首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An X-ray irradiation method was employed to analyse the role of cell proliferation in vitro in the cleft formation of mouse embryonic submandibular epithelium at early stages. When the mid 12-day gland was exposed to 200 rad of X-rays, the growth was severely retarded. In contrast, late 12-day and early 13-day glands grew apparently in a normal fashion, as did the control gland, for up to 40 h. In either case, they formed shallow clefts within 10 h of culture. With 1000 rad irradiation, the mid 12-day gland did not grow at all, but formed clefts within 20 h of culture followed by a rapid degeneration. Under the same conditions, the growth of the late 12-day gland, which was at the stage just before branching, was retarded until 10 h of culture, followed by a slight increase in epithelial size, but cleft formation was also observed within 6-10 h, as in the control gland. When exposed to a dose of 1000 rad of X-rays, the early 13-day and the late 12-day glands exhibited similar radiosensitivity; the initial narrow clefts in the epithelium deepened and new clefts began to form within 6-10 h of culture. [3H]thymidine incorporation studies revealed that a dose of 1000 rad reduced DNA synthesis of mid and late 12-day glands by 72 and 65%, respectively. Histological examination of X-irradiated late 12-day gland showed that mitotic figures were rarely seen in the epithelium at 6 h of culture. Aphidicolin, a specific inhibitor of DNA synthesis, could not halt the cleft formation of the late 12-day gland. In this experiment 89% of DNA synthesis was inhibited. Treatment of an X-ray irradiated late 12-day gland with aphidicolin blocked 92% of the DNA synthesis, but did not prevent cleft formation taking place. These results indicate that neither cell division nor DNA synthesis, is required for the initiation process of the cleft formation of the mouse embryonic submandibular epithelium at early morphogenetic stages in vitro.  相似文献   

2.
Parasympathetic nerve growth from the mouse submandibular ganglion is stimulated and directed by the glandular epithelium. Cultured alone, the submandibular ganglion shows little axon extension, but in the presence of salivary epithelium, either cisfilter or transfilter, stimulation of axon outgrowth occurs. The capacity to stimulate such outgrowth from the ganglion is restricted, but not completely specific to salivary epithelium. Stimulation of directed outgrowth occurs even through a 0.1 μm pore size filter and over distances of up to 0.5 mm. Preliminary studies with the parasympathetic ganglia of the pelvic plexus show that axon outgrowth in this case is dependent on a target issue, with salivary epithelium being capable of directing nerve outgrowth from this source.  相似文献   

3.
Summary Mouse submandibular glands were dissociated and the epithelial cells embedded in a collagen gel matrix. A characteristic and reproducible pattern of growth was seen resulting in three-dimensional outgrowths with ductlike structures projecting into the matrix. A sustained cell growth leading to a 5 to 10-fold increase in cell number was observed in less than 2 wk. The extent of this growth was found to be dependent on serum concentration. Of the three sera tested, swine serum was found to promote greater growth compared to fetal bovine serum or horse serum. Swine serum dose response studies have shown that a concentration of 2 to 5% in the medium elicited only a modest increase, if any, in cell number compared to the initial value within a period of 2 wk. Various hormones and growth factors were then added to this “maintenance” medium. Insulin was found to stimulate growth consistently and reproducibly in a dose-dependent manner. Ultrastructurally, the resulting outgrowths were comprised of polarized cells joined by apical tight junctions and desmosomes. These outgrowths produced epidermal growth factor in response to dihydrotestosterone, triiodothyronine, and cortisol. The present system provides a method for sustaining growth and functional differentiation in primary culture of mouse submandibular gland epithelial cells. This investigation was supported by PHS Grants CA05388 and CA09041, awarded by the National Cancer Institute, Department of Health and Human Services.  相似文献   

4.
5.
Summary The distribution of collagen type III throughout the pulp tissue from human developing tooth was studied using specific antibodies, immunofluorescence as well as immuno-peroxidase labelling for electron microscopy.Our results indicate that type III and type I collagen are present in the pulp. The staining intensity seems to correlate with the relatively high proportions of type III collagen biochemically found in pulp. In addition, type III collagen and reticulin fibres are similarly distributed, except that the Von Korff fibres were never detected with anti-type III collagen antibodies. Correspondingly, at the ultrastructural level, type III collagen appears as fine, branched filaments or electron dense material distributed throughout the tissue and particularly in close association with the plasma membrane of pulp fibroblasts. In contrast, type I collagen appears as typical coarse cross banded fibres.  相似文献   

6.
An interstitial collagenase was purified from the explant medium of bovine dental pulp and was shown to degrade collagens I and III but not IV and V. The enzyme halted cleft initiation in the epithelium of 12-day mouse embryonic submandibular glands in vitro, indicating the active involvement of interstitial collagens in the branching morphogenesis. Transmission electron microscopic observation of the intact 12-day gland without any clefts showed the scattered localization of a few collagen fibrils at the epithelial-mesenchymal interface of the bulb and also revealed the presence of numerous microfibrils around the stalk. Collagen bundles were regularly seen close to the wavy basal lamina at the bottom of clefts of the intact 13-day gland and 12-day gland cultured for 17 h under normal conditions. Mesenchymal cells were found in the clefts together with the frequent localization of peripheral nerve fibres and capillary endothelial cells. The collagen bundles were more often observed in the 12-day gland cultured in the presence of bovine dental pulp collagenase inhibitor, which had been shown to enhance cleft formation. In contrast, collagen fibrils were rarely found at the epithelial-mesenchymal interface of the 12-day gland cultured in the presence of Clostridial or bovine dental pulp collagenase. The findings indicated that the formation of interstitial collagen bundles is essential to form clefts in the epithelium both in vivo and in vitro.  相似文献   

7.
Tube formation of the developing mouse submandibular salivary gland (SMG) begins at embryonic day (E) 14. The SMG of Sonic hedgehog (Shh) null mice was recently shown to fail to progress to stages beyond around E14. Here, we examined the effects of Shh peptide on tube formation of SMG explants. When the SMG rudiments from E14 mice were cultured, terminal buds of glands treated with Shh peptide formed the acini-like structure with a lumen whereas those of control glands remained as cell masses. In the acini-like terminal buds of the treated glands, tight junction proteins of ZO-1 and claudin-3 delineated the lumen and the apical membrane protein aquaporin-5 accumulated at the luminal cell surfaces. Moreover, laminin-5 deposition at the basal lamina region of terminal buds was accelerated in treated glands. It is suggested that hedgehog signaling promotes lumen formation and cell polarization of developing SMG epithelium.  相似文献   

8.
9.
10.
Summary The localization of acid and alkaline phosphatase activities during the morphogenesis of the duodenum has been studied at the ultrastructural level in BALB/c mice. The present work deals with the foetal development from the 14th day till birth. It appears that acid phosphatase activity at the 14th day of foetal life, was situated in dense bodies at the base of the intestinal cells. At that moment, the flat apical membrane of the cells lining the intestinal lumen presented a faint alkaline phosphatase activity. With the maturation of the villus cells, the dense bodies migrated to a supra-nuclear zone, and on the 20th day, differentiated into a complex network of dense bodies and dense tubules showing the activity of the two phosphatases. On the other hand, the microvilli were developing from the 16th day, and active pinocytosis appeared on the 18th day. Alkaline phosphatase activity increased rapidly during this differentiation.This study was supported by a research grant no. N.D.G./27 from the Medical Research Council of Canada.The authors are indebted to Mr. Michel Couture for his assistance with the photographs.  相似文献   

11.
The fine structure of the main excretory duct epithelium (MEDE) of female mouse submandibular gland was investigated by scanning and transmission electron microscopy and the results compared with the previously established structure of male mouse MEDE. A comparative analysis of the subepithelial capillaries of both sexes was also performed. In this pseudostratified epithelium, principal cell-types were observed: types-I,-II,-III and basal cells. This differed significantly from male MEDE, where type-II and-III are absent and type-I cells are the most numerous. The latter cell-type had abundant mitochondria, a few lipid-containing granules, lysosomes in the infra-nuclear cytoplasm and well-developed basal infoldings. These cells were also characterized by abundant glycogen granules throughout the cytoplasm, many profiles of strands of smooth endoplasmic reticulum in the apical region, and lysosomes in the infra-nuclear region. Type-II cells were the second most numerous. Their most characteristic features were the presence of tubular vesicles which appeared to be invaginated from the plasma membrane, RER, SER, free ribosomes, a few peroxisomes with nucleoids, and primary lysosomes in extremely light cytoplasm. They had many mitochondria throughout the cytoplasm, except in the apical region, a few lipid-containing granules and no basal infoldings. Type-III cells were very few and were characterized by well developed basal infoldings, abundant free ribosomes, RER, SER, vesicles containing moderately dense material, and many lipid-containing granules. They also had many mitochondria throughout the cytoplasm, except apically. Basal cells had a large nucleus and the cytoplasm had few organelles. In the male continuous capillaries predominated in the subepithelial network, and capillary density per 200 m of epithelium (3.76±1.54) was lower than in the female, as was the number of fenestrae per 10 m of available endothelium (4.46±1.71). In the female, fenestrated capillaries predominated, and the capillary density per 200 m of epithelium was 6.76 (±1.54), and the number of fenestrae per 10 m of available endothelium was 4.91 (±1.77).  相似文献   

12.
Summary The fine structure of the main excretory duct epithelium of the male mouse submandibular glands was investigated by scanning and transmission electron microscopy. Three principal cell-types were observed: type I and II, and basal cells. This epithelium was characterized by the presence of intercellular canaliculi. Type-I cells were the most numerous. They had an abundance of mitochondria, well-developed Golgi apparatus, a few electron-lucent lipid-containing granules and poorly developed basal infoldings. These cells were also characterized by many glycogen granules throughout the cytoplasm and abundant smooth endoplasmic reticulum in the apical cytoplasm. Type-II cells were the second most numerous. Their most characteristic feature was the presence of abundant heterogeneous lipid-containing granules having acid phosphatase activity at the periphery. They were concentrated in the infra- and supranuclear cytoplasm. The granules may be derived from mitochondrial transformation and seem to be a special kind of secondary autolysosome. Type-II cells also contained abundant mitochondria throughout the cytoplasm, much smooth endoplasmic reticulum in the apical cytoplasm, a well developed Golgi apparatus adjacent to the heterogeneous lipid-containing granules and no basal infoldings. Basal cells were situated adjacent to the basal lamina. They had a large nucleus and the cytoplasm was filled with glycogen granules.  相似文献   

13.
SHARPIN is a widely expressed multifunctional protein implicated in cancer, inflammation, linear ubiquitination and integrin activity inhibition; however, its contribution to epithelial homeostasis remains poorly understood. Here, we examined the role of SHARPIN in mammary gland development, a process strongly regulated by epithelial–stromal interactions. Mice lacking SHARPIN expression in all cells (Sharpincpdm), and mice with a stromal (S100a4‐Cre) deletion of Sharpin, have reduced mammary ductal outgrowth during puberty. In contrast, Sharpincpdm mammary epithelial cells transplanted in vivo into wild‐type stroma, fully repopulate the mammary gland fat pad, undergo unperturbed ductal outgrowth and terminal differentiation. Thus, SHARPIN is required in mammary gland stroma during development. Accordingly, stroma adjacent to invading mammary ducts of Sharpincpdm mice displayed reduced collagen arrangement and extracellular matrix (ECM) stiffness. Moreover, Sharpincpdm mammary gland stromal fibroblasts demonstrated defects in collagen fibre assembly, collagen contraction and degradation in vitro. Together, these data imply that SHARPIN regulates the normal invasive mammary gland branching morphogenesis in an epithelial cell extrinsic manner by controlling the organisation of the stromal ECM.  相似文献   

14.
Epithelial tissues in various organ rudiments undergo extensive shape changes during their development. The processes of epithelial shape change are controlled by tissue interactions with the surrounding mesenchyme which is kept in direct contact with the epithelium. One of the organs which has been extensively studied is the mouse embryonic submandibular gland, whose epithelium shows the characteristic branching morphogenesis beginning with the formation of narrow and deep clefts as well as changes in tissue organization. Various molecules in the mesenchyme, including growth factors and extracellular matrix components, affect changes of epithelial shape and tissue organization. Also, mesenchymal tissue exhibits dynamic properties such as directional movements in groups and rearrangement of collagen fibers coupled with force-generation by mesenchymal cells. The epithelium, during early branching morphogenesis, makes a cell mass where cell-cell adhesion systems are less developed. Such properties of both the mesenchyme and epithelium are significant for considering how clefts, which first appear as unstable tiny indentations on epithelial surfaces, are formed and stabilized.  相似文献   

15.
Deletion analysis of the mouse alpha 1(III) collagen promoter.   总被引:1,自引:2,他引:1       下载免费PDF全文
A chimeric gene was constructed by fusing the DNA sequences containing the 5' flanking region of the mouse alpha 1(III) collagen gene to the coding sequence of the bacterial chloramphenicol acetyltransferase (CAT) gene. Transient transfection experiments indicated that the alpha 1(III) promoter is active in NIH 3T3 fibroblasts and BC3H1 smooth muscle cells. The activity of the alpha 1(III) collagen promoter-CAT plasmid is stimulated approximately ten fold by the presence of the SV40 enhancer element. Removing sequences upstream of -200 stimulates the activity of the chimeric gene eight fold. Further deletion analysis identified sequences located between -350 and -300 that were instrumental in repressing the activity of the promoter. This 50 bp region contains a direct repeat sequence that may be involved in the regulation of the mouse alpha 1(III) collagen gene. Truncating the alpha 1(III) promoter to -80 further stimulated expression. We propose that the positive regulatory elements of this gene appear to be located within the first 80 bp of the promoter, whereas elements located further upstream exert a negative effect on the expression of the gene. Regulation of the alpha 1(III) gene contrasts with that of the alpha 2(I) collagen gene, which appears to be regulated by several positive elements located in various regions of the promoter.  相似文献   

16.
17.
E D Adamson  S E Ayers 《Cell》1979,16(4):953-965
The location of type IV (basement membrane)collagen in early post-implantation mouse embryos was examined by immunoperoxidase reactions using a specific immunoglobulin raised against mouse lens capsule collagen. Reaction was positive in the earliest embryos studied--on the fifth day of gestation (the day of detection of the copulation plug is the first day). It was found only in the primitive endoderm adjacent to the blastocoelic cavity. Subsequently in development, strong staining reactions were found in the parietal endoderm, Reichert's membrane and an acellular layer which separates the visceral endoderm of the egg cylinder from the ectoderm. In tenth to eighteenth day visceral yolk sacs, the mesodermal portion was stained, which is consistent with the presence of basement membranes around blood vessels. The endodermal portion of the visceral yolk sac did not react, while small amounts were found in the amnion. By incubation of various embryonic tissues with tritiated amino acids, purification of the biosynthesized secreted collagens and their partial characterization, the differential expression of several collagen genes was detected. Identification of collagen types was made by: reaction with specific antibodies to type I and IV collagens; electrophoretic mobility; sensitivity to reduction and to collagenase; analysis of the proportions of 3-hydroxyproline, 4-hydroxyproline and hydroxylysine; and CNBr peptides. In agreement with the data of Minor et al. (1976a) for the rat, mouse parietal endoderm synthesizes large amounts of type IV collagen. In contrast to their findings, however, the 165,000 molecular weight polypeptide is not converted to one of 100,000 after reduction, alkylation and repepsinization (Dehm and Kefalides, 1978). The endoderm of the visceral yolk sac was shown to be synthesizing primarily type I collagen, while the mesoderm layer of this membrane synthesized both type I and IV collagens. Little or no type IV collagen synthesis was detected in the endoderm of the visceral yolk sac. If it is correct that the visceral endoderm of the early embryo makes a major contribution to the formation of the endoderm portion of the visceral yolk sac, then it is clear that a switch in collagen gene expression must occur as it does so.  相似文献   

18.
Collagen fibrillogenesis is finely regulated during development of tissue-specific extracellular matrices. The role(s) of a leucine-rich repeat protein subfamily in the regulation of fibrillogenesis during tendon development were defined. Lumican-, fibromodulin-, and double-deficient mice demonstrated disruptions in fibrillogenesis. With development, the amount of lumican decreases to barely detectable levels while fibromodulin increases significantly, and these changing patterns may regulate this process. Electron microscopic analysis demonstrated structural abnormalities in the fibrils and alterations in the progression through different assembly steps. In lumican-deficient tendons, alterations were observed early and the mature tendon was nearly normal. Fibromodulin-deficient tendons were comparable with the lumican-null in early developmental periods and acquired a severe phenotype by maturation. The double-deficient mice had a phenotype that was additive early and comparable with the fibromodulin-deficient mice at maturation. Therefore, lumican and fibromodulin both influence initial assembly of intermediates and the entry into fibril growth, while fibromodulin facilitates the progression through growth steps leading to mature fibrils. The observed increased ratio of fibromodulin to lumican and a competition for the same binding site could mediate these transitions. These studies indicate that lumican and fibromodulin have different developmental stage and leucine-rich repeat protein specific functions in the regulation of fibrillogenesis.  相似文献   

19.
20.
Summary The distribution of various extracellular matrix components was studied in frozen sections of embryonic (14–18 days) and early postnatal (birth and 4 days post parturn) dorsal mouse skin using monospecific antibodies and indirect immunofluorescence. Basement membrane zone components — type IV collagen, laminin and heparan sulphate proteoglycan — were found to be uniformly and unchangingly distributed along the dermal-epidermal junction. In contrast, the distribution of interstitial matrix components — types I and III collagen, and fibronectin — was heterogeneous and varied with the stages of hair development. Collagens became sparse and were eventually completely removed from the prospective dermal papilla and from a one-cell-thick sheath of dermal cells around hair buds. They remained absent from the dermal papilla throughout hair organogenesis. Fibronectin was always present around dermal papilla cells and was particularly abundant along the dermal-epidermal junction of hair rudiments, as well as underneath hair buds. In contrast, in interfollicular skin, collagens accumulated in increasing density, while fibronectin became progressively sparser. It thus appears that interstitial collagens and fibronectin are distributed in a manner which is related to hair morphogenesis. In morphogenetically active regions, collagen density is low, while that of fibronectin is high. Conversely, in histologically stabilized zones, collagen is abundant and fibronectin is sparse. This microheterogeneous distribution of interstitial collagens and of fibronectin might thus constitute part of the morphogenetic message that the dermis is known to transmit to the epidermis during the development of skin and of cutaneous appendages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号