首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heparin-agarose and single-stranded DNA-cellulose chromatography were used to purify RNA polymerase 25-fold from Neisseria gonorrhoeae, and the activity of the polymerase was characterized in altered assay systems. The core subunits (beta, beta', and alpha) were tentatively identified as major proteins copurifying with polymerase activity. The identification of the core subunits was confirmed by Western (immunoblot) analysis with polyclonal antisera to Escherichia coli core RNA polymerase. Gonococcal sigma factor heterogeneity was examined by Western blot analysis with polyclonal antiserum to the major E. coli sigma factor, sigma 70, to the E. coli heat shock sigma factor, sigma 32, and with a monoclonal antiserum to Salmonella typhimurium NtrA (sigma 54). Purified RNA polymerase and whole-cell extracts from type 1, type 4, heat-shocked, and anaerobically grown gonococci were examined. Four putative gonococcal sigma factors were detected in purified RNA polymerase preparations and in whole-cell extracts from all cell types. Two of these bands appeared as a doublet, which had an estimated Mr of 80,000. A single lower-Mr band, estimated to be 40,000, was also present. All three of these bands reacted with antisera to E. coli sigma 70 and to E. coli sigma 32. A fourth gonococcal protein reacted solely with a highly specific monoclonal antibody to sigma 54 and had an Mr of 90,000. We conclude that N. gonorrhoeae may contain multiple sigma factors, which it may use to regulate gene expression.  相似文献   

2.
In Escherichia coli, the ability to elicit a heat shock response depends on the htpR gene product. Previous work has shown that the HtpR protein serves as a sigma factor (sigma 32) for RNA polymerase that specifically recognizes heat shock promoters (A.D. Grossman, J.W. Erickson, and C.A. Gross Cell 38:383-390, 1984). In the present study we showed that sigma 32 synthesized in vitro could stimulate the expression of heat shock genes. The in vitro-synthesized sigma 32 was found to be associated with RNA polymerase. In vivo-synthesized sigma 32 was also associated with RNA polymerase, and this polymerase (E sigma 32) could be isolated free of the standard polymerase (E sigma 70). E sigma 32 was more active than E sigma 70 with heat shock genes; however, non-heat-shock genes were not transcribed by E sigma 32. The in vitro expression of the htpR gene required E sigma 70 but did not require E sigma 32.  相似文献   

3.
4.
sigma 32, the product of the Escherichia coli rpoH locus, is an alternative RNA polymerase sigma factor utilized to express heat shock genes upon a sudden rise in temperature. E. coli K165 [rpoH165(Am) supC(Ts)] is temperature sensitive for growth and does not induce heat shock protein synthesis. We have isolated a locus from Rhizobium meliloti called suhR that allows E. coli K165 to grow at high temperature and induce heat shock protein synthesis. R. meliloti suhR mutants were viable and symbiotically effective. suhR was found to have no DNA or derived amino acid sequence similarity to the genes of previously sequenced sigma factors or other data base entries, although a helix-turn-helix DNA-binding protein motif is present. suhR did not restore the phenotypic defects of delta rpoH E. coli; suppression of the E. coli K165 phenotype is thus likely to involve E. coli sigma 32. Western immunoblots showed that suhR caused an approximately twofold elevation of sigma 32 levels in K165; RNA blots indicated that rpoH mRNA level and stability were not altered. Stabilization of sigma 32 protein and increased rpoH mRNA translation are thus the most probable mechanisms of suppression.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
The lon gene of Escherichia coli encodes the ATP-dependent serine protease La and belongs to the family of sigma 32-dependent heat shock genes. In this paper, we report the cloning and characterization of the lon gene from the gram-positive bacterium Bacillus subtilis. The nucleotide sequence of the lon locus, which is localized upstream of the hemAXCDBL operon, was determined. The lon gene codes for an 87-kDa protein consisting of 774 amino acid residues. A comparison of the deduced amino acid sequence with previously described lon gene products from E. coli, Bacillus brevis, and Myxococcus xanthus revealed strong homologies among all known bacterial Lon proteins. Like the E. coli lon gene, the B. subtilis lon gene is induced by heat shock. Furthermore, the amount of lon-specific mRNA is increased after salt, ethanol, and oxidative stress as well as after treatment with puromycin. The potential promoter region does not show similarities to promoters recognized by sigma 32 of E. coli but contains sequences which resemble promoters recognized by the vegetative RNA polymerase E sigma A of B. subtilis. A second gene designated orfX is suggested to be transcribed together with lon and encodes a protein with 195 amino acid residues and a calculated molecular weight of 22,000.  相似文献   

13.
The rpoH genes encoding homologs of Escherichia coli sigma 32 (heat shock sigma factor) were isolated and sequenced from five gram negative proteobacteria (gamma or alpha subgroup): Enterobacter cloacae (gamma), Serratia marcescens (gamma), Proteus mirabilis (gamma), Agrobacterium tumefaciens (alpha) and Zymomonas mobilis (alpha). Comparison of these and three known genes from E.coli (gamma), Citrobacter freundii (gamma) and Pseudomonas aeruginosa (gamma) revealed marked similarities that should reflect conserved function and regulation of sigma 32 in the heat shock response. Both the sequence complementary to part of 16S rRNA (the 'downstream box') and a predicted mRNA secondary structure similar to those involved in translational control of sigma 32 in E.coli were found for the rpoH genes from the gamma, but not the alpha, subgroup, despite considerable divergence in nucleotide sequence. Moreover, a stretch of nine amino acid residues Q(R/K)(K/R)LFFNLR, designated the 'RpoH box', was absolutely conserved among all sigma 32 homologs, but absent in other sigma factors; this sequence overlapped with the segment of polypeptide thought to be involved in DnaK/DnaJ chaperone-mediated negative control of synthesis and stability of sigma 32. In addition, a putative sigma E (sigma 24)-specific promoter was found in front of all rpoH genes from the gamma, but not alpha, subgroup. These results suggest that the regulatory mechanisms, as well as the function, of the heat shock response known in E.coli are very well conserved among the gamma subgroup and partially conserved among the alpha proteobacteria.  相似文献   

14.
A random library of Escherichia coli MG1655 genomic fragments fused to a promoterless green fluorescent protein (GFP) gene was constructed and screened by differential fluorescence induction for promoters that are induced after exposure to a sublethal high hydrostatic pressure stress. This screening yielded three promoters of genes belonging to the heat shock regulon (dnaK, lon, clpPX), suggesting a role for heat shock proteins in protection against, and/or repair of, damage caused by high pressure. Several further observations provide additional support for this hypothesis: (i). the expression of rpoH, encoding the heat shock-specific sigma factor sigma(32), was also induced by high pressure; (ii). heat shock rendered E. coli significantly more resistant to subsequent high-pressure inactivation, and this heat shock-induced pressure resistance followed the same time course as the induction of heat shock genes; (iii). basal expression levels of GFP from heat shock promoters, and expression of several heat shock proteins as determined by two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis of proteins extracted from pulse-labeled cells, was increased in three previously isolated pressure-resistant mutants of E. coli compared to wild-type levels.  相似文献   

15.
Oligomeric protein complexes containing the nuclear oncogene p53 and the simian virus 40 large tumor antigen (D. I. H. Linzer and A. J. Levine, Cell 17:43-51, 1979), the adenovirus E1B 55-kilodalton (kDa) tumor antigen, and the heat shock protein hsc70 (P. Hinds, C. Finlay, A. Frey, and A. J. Levine, Mol. Cell. Biol. 7:2863-2869, 1987) have all been previously described. To begin isolating, purifying, and testing these complexes for functional activities, we have developed a rapid immunoaffinity column purification. p53-protein complexes are eluted from the immunoaffinity column by using a molar excess of a peptide comprising the epitope recognized by the p53 monoclonal antibody. This mild and specific elution condition allows p53-protein interactions to be maintained. The hsc70-p53 complex from rat cells is heterogeneous in size, with some forms of this complex associated with a 110-kDa protein. The maximum apparent molecular mass of such complexes is 660,000 daltons. Incubation with micromolar levels of ATP dissociates this complex in vitro into p53 and hsc70 110-kDa components. Nonhydrolyzable substrates of ATP fail to promote this dissociation of the complex. Murine p53 synthesized in Escherichia coli has been purified 660-fold on the same antibody affinity column and was found to be associated with an E. coli protein of 70 kDa. Immunoblot analysis with specific antisera demonstrated that this E. coli protein was the heat shock protein dnaK, which has extensive sequence homology with the rat hsc70 protein. Incubation of the immunopurified p53-dnaK complex with ATP resulted in the dissociation of the p53-dnaK complex as it did with the p53-hsc70 complex. This remarkable conservation of p53-heat shock protein interactions and the specificity of dissociation reactions suggest a functionally important role for heat shock proteins in their interactions with oncogene proteins.  相似文献   

16.
17.
18.
When Escherichia coli cells enter stationary phase due to carbon starvation the synthesis of ribosomal proteins is rapidly repressed. In a DeltarelA DeltaspoT mutant, defective in the production of the alarmone guanosine tetraphosphate (ppGpp), this regulation of the levels of the protein synthesizing system is abolished. Using a proteomic approach we demonstrate that the production of the vast majority of detected E. coli proteins are decontrolled during carbon starvation in the DeltarelA DeltaspoT strain and that the starved cells behave as if they were growing exponentially. In addition we show that the inhibition of ribosome synthesis by the stringent response can be qualitatively mimicked by artificially lowering the levels of the housekeeping sigma factor, sigma(70). In other words, genes encoding the protein-synthesizing system are especially sensitive to reduced availability of sigma(70) programmed RNA polymerase. This effect is not dependent on ppGpp since lowering the levels of sigma(70) gives a similar but less pronounced effect in a ppGpp(0) strain. The data is discussed in view of the models advocating for a passive control of gene expression during stringency based on alterations in RNA polymerase availability.  相似文献   

19.
20.
Three Caulobacter crescentus heat-shock proteins were shown to be immunologically related to the Escherichia coli heat-shock proteins GroEL, Lon and DnaK. A fourth heat-shock protein was detected with antibody to the C. crescentus RNA polymerase. This 37,000 Mr heat-shock protein might be related to the E. coli 32,000 Mr heat-shock sigma subunit. The synthesis of the major C. crescentus RNA polymerase sigma factor was not induced by heat shock. The E. coli GroEL protein and the related protein from C. crescentus were also induced by treatment with hydrogen peroxide. Like some of the proteins in the heat-shock protein families of Drosophila and yeast, the four heat-shock proteins in C. crescentus were found to be regulated developmentally under normal conditions. All four proteins were synthesized in the predivisional cell, but the progeny showed cell type-specific bias in the level of enhanced synthesis after heat shock. The 92,000 Mr Lon homolog and the 37,000 Mr RNA polymerase subunit were preferentially synthesized in the stalked cell, whereas the synthesis of the 62,000 Mr GroEL homolog was enhanced in the progeny swarmer cell. Furthermore, the four heat-shock proteins synthesized in the predivisional cell were partitioned in a specific manner upon cell division. The stalked cell, which initiates chromosome replication immediately upon division, received the Lon homolog, the DnaK homolog and the 37,000 Mr RNA polymerase subunit. The GroEL homolog, however, was distributed equally to both the stalked cell and the swarmer cell. These results provide access to the functions of C. crescentus heat-shock proteins under both normal and stress conditions. They also allow an investigation of the regulatory signals that modulate the asymmetric distribution of proteins and their subsequent cell type-specific expression in the initial stages of a developmental program.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号