel beta sheets are mainly parallel to the polar-head layer of the lipids without deep perturbation of the fatty acid chains organization. Based upon these results, we propose a 'carpet model' for spiralin organization at the spiroplasma cell surface. In this model, spiralin molecules anchored into the outer leaflet of the lipid bilayer by their N-terminal lipid moiety are composed of two colinear domains (instead of a single globular domain) situated at the lipid/water interface. Owing to the very high amount of spiralin in the membrane, such carpets would cover most if not all the lipids present in the outer leaflet of the bilayer.  相似文献   

17.
Pseudallescheria boydii is a ubiquitous filamentous fungus capable of causing invasive disease in humans. In the present study, using sodium dodecyl sulfate–polyacrylamide gels containing bovine serum albumin as co-polymerized substrate, we identified a 28-kDa proteolytic activity released to the extracellular environment by mycelia of P. boydii. This peptidase was detected during the growth of P. boydii in Sabouraud-dextrose medium for 13 days and reached its maximal production on day 7. The 28-kDa peptidase was active in acidic pH (5.5) and had its activity completely blocked by 1,10-phenanthroline, a potent zinc-metallopeptidase inhibitor. Two other metallopeptidase inhibitors, EDTA and EGTA, were also tested and no alterations were observed in the activity of the 28-kDa extracellular peptidase. Likewise, E-64 (a cysteine peptidase inhibitor), phenylmethylsulphonyl fluoride (a serine peptidase inhibitor), and pepstatin A (an aspartyl peptidase inhibitor) did not significantly alter the enzymatic behavior. Collectively, we described for the first time the expression of an extracellular metallopeptidase in the human opportunistic fungal pathogen P. boydii.  相似文献   

18.
Spiralin is the most abundant protein at the surface of the plant pathogenic mollicute Spiroplasma citri and hence might play a role in the interactions of the spiroplasma with its host plant and/or its insect vector. To study spiralin function, mutants were produced by inactivating the spiralin gene through homologous recombination. A spiralin-green fluorescent protein (GFP) translational fusion was engineered and introduced into S. citri by using an oriC-based targeting vector. According to the strategy used, integration of the plasmid by a single-crossover recombination at the spiralin gene resulted in the expression of the spiralin-GFP fusion protein. Two distinct mutants were isolated. Western and colony immunoblot analyses showed that one mutant (GII3-9a5) did produce the spiralin-GFP fusion protein, which was found not to fluoresce, whereas the other (GII3-9a2) produced neither the fusion protein nor the wild-type spiralin. Both mutants displayed helical morphology and motility, similarly to the wild-type strain GII-3. Genomic DNA analyses revealed that GII3-9a5 was unstable and that GII3-9a2 was probably derived from GII3-9a5 by a double-crossover recombination between plasmid sequences integrated into the GII3-9a5 chromosome and free plasmid. When injected into the leafhopper vector Circulifer haematoceps, the spiralinless mutant GII3-9a2 multiplied to high titers in the insects (1.1 × 106 to 2.8 × 106 CFU/insect) but was transmitted to the host plant 100 times less efficiently than the wild-type strain. As a result, not all plants were infected, and symptom production in these plants was delayed for 2 to 4 weeks compared to that in the wild-type strain. In the infected plants however, the mutant multiplied to high titers (1.2 × 106 to 1.4 × 107 CFU/g of midribs) and produced the typical symptoms of the disease. These results indicate that spiralin is not essential for pathogenicity but is required for efficient transmission of S. citri by its insect vector.  相似文献   

19.
The Staphylococcus aureus autolysin gene, atl, encodes a unique 138-kDa protein (ATL) with amidase and glucosaminidase domains. ATL has been suggested to undergo proteolytic processing to generate two extracellular peptidoglycan hydrolases, 51-kDa endo-β-N-acetylglucosaminidase (51-kDa GL) and 62-kDa N-acetylmuramyl-L-alanine amidase (62-kDa AM). To investigate cell-associated bacteriolytic enzymes for atl gene products, proteins were extracted from the cells as follows. The cells were exposed to 3 M LiCl followed by 4% SDS. Thereafter, the cells were disrupted and again extracted with 4% SDS. Whole SDS-stable cell-associated bacteriolytic proteins were extracted without disrupting the cells. Exposure to 3 M LiCl released major 138-, 115-, 85-, 62- and 51-kDa bacteriolytic proteins, and subsequent 4% SDS extraction released major 138- and 115-kDa bacteriolytic proteins. These bacteriolytic proteins were missing in extracts of atl mutant RUSAL2 (S. aureus RN450 atl:: Tn551). Immunoblotting studies suggest that these are all atl gene products: the 138-kDa protein is an ATL with a cleaved signal sequence; the 115-and 85-kDa proteins are intermediates; and the 51- and 62-kDa proteins are cell-associated 51-kDa GL and 62-kDa AM, respectively. The trypsin susceptibility of these proteins suggests that they are located outside the cell membrane. Differences in extractability and immunoelectron microscopic studies suggest that atl gene products are associated with cells in two different ways, LiCl extractable and non extractable. We suggest that the 138-kDa ATL undergoes processing through intermediate proteins (115- and 85-kDa proteins) to mature as the active cell cluster-dispersing enzymes 51-kDa GL and 62-kDa AM on the cell surface.  相似文献   

20.
ABSTRACT A monoclonal antibody (mAb) IR-2-1 was raised against a 67-kDa protein purified from the macronucleus-specific bacterial symbiont Holospora obtusa of Paramecium caudatum. The mAb was found to react with two bands (31 and 67-kDa) on gels of H. obtusa. Indirect immunofluorescence microscopy showed that these antigens were distributed inside the cells. However, unexpectedly, this mAb also cross reacted with the radial arms of the contractile vacuole in P. caudatum, P. tetraurelia, P. multimicronucleatum, P. jenningsi and P. bursaria as well as with their cytoplasm. Immunoelectron microscopy showed that the antigens were located on the decorated spongiome of the radial arms. In immunoblots, mAb IR-2-1 reacted with a band of 67 kDa in all Paramecium species examined. However, no band appeared in the immunoblot of isolated macronuclei of H. obtusa-free P. caudatum and no label was seen in the nuclear matrix of the macronucleus of air-dried P. caudatum. These results suggest that the 67-kDa antigen found in H. obtusa was not imported from the host macronucleus and the same antigen in the host contractile vacuoles and cytoplasm were not derived from the symbiont. These results also showed that an epitope on the decorated spongiome of the Paramecium species is shared by its bacterial symbiont. In contrast to the decorated tubule-specific mAb, DS-1, the antigens for IR-2-1 appeared to be loosely membrane bound as they were lost in paraformaldehyde fixed and acetone permeabilized Paramecium. Supplementary key words. Contractile vacuole complexes, Holospora obtusa, monoclonal antibody, Paramecium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号