首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 678 毫秒
1.
Monospecific polyclonal antibodies (MPAbs) to apoB-100 regions Cys3734 and Cys4190 were isolated by affinity chromatography using the synthetic polypeptides, Q3730VPSSKLDFREIQIYKK3746 and G4182IYTREELSTMFIREVG4198, respectively, coupled to a hydrophilic resin. Molecular modeling and fluroescence labeling studies have suggested that Cys67 located in kringle type 9 (LPaK9, located between residues 3991 and 4068 of the apo[a] sequence inferred by cDNA) of the apo[a] molecule is disulfide linked to Cys3734 of apoB-100 in human lipoprotein[a] (Lp[a]). This possibility has been further explored with MPAbs. Four species of MPAbs directed to a Cys3734 region of apoB-100 (3730–3746) were isolated from goat anti-human LDL serum by a combination of synthetic peptide (Q3730VPSSKLDFREIQIYKK3746) affinity chromatography and preparative electrophoresis (electrochromatography). MPAbs to the Cys4190 region of apoB-100, a second or alternative disulfide link-site between apo[a] and apoB-100, were also isolated using a synthetic peptide (G4182IYTREELSTMFIREVG4198) affinity resin. Results of immunoassays showed that binding of these four MPAbs to Lp[a] was significantly lower than to LDL. In contrast, MPAbs to the apoB-100 region 4182–4198 which contains Cys4190, a second or alternative disulfide link-site between apo[a] and apoB-100, displayed a less significant difference in binding to Lp[a] and LDL. These results provide additional evidence that the residues 3730–3746 of apoB-100 interact significantly with apo[a] in Lp[a], and that Cys3734 is a likely site for the disulfide bond connecting apo[a] and apoB-100.Abbreviations amino acids single letter, e.g., alanine, A, etc. - BSA bovine serum albumin - d density (g/ml) - aca -aminocaproic acid - ELISA enzyme-linked immunosorbant assay - DTT dithiothreitol - HRP horseradish peroxidase - MAb monoclonal antibody - MPAb monospecific polyclonal antibody - PAGE polyacrylamide gel electrophoresis - PMSF phenylmethylsulfonyl fluoride - SDS sodium dodecyl sulfate - Na2EDTA sodium ethylenediaminetetraacetate - NaN3 sodium azide - TRIS (hydroxymethyl)aminomethane  相似文献   

2.
Apolipoprotein[a], the highly glycosylated, hydrophilic apoprotein of lipoprotein[a] (Lp[a]), is generally considered to be a multimeric homologue of plasminogen, and to exhibit atherogenic/thrombogenic properties. The cDNA-inferred amino acid sequence of apo[a] indicates that apo[a], like plasminogen and some zymogens, is composed of a kringle domain and a serine protease domain. To gain insight into possible positive functions of Lp[a], we have examined the apo[a] primary structure by comparing its sequence with those of other proteins involved in coagulation and fibrinolysis, and its secondary structure by using a combination of structure prediction algorithms. The kringle domain encompasses 11 distinct types of repeating units, 9 of which contain 114 residues. These units, called kringles, are similar but not identical to each other or to PGK4. Each apo[a] kringle type was compared with kringles which have been shown to bind lysine and fibrin, and with bovine prothrombin kringle 1. Apo[a] kringles are linked by serine/threonine- and proline-rich stretches similar to regions in immunoglobulins, adhesion molecules, glycoprotein Ib-alpha subunit, and kininogen. In comparing the protease domains of apo[a] and plasmin, apo[a] contains a region between positions 4470 and 4492 where 8 substitutions, 9 deletions, and 1 insertion are apparent. Our analysis suggests that apo[a] kringle-type 10 has a high probability of binding to lysine in the same way as PGK4. In the only human apo[a] polymorph sequenced to date, position 4308 is occupied by serine, whereas the homologous position in plasmin is occupied by arginine and is an important site for proteolytic cleavage and activation. An alternative site for the proteolytic activation of human apo[a] is proposed.  相似文献   

3.
Apolipoprotein(a) [apo(a)] is the distinctive glycoprotein of lipoprotein Lp(a), which is disulfide linked to the apo B100 of a low density lipoprotein particle. Apo(a) possesses a high degree of sequence homology with plasminogen, the precursor of plasmin, a fibrinolytic and pericellular proteolytic enzyme. Apo(a) exists in several isoforms defined by a variable number of copies of plasminogen-like kringle 4 and single copies of kringle 5, and the protease region including the backbone positions for the catalytic triad (Ser, His, Asp). A lysine-binding site that is similar to that of plasminogen kringle 4 is present in apo(a) kringle IV type 10. These kringle motifs share some amino acid residues (Asp55, Asp57, Phe64, Tyr62, Trp72, Arg71) that are key components of their lysine-binding site. The spatial conformation and the function of this site in plasminogen kringle 4 and in apo(a) kringle IV-10 seem to be identical as indicated by (i) the ability of apo(a) to compete with plasminogen for binding to fibrin, and (ii) the neutralisation of the lysine-binding function of these kringles by a monoclonal antibody that recognises key components of the lysine-binding site. In contrast, the lysine-binding site of plasminogen kringle 1 contains a Tyr residue at positions 64 and 72 and is not recognised by this antibody. Plasminogen bound to fibrin is specifically recognised and cleaved by the tissue-type plasminogen activator at Arg561-Val562, and is thereby transformed into plasmin. A Ser-Ile substitution at the activation cleavage site is present in apo(a). Reinstallation of the Arg-Val peptide bond does not ensure cleavage of apo(a) by plasminogen activators. These data suggest that the stringent specificity of tissue-type plasminogen activator for plasminogen requires molecular interactions with structures located remotely from the activation disulfide loop. These structures ensure second site interactions that are most probably absent in apo(a).  相似文献   

4.
Using the fluorescent sulfhydryl probe, 5-iodoacetamidofluoresceine, to label the free sulfhydryl of low-density lipoprotein, the positions of two cysteine residues in apolipoprotein B were located. The tryptic peptides containing the fluorescent probe were isolated by high-performance liquid chromatography systems and sequenced by automatic techniques. The free cysteine residues of apolipoprotein B-100 on low-density lipoprotein are located at positions 3734 and 4190, either or both of which can potentially form a disulfide linkage with apolipoprotein(a) in lipoprotein(a).  相似文献   

5.
Apo(a), the distinguishing protein component of lipoprotein(a) [Lp(a)], exhibits sequence similarity to plasminogen and can inhibit binding of plasminogen to cell surfaces. Plasmin generated on the surface of vascular cells plays a role in cell migration and proliferation, two of the fibroproliferative inflammatory events that underlie atherosclerosis. The ability of apo(a) to inhibit pericellular plasminogen activation on vascular cells was therefore evaluated. Two isoforms of apo(a), 12K and 17K, were found to significantly decrease tissue-type plasminogen activator-mediated plasminogen activation on human umbilical vein endothelial cells (HUVECs) and THP-1 monocytes and macrophages. Lp(a) purified from human plasma decreased plasminogen activation on THP-1 monocytes and HUVECs but not on THP-1 macrophages. Removal of kringle V or the strong lysine binding site in kringle IV10 completely abolished the inhibitory effect of apo(a). Treatment with carboxypeptidase B to assess the roles of carboxyl-terminal lysines in cellular receptors leads in most cases to decreases in plasminogen activation as well as plasminogen and apo(a) binding; however, inhibition of plasminogen activation by apo(a) was unaffected. Our findings directly demonstrate that apo(a) inhibits pericellular plasminogen activation in all three cell types, although binding of apo(a) to cell-surface receptors containing carboxyl-terminal lysines does not appear to play a major role in the inhibition mechanism.  相似文献   

6.
Rhesus monkey apolipoprotein(a). Sequence, evolution, and sites of synthesis   总被引:11,自引:0,他引:11  
Human lipoprotein(a) is a low density lipoprotein-like lipoprotein whose concentration in plasma is correlated with atherosclerosis. The characteristic protein component of lipoprotein(a) is apolipoprotein(a) (apo(a)) which is disulfide-linked to apolipoprotein B-100. Sequencing of rhesus monkey apo(a) cDNA suggests that this protein, like human apo(a), is highly similar to plasminogen. Sequence data suggests that a plasminogen-like protease activity and kringle 1-, 2-, 3-, and 5-like domains are unnecessary for apo(a) function, but a highly repeated kringle four-like domain is important. Liver is the major site of apo(a) RNA synthesis; reduced amounts of message were also found in testes and brain. Co-expression with apoB-100 and plasminogen in rhesus tissues is not mandatory.  相似文献   

7.
Copper binding to apolipoprotein B-100 (apo B-100) and its reduction by endogenous components of low-density lipoprotein (LDL) represent critical steps in copper-mediated LDL oxidation, where cuprous ion (Cu(I)) generated from cupric ion (Cu(II)) reduction is the real trigger for lipid peroxidation. Although the copper-reducing capacity of the lipid components of LDL has been studied extensively, we developed a model to specifically analyze the potential copper reducing activity of its protein moiety (apo B-100). Apo B-100 was isolated after solubilization and extraction from size exclusion-HPLC purified LDL. We obtained, for the first time, direct evidence for apo B-100-mediated copper reduction in a process that involves protein-derived radical formation. Kinetics of copper reduction by isolated apo B-100 was different from that of LDL, mainly because apo B-100 showed a single phase-exponential kinetic, instead of the already described biphasic kinetics for LDL (namely alpha-tocopherol-dependent and independent phases). While at early time points, the LDL copper reducing activity was higher due to the presence of alpha-tocopherol, at longer time points kinetics of copper reduction was similar in both LDL and apo B-100 samples. Electron paramagnetic resonance studies of either LDL or apo B-100 incubated with Cu(II), in the presence of the spin trap 2-methyl-2-nitroso propane (MNP), indicated the formation of protein-tryptophanyl radicals. Our results supports that apo B-100 plays a critical role in copper-dependent LDL oxidation, due to its lipid-independent-copper reductive ability.  相似文献   

8.
Lipoprotein[a] (Lp[a]) is assembled by a two-step process involving an initial lysine-dependent binding between apolipoprotein B-100 (apoB-100) and apolipoprotein[a] (apo[a]) that facilitates the formation of a disulphide bond between apoB-100Cys4,326 and apo[a]Cys4,057. Previous studies of transgenic mice expressing apoB-95 (4,330 amino acids) and apoB-97 (4,397 amino acids) have shown that apoB-100 amino acids 4,330-4,397 are important for the initial binding to apo[a]. Furthermore, a lysine-rich peptide spanning apoB-100 amino acids 4,372-4,392 has recently been shown to bind apo[a] and inhibit Lp[a] assembly in vitro. This suggests that a putative apo[a] binding site exists in the apoB-4,372-4,392 region. The aim of our study was to establish whether the apoB-4,372-4,392 sequence was important for Lp[a] assembly in the context of the full-length apoB-100. Transgenic mice were created that expressed a mutant human apoB-100, apoB-100K4-->S4, in which all four lysine residues in the 4,372-4,392 sequence were mutated to serines. The apoB-100K4-->S4 mutant showed a reduced capacity to form Lp[a] in vitro compared with wild-type human apoB-100. Double transgenic mice expressing both apoB-100K4-->S4 and apo[a] contained significant amounts of free apo[a] in the plasma, indicating a less-efficient assembly of Lp[a] in vivo. Taken together, these results clearly show that the apoB-4,372-4,392 sequence plays a role in Lp[a] assembly.  相似文献   

9.
Quantification of apo[a] and apoB in human atherosclerotic lesions.   总被引:6,自引:0,他引:6  
Lipoprotein[a] or Lp[a] is a cholesterol-rich plasma lipoprotein that is associated with increased risk for cardiovascular disease. To better understand this association we determined the amount of apo[a] and apoB as possible estimates for Lp[a] and low density lipoprotein (LDL) accumulation in atherosclerotic lesions and in plasma, from patients undergoing vascular surgery, using specific radioimmunoassays for apolipoprotein[a] and apolipoprotein B. Apo[a] and apoB were operationally divided into a loosely bound fraction obtained by extracting minced samples of plaque with phosphate-buffered saline (PBS), and a tightly bound fraction obtained by extracting the residual tissue with 6 M guanidine-HCl (GuHCl). We found that 83% of all apo[a] but only 32% of all apoB in lesions was in the tightly bound fraction. When normalized for corresponding plasma levels, apo[a] accumulation in plaques was more than twice that of apoB. All fractions of tissue apo[a], loosely bound, tightly bound, and total, correlated significantly with plasma apo[a]. However, no significant correlations were found between any of the tissue fractions and plasma apoB. If all apo[a] and apoB had been associated with intact Lp[a] or LDL particles, the calculated mass of tightly bound Lp[a] would actually have exceeded that of tightly bound LDL in five cases with plasma Lp[a] levels above 5 mg apo[a] protein/dl. When PBS and GuHCl extracts of lesions were subjected to one-dimensional electrophoresis, the major band stained for lipid and immunoblotted positively for apo[a] and apoB, suggesting the presence of some intact Lp[a] in these extracts. These results suggest that Lp[a] accumulates preferentially to LDL in plaques, and that plaque apo[a] is directly associated with plasma apo[a] levels and is in a form that is less easily removable than most of the apoB. This preferential accumulation of apo[a] as a tightly bound fraction in lesions, could be responsible for the independent association of Lp[a] with cardiovascular disease in humans.  相似文献   

10.
The plasma lipoprotein lipoprotein(a) [Lp(a)] comprises a low-density lipoprotein (LDL)-like particle covalently attached to the glycoprotein apolipoprotein(a) [apo(a)]. Apo(a) consists of multiple tandem repeating kringle modules, similar to plasminogen kringle IV (designated KIV1-KIV10), followed by modules homologous to the kringle V module and protease domain of plasminogen. The apo(a) KIV modules have been classified on the basis of their binding affinity for lysine and lysine analogues. The strong lysine-binding apo(a) KIV10 module mediates lysine-dependent interactions with fibrin and cell-surface receptors. Weak lysine-binding apo(a) KIV7 and KIV8 modules display a 2-3-fold difference in lysine affinity and play a direct role in the noncovalent step in Lp(a) assembly through binding to unique lysine-containing sequences in apolipoproteinB-100 (apoB-100). The present study describes the nuclear magnetic resonance solution structure of apo(a) KIV8 and its solution dynamics properties, the first for an apo(a) kringle module, and compares the effects of epsilon-aminocaproic acid (epsilon-ACA) binding on the backbone and side-chain conformation of KIV7 and KIV8 on a per residue basis. Apo(a) KIV8 adopts a well-ordered structure that shares the general tri-loop kringle topology with apo(a) KIV6, KIV7, and KIV10. Mapping of epsilon-ACA-induced chemical-shift changes on KIV7 and KIV8 indicate that the same residues are affected, despite a 2-3-fold difference in epsilon-ACA affinity. A unique loop conformation within KIV8, involving hydrophobic interactions with Tyr40, affects the positioning of Arg35 relative to the lysine-binding site (LBS). A difference in the orientation of the aromatic side chains comprising the hydrophobic center of the LBS in KIV8 decreases the size of the hydrophobic cleft compared to other apo(a) KIV modules. An exposed hydrophobic patch contiguous with the LBS in KIV8 and not conserved in other weak lysine-binding apo(a) kringle modules may modulate specificity for regions within apoB-100. An additional ligand recognition site comprises a structured arginine-glycine-aspartate motif at the N terminus of the KIV8 module, which may mediate Lp(a)/apo(a)-integrin interactions.  相似文献   

11.
Efforts to elucidate the role of lipoprotein [a] (Lp[a]) in atherogenesis have been hampered by the lack of an animal model with high plasma Lp[a] levels. We produced two lines of transgenic mice expressing apolipoprotein [a] (apo[a]) in the liver and crossed them with mice expressing human apolipoprotein B-100 (apoB-100), generating two lines of Lp[a] mice. One had Lp[a] levels of approximately 700 mg/dl, well above the 30 mg/dl threshold associated with increased risk of atherosclerosis in humans; the other had levels of approximately 35 mg/dl. Most of the LDL in mice with high-level apo[a] expression was covalently bound to apo[a], but most of the LDL in the low-expressing line was free. Using an enzyme-linked sandwich assay with monoclonal antibody EO6, we found high levels of oxidized phospholipids in Lp[a] from high-expressing mice but not in LDL from low-expressing mice or in LDL from human apoB-100 transgenic mice (P <0.00001), even though all mice had similar plasma levels of human apoB-100. The increase in oxidized lipids specific to Lp[a] in high-level apo[a]-expressing mice suggests a mechanism by which increased circulating levels of Lp[a] could contribute to atherogenesis.  相似文献   

12.
Low-density lipoprotein (LDL) oxidation is stimulated by copper. Addition of a recombinant form of apolipoprotein(a) (apo(a); the distinguishing protein component of lipoprotein(a)) containing 17 plasminogen kringle IV-like domains (17K r-apo(a)) protects LDL against oxidation by copper. Protection is specific to apo(a) and is not achieved by plasminogen or serum albumin. When Cu(2+) is added to 17K r-apo(a), its intrinsic fluorescence is quenched in a concentration-dependent and saturable manner. Quenching is unchanged whether performed aerobically or anaerobically and is reversible by ethylenediaminetetraacetate, suggesting that it is due to equilibrium binding of Cu(2+) and not to oxidative destruction of tryptophan residues. The fluorescence change exhibits a sigmoid dependence on copper concentration, and time courses of quenching are complex. At copper concentrations below 10 microM there is little quenching, whereas above 10 microM quenching proceeds immediately as a double-exponential decay. The affinity and kinetics of copper binding to 17K r-apo(a) are diminished in the presence of the lysine analogue epsilon -aminocaproic acid. We propose that copper binding to the kringle domains of 17K is mediated by a His-X-His sequence that is located about 5A from the closest tryptophan residue of the lysine binding pocket. Copper binding may account for the natural resistance to copper-mediated oxidation of lipoprotein(a) relative to LDL that has been previously reported and for the protection afforded by apo(a) from copper-mediated oxidation of LDL that we describe in the present study.  相似文献   

13.
Lipoprotein [a] (Lp[a]) contains equimolar amounts of apoB-100 and apolipoprotein [a] (apo[a]). Both proteins are amenable to degradation in vivo by mechanisms yet to be clearly defined. In this study, we examined the in vitro susceptibility of LDL and Lp[a], obtained from the same donor, to oxidation by either Cu(2)+ or the combined Crotalus adamanteus phospholipase A2 and soybean lipoxygenase system, monitoring the course of the reaction by the generation of conjugated dienes and fatty acids. In some experiments, treatment with leukocyte elastase (LE) or matrix metalloproteinase 12 (MMP-12) was administered before and after the oxidative step. In the case of Lp[a] we found that with both oxidizing systems, conditions that caused the breakdown of apoB-100 did not degrade apo[a] although oxidation-mediated changes were detected in the latter by intrinsic tryptophan fluorescence spectroscopy. Similar results were obtained with a reassembled Lp[a] obtained by incubating free apo[a] with LDL. Both apo[a] and apoB-100 were cleaved by LE and MMP-12 but the enzymatic cleavage was more marked when the preoxidized proteins were used as a substrate. Taken together, our in vitro studies indicate that apo[a] but not apoB-100 resists oxidative fragmentation, whereas both proteins are cleaved by enzymes of the serine and metalloproteinase families. We speculate that the fragments of apo[a] observed in vivo may be preferentially generated by proteolytic rather than oxidative events, whereas apoB-100 can be degraded by both mechanisms.  相似文献   

14.
Increasing evidence suggests that the assembly of lipoprotein[a] (Lp[a]) proceeds in two steps. In the first step, non-covalent interactions between apolipoprotein[a] (apo[a]) and apolipoprotein B (apoB) of low density lipoprotein (LDL) form a dissociable apo[a]:LDL complex. In the second step, a covalent disulfide linkage forms the stable Lp[a] particle. Several methods are currently used to study the assembly of Lp[a], however, these methods are laborious, time-consuming, and not suitable for a high throughput screening. We report here the development of a rapid and simple assay based on the binding of labeled LDL to a Lp[a]/apo[a] substrate which is immobilized on the surface of a microtiter plate. Quantification of bound LDL provides a measure of the extent of complex formation. Labeled LDL bound to both Lp[a] and apo[a] substrates with similar affinity. Plasma lipoproteins containing apoB as well as free apo[a] were capable of competing with LDL binding. The binding of LDL to Lp[a]/apo[a] was inhibited by L-proline and lysine analogs, which are known to inhibit the non-covalent association between apo[a] and apoB. Using this method we have found that nicotinic acid and captopril are able to inhibit the association of apo[a] with apoB. This method is compatible with automation and can be applied to a high throughput screening of inhibitors of Lp[a] formation.  相似文献   

15.
The vacuolar class of (H+)-ATPases are highly sensitive to sulfhydryl reagents, such as N-ethylmaleimide. The cysteine residue which is responsible for inhibition of the coated vesicle (H+)-ATPase upon modification by N-ethylmalemide is located in subunit A and is able to form a disulfide bond with the cysteine moiety of cystine through an exchange reaction. This unique property distinguishes this cysteine residue from the remaining cysteine residues of the (H+)-ATPase. Using this reaction, we selectively labeled the cystine-reactive cysteine residue of subunit A with fluorescein-maleimide. After complete digestion of the labeled subunit A by V8 protease, a single labeled fragment of molecular mass 3.9 kDa was isolated and the amino-terminal sequence was determined. This fragment contains 2 cysteine residues, Cys240 and Cys254. Since Cys254 is conserved among all vacuolar (H+)-ATPases whereas Cys240 is not, it is likely that Cys254 is the residue which is responsible for the sensitivity of the vacuolar (H+)-ATPase to sulfhydryl reagents.  相似文献   

16.
The association of low density lipoprotein (LDL) with proteoglycans of the intima, in particular chondroitin 6-sulphate proteoglycans, may contribute to LDL accumulation during atherogenesis. We studied the interactions of apolipoprotein B-100 (apo B-100) peptide segments and model peptides with chondroitin 6-sulphate. The ability of these peptides to inhibit complex formation between LDL and chondroitin 6-sulphate was used as a measurement of the interaction. Results from earlier studies suggest that surface located segments of apo B-100 are responsible for the interaction of LDL with heparin and chondroitin sulphate-rich arterial proteoglycans. Therefore 16 hydrophilic apo B-100 peptides were selected for studies and synthesized with a peptide synthesizer. These synthetic peptides were 7 to 26 amino acids long. Four of the peptides inhibited the association of LDL with chondroitin 6-sulphate, namely apo B segments 4230–4254, 3359–3377, 3145–3157 and 2106–2121. The 3359–3377 segment was the most efficient. A common feature betweeb the interacting peptides was an excess of positively charged side chains and based on these results we synthesized nine model peptides that shared sequence characateristics with the interacting apo B-100 peptides. Five of these: RSGRKRSGK, RSSRKRSGK, RGGRKRGGK, RSRSRSRSR AND RGRGRGRGR were shown to block the LDL-chrondroitin-6-sulphate association, RSRSRSRSR being the most effective. The results suggest that the optimal association of the peptides with chrondroitin 6-sulphate is obtained with a minimal chain length of nine amino acids and a minimum of five positive charges and that flexibility in the binding region is important.  相似文献   

17.
Apolipoprotein[a] (apo[a]) is a large disulfide linked glycoprotein synthesized by hepatocytes. We have examined the role of disulfide bond formation in the processing of apo[a] using human and rat hepatoma cells expressing apo[a] isoforms containing varying numbers of kringle 4 (K4) domains, following treatment with DTT. Hepatoma cells expressing 6- or 9-K4 isoforms revealed approximately 90% inhibition of apo[a] secretion following DTT treatment, although larger isoforms containing 13- or 17-K4 domains demonstrated continued secretion (up to 30% of control values), suggesting that a fraction of the larger isoforms is at least partially DTT resistant. Wash-out experiments demonstrated that these effects were completely reversible for all isoforms studied, with no enhanced degradation associated with prolonged intracellular retention. DTT treatment was associated with enhanced binding of apo[a] with the endoplasmic reticulum-associated chaperone proteins calnexin, calreticulin, and BiP, which was reversible upon DTT removal. The chemical chaperone 6-aminohexanoic acid, previously demonstrated by others to rescue defective apo[a] secretion associated with alterations in glycosylation, failed to alter the secretion of apo[a] following DTT treatment. The demonstration that DTT modulates apo[a] secretion in a manner influenced by both the type and number of K4 repeats extends understanding of the mechanisms that regulate its exit from the endoplasmic reticulum.  相似文献   

18.
The active site cysteine of pig liver thioltransferase was identified as Cys22. The kinetics of the reaction between Cys22 of the reduced enzyme and iodoacetic acid as a function of pH revealed that the active site sulfhydryl group had a pKa of 2.5. Incubation of reduced enzyme with [1-14C]cysteine prevented the inactivation of the enzyme by iodoacetic acid at pH 6.5, and no stable protein-cysteine disulfide was found when the enzyme was separated from excess [1-14C]cysteine, suggesting an intramolecular disulfide formation. The results suggested a reaction mechanism for thioltransferase. The thiolated Cys22 first initiates a nucleophilic attack on a disulfide substrate, resulting in the formation of an unstable mixed disulfide between Cys22 and the substrate. Subsequently, the sulfhydryl group at Cys25 is deprotonated as a result of micro-environmental changes within the active site domain, releasing the mixed disulfide and forming an intramolecular disulfide bond. Reduced glutathione, the second substrate, reduces the intramolecular disulfide forming a transient mixed disulfide which is then further reduced by glutathione to regenerate the reduced enzyme and form oxidized glutathione. The rate-limiting step for a typical reaction between a disulfide and reduced glutathione is proposed to be the reduction of the intramolecular disulfide form of the enzyme by reduced glutathione.  相似文献   

19.
Although elevated plasma concentrations of lipoprotein [a] (Lp[a]) are considered to be a risk factor for atherosclerosis, the mechanisms by which Lp[a] mediates its pathogenic effects have not been conclusively determined. The apolipoprotein [a] (apo[a]) component of Lp[a] confers unique structural properties to this lipoprotein, including the ability to bind to lysine residues in biological substrates. It has been shown, however, that only a fraction of plasma Lp[a] (Lp[a]-Lys(+)) binds to lysine-Sepharose in vitro. The nature of the non-lysine-binding Lp[a] fraction in plasma (Lp[a]-Lys(-)) is currently unknown. In the present study, the Lp[a]-Lys(+) fraction was determined in the plasma of six unrelated individuals; the Lp[a]-Lys(+) fraction in these plasma samples ranged from approximately 37 to approximately 48%. Interestingly, purification of the Lp[a] by density gradient ultracentrifugation followed by gel filtration and ion-exchange chromatography resulted in progressive increases in the Lp[a]-Lys(+) fraction. Addition of either purified low density lipoprotein (LDL) or fibronectin to the purified Lp[a] at a 1:1 molar ratio reduced the Lp[a]-Lys(+) fraction (maximal decrease of 34 and 20%, respectively) whereas addition of both fibronectin and LDL to the purified Lp[a] resulted in a further decrease (45% maximally) in this fraction. Similar results were obtained by using a recombinant expression system for apo[a]: addition of a 4-fold molar excess of either LDL or fibronectin to conditioned medium containing metabolically labeled recombinant apo[a] reduced the Lys(+) fraction by 49 and 23%, respectively.Taken together, our data suggest that the lysine-binding heterogeneity of plasma Lp[a] is not primarily an intrinsic property of the lipoprotein, but rather results in large part from its ability to noncovalently associate with abundant plasma components such as LDL and fibronectin. These interactions appear to mask the lysine-binding site in apo[a] kringle IV type 10, which mediates the interaction of Lp[a] with lysine-Sepharose. The contribution of these interactions to the function of Lp[a] in vivo remains to be investigated.  相似文献   

20.
The secondary structure of the apo B-100 protein present in human low density lipoprotein has been investigated by transmission and attenuated total reflection infrared spectroscopy. The amount of beta-sheet (41%) is significantly higher than that determined by CD spectroscopy in the present study (12%) and elsewhere (15-16%). The high percentage of beta-sheet structure in apo B-100 supports the importance of such segments in maintaining the lipid-protein assembly in LDL. Polarized infrared spectroscopy indicates that the beta-sheet component of apo B-100 adopts a preferential orientation with respect to the phospholipid monolayer surrounding the LDL, whereas no such orientation is observed for the other secondary structure components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号