首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of Na+/Ca2+ exchange inregulating intracellular Ca2+ concentration([Ca2+]i) in isolated smooth muscle cellsfrom the guinea pig urinary bladder was investigated. Incrementalreduction of extracellular Na+ concentration resulted in agraded rise of [Ca2+]i; 50-100 µMstrophanthidin also increased [Ca2+]i. Asmall outward current accompanied the rise of[Ca2+]i in low-Na+ solutions(17.1 ± 1.8 pA in 29.4 mM Na+). The quantity ofCa2+ influx through the exchanger was estimated from thecharge carried by the outward current and was ~30 times that which isnecessary to account for the rise of [Ca2+]i,after correction was made for intracellular Ca2+ buffering.Ca2+ influx through the exchanger was able to loadintracellular Ca2+ stores. It is concluded that the levelof resting [Ca2+]i is not determined by theexchanger, and under resting conditions (membrane potential 50 to60 mV), there is little net flux through the exchanger. However, asmall rise of intracellular Na+ concentration would besufficient to generate significant net Ca2+ influx.

  相似文献   

2.
Tryptase, the major mast cell product, is considered to play an important role in airway inflammation and hyperresponsiveness. Tryptase produces different, sometimes opposite, effects on airway responsiveness (bronchoprotection and/or airway contraction). This study was designed to examine the effect of human lung tryptase and activation of protease-activated receptor (PAR)-2 by synthetic activated peptide (AP) SLIGKV-NH(2) on Ca(2+) signaling in human airway smooth muscle (HASM) cells. Immunocytochemistry revealed that PAR-2 was expressed by HASM cells. Tryptase (7.5--30 mU/ml) induced a concentration-dependent transient relative rise in cytoplasmic Ca(2+) concentration ([Ca(2+)](i)) that reached 207 +/- 32 nM (n = 10) measured by indo 1 spectrofluorometry. The protease inhibitors leupeptin or benzamidine (100 microM) abolished tryptase-induced [Ca(2+)](i) increase. Activation of PAR-2 by AP (1-100 microM) also induced a concentration-dependent transient rise in [Ca(2+)](i), whereas the reverse peptide produced no effect. There was a homologous desensitization of the [Ca(2+)](i) response on repeated stimulation with tryptase or AP. U-73122, a specific phospholipase C (PLC) antagonist, xestospongin, an inositol trisphosphate (IP(3))-receptor antagonist, or thapsigargin, a sarcoplamic Ca(2+)-ATPase inhibitor, abolished tryptase-induced [Ca(2+)](i) response, whereas Ca(2+) removal, in the additional presence of EGTA, had no effect. Calphostin C, a protein kinase C inhibitor, increased PAR-2 [Ca(2+)](i) response. Our results indicate that tryptase activates a [Ca(2+)](i) response, which appears as PAR-2 mediated in HASM cells. Signal transduction implicates the intracellular Ca(2+) store via PLC activation and thus via the IP(3) pathway. This study provides evidence that tryptase, which is increasingly recognized as an important mediator in airway inflammation and hyperresponsiveness, is also a potent direct agonist at the site of airway smooth muscle.  相似文献   

3.
To investigate the hypothesis that altered Ca2+ signaling in airway smooth muscle cells (SMCs) is responsible for airway hyperreactivity, we compared, with the use of confocal and phase-contrast microscopy, the airway contractility and Ca2+ changes in SMCs induced by acetylcholine (ACh) in lung slices from different mouse strains (A/J, Balb/C, and C3H/ HeJ). The airways from each mouse strain displayed a concentration-dependent contraction to ACh. The contractile response of the airways of the C3H/HeJ mice was found, in contrast to earlier studies, to be much greater and faster than that of A/J and Balb/C mice. This difference in airway reactivity can be, in part, attributable to halothane, a volatile anesthetic that was previously used during in vivo measurements of airway reactivity but found here to significantly alter the ACh contractile response of airways in lung slices. The ACh-induced Ca2+ response of the airway SMCs in all of the various mouse strains was also concentration dependent. The magnitude of the initial Ca2+ increase and the frequency of the subsequent Ca2+ oscillations induced by ACh increased with ACh concentration. However, no differences in the Ca2+ responses to ACh could be distinguished between the mouse strains. These results suggest that the mechanism responsible for airway hyperreactivity in different mouse strains resides with the Ca2+ sensitivity of the contractile apparatus of the SMCs rather than with the Ca2+ signaling itself.  相似文献   

4.
The present studies examined relationships between intraluminal pressure, membrane potential (E(m)), and myogenic tone in skeletal muscle arterioles. Using pharmacological interventions targeting Ca(2+) entry/release mechanisms, these studies also determined the role of Ca(2+) pathways and E(m) in determining steady-state myogenic constriction. Studies were conducted in isolated and cannulated arterioles under zero flow. Increasing intraluminal pressure (0-150 mmHg) resulted in progressive membrane depolarization (-55.3 +/- 4.1 to -29.4 +/- 0.7 mV) that exhibited a sigmoidal relationship between extent of myogenic constriction and E(m). Thus, despite further depolarization, at pressures >70 mmHg, little additional vasoconstriction occurred. This was not due to an inability of voltage-operated Ca(2+) channels to be activated as KCl (75 mM) evoked depolarization and vasoconstriction at 120 mmHg. Nifedipine (1 microM) and cyclopiazonic acid (30 microM) significantly attenuated established myogenic tone, whereas inhibition of inositol 1,4,5-trisphosphate-mediated Ca(2+) release/entry by 2-aminoethoxydiphenylborate (50 microM) had little effect. Combinations of the Ca(2+) entry blockers with the sarcoplasmic reticulum (SR) inhibitor caused a total loss of tone, suggesting that while depolarization-mediated Ca(2+) entry makes a significant contribution to myogenic tone, an interaction between Ca(2+) entry and SR Ca(2+) release is necessary for maintenance of myogenic constriction. In contrast, none of the agents, in combination or alone, altered E(m), demonstrating the downstream role of Ca(2+) mobilization relative to changes in E(m). Large-conductance Ca(2+)-activated K(+) channels modulated E(m) to exert a small effect on myogenic tone, and consistent with this, skeletal muscle arterioles appeared to show an inherently steep relationship between E(m) and extent of myogenic tone. Collectively, skeletal muscle arterioles exhibit complex relationships between E(m), Ca(2+) availability, and myogenic constriction that impact on the tissue's physiological function.  相似文献   

5.
The Ca(2+) signal has major roles in cellular processes important in tumorigenesis, including migration, invasion, proliferation, and apoptotic sensitivity. New evidence has revealed that, aside from altered expression and effects on global cytosolic free Ca(2+) levels via direct transport of Ca(2+), some Ca(2+) pumps and channels are able to contribute to tumorigenesis via mechanisms that are independent of their ability to transport Ca(2+) or effect global Ca(2+) homeostasis in the cytoplasm. Here, we review some of the most recent studies that present evidence of altered Ca(2+) channel or pump expression in tumorigenesis and discuss the importance and complexity of localized Ca(2+) signaling in events critical for tumor formation.  相似文献   

6.
W G Wier  L A Blatter 《Cell calcium》1991,12(2-3):241-254
In this article, we review briefly the available theories and data on [Ca2+]i-waves and [Ca2+]i-oscillations in mammalian cardiac and vascular smooth muscles. In addition to our review, we also report: (i) the existence and characterization of rapid agonist-induced [Ca2+]i-waves in cultured vascular smooth muscle cells (A7r5 cells); and (ii a new method for studying rapid [Ca2+]i-waves in mammalian cardiac ventricular cells. In mammalian cardiac muscle several types of Ca(2+)-release from sarcoplasmic reticulum (SR) are known to occur and might be involved in Ca(2+)-waves and Ca(2+)-oscillations: (a) Ca(2+)-induced release of Ca2+, of the type thought to be important in normal excitation-contraction coupling; (b) spontaneous, cyclic release of Ca2+ related to a Ca(2+)-overload of the SR; and (c) Ins(1,4,5)P3-induced Ca(2+)-release. The available data support the idea that [Ca2+]i-waves in heart propagate by a mechanism somewhat different than that involved in normal excitation-contraction coupling (a, above), perhaps involving spontaneous release of Ca2+ from an overloaded SR (b, above). In mammalian vascular smooth muscle, our data support the idea that agonist-receptor interaction (vasopressin, in this case) initiates [Ca2+]i-waves that then propagate via some form of Ca(2+)-induced release of Ca2+, perhaps in a manner similar to that proposed by Berridge and Irvine [1].  相似文献   

7.
The smooth muscle of arterioles responds to an increase in intraluminal pressure with vasoconstriction and with vasodilation when pressure is decreased. Such myogenic vasoconstriction provides a level of basal tone that enables arterioles to appropriately adjust diameter in response to neurohumoral stimuli. Key in this process of mechanotransduction is the role of changes in intracellular Ca(2+). However, it is becoming clear that considerable complexity exists in the spatiotemporal characteristics of the Ca(2+) signal and that changes in intracellular Ca(2+) may play roles other than direct effects on the contractile process via activation of myosin light-chain phosphorylation. The involvement of Ca(2+) may extend to modulation of ion channels and release of Ca(2+) from the sarcoplasmic reticulum, alterations in Ca(2+) sensitivity, and coupling between cells within the vessel wall. The purpose of this brief review is to summarize the current literature relating to Ca(2+) and the arteriolar myogenic response. Consideration is given to coupling of Ca(2+) changes to the mechanical stimuli, sources of Ca(2+), involvement of ion channels, and spatiotemporal aspects of intracellular Ca(2+) signaling.  相似文献   

8.
The present study was designed to determine whether the cADP-ribose-mediated Ca(2+) signaling is involved in the inhibitory effect of nitric oxide (NO) on intracellular Ca(2+) mobilization. With the use of fluorescent microscopic spectrometry, cADP-ribose-induced Ca(2+) release from sarcoplasmic reticulum (SR) of bovine coronary arterial smooth muscle cells (CASMCs) was determined. In the alpha-toxin-permeabilized primary cultures of CASMCs, cADP-ribose (5 microM) produced a rapid Ca(2+) release, which was completely blocked by pretreatment of cells with the cADP-ribose antagonist 8-bromo-cADP-ribose (8-Br-cADPR). In intact fura 2-loaded CASMCs, 80 mM KCl was added to depolarize the cells and increase intracellular Ca(2+) concentration ([Ca(2+)](i)). Sodium nitroprusside (SNP), an NO donor, produced a concentration-dependent inhibition of the KCl-induced increase in [Ca(2+)](i), but it had no effect on the U-46619-induced increase in [Ca(2+)](i). In the presence of 8-Br-cADPR (100 microM) and ryanodine (10 microM), the inhibitory effect of SNP was markedly attenuated. HPLC analyses showed that CASMCs expressed the ADP-ribosyl cyclase activity, and SNP (1-100 microM) significantly reduced the ADP-ribosyl cyclase activity in a concentration-dependent manner. The effect of SNP was completely blocked by addition of 10 microM oxygenated hemoglobin. We conclude that ADP-ribosyl cyclase is present in CASMCs, and NO may decrease [Ca(2+)](i) by inhibition of cADP-ribose-induced Ca(2+) mobilization.  相似文献   

9.
10.
The existence of functionally distinct intracellular Ca(2+) stores has been proposed in some types of smooth muscle. In this study, we sought to examine Ca(2+) stores in the gallbladder by measuring intracellular Ca(2+) concentration ([Ca(2+)](i)) in fura 2-loaded isolated myocytes, membrane potential in intact smooth muscle, and isometric contractions in whole mount preparations. Exposure of isolated myocytes to 10 nM CCK caused a transient elevation in [Ca(2+)](i) that persisted in Ca(2+)-free medium and was inhibited by 2-aminoethoxydiphenylborane (2-APB). Application of caffeine induced a rapid spike-like elevation in [Ca(2+)](i) that was insensitive to 2-APB but was abolished by pretreatment with 10 muM ryanodine. These data support the idea that both inositol trisphosphate (IP(3)) receptors (IP(3)R) and ryanodine receptors (RyR) are present in this tissue. When caffeine was applied in Ca(2+)-free solution, the [Ca(2+)](i) transients decreased as the interval between Ca(2+) removal and caffeine application was increased, indicating a possible leakage of Ca(2+) in these stores. The refilling of caffeine-sensitive stores involved sarcoendoplasmic reticulum Ca(2+)-ATPase activation, similar to IP(3)-sensitive stores. The moderate Ca(2+) elevation caused by CCK was associated with a gallbladder contraction, but caffeine or ryanodine failed to induce gallbladder contraction. Nevertheless, caffeine caused a concentration-dependent relaxation in gallbladder strips either under resting tone conditions or precontracted with 1 muM CCK. Taken together, these results suggest that, in gallbladder smooth muscle, multiple pharmacologically distinct Ca(2+) pools do not exist, but IP(3)R and RyR must be spatially separated because Ca(2+) release via these pathways leads to opposite responses.  相似文献   

11.
The effect of fendiline, an anti-anginal drug, on cytosolic free Ca2+ levels ([Ca2+]i) in A10 smooth muscle cells was explored by using fura-2 as a Ca2+ indicator. Fendiline at concentrations between 10-50 microM increased [Ca2+]i in a concentration-dependent manner with an EC50 of 20 microM. External Ca2+ removal reduced the Ca2+ signal by 75%. Addition of 3 mM Ca2+ increased [Ca2+]i in cells pretreated with fendiline in Ca2+-free medium. The 50 microM fendiline-induced [Ca2+]i increase in Ca2+-containing medium was inhibited by 10 microM of La3+, nifedipine, or verapamil. In Ca2+-free medium, pretreatment with 1 microM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor) to deplete the endoplasmic reticulum Ca2+ store partly inhibited 50 microM fendiline-induced Ca2+ release; whereas pretreatment with 50 microM fendiline abolished 1 microM thapsigargin-induced Ca2+ release. Inhibition of phospholipase C activity with 2 microM U73122 did not alter 50 microM fendiline-induced Ca2+ release. Incubation with 50 microM fendiline for 10-30 min decreased cell viability by 10-20%. Together, the findings indicate that in smooth muscle cells fendiline induced [Ca2+]i increases. Fendiline acted by activating Ca2+ influx via L-type Ca2+ channels, and by releasing internal Ca2+ in a phospholipase C-independent manner. Prolonged exposure of cells to fendiline induced cell death.  相似文献   

12.
We have studied histamine (HA)-evoked intracellular Ca(2+) release in single, freshly isolated myocytes from the guinea pig urinary bladder. Short applications of histamine (5 s) produced a thapsigargin (TG)-sensitive transient increase in intracellular calcium concentration ([Ca(2+)](i)). It was established that histamine and caffeine (Caff) released Ca(2+) from the same intracellular stores in these cells. Reducing the Ca(2+) content of internal stores by incubating cells with U-73343 or cyclopiazonic acid (CPA) inhibited the histamine-evoked Ca(2+) release in 69% and 60% of cells, respectively. Under these conditions, all cells released Ca(2+) in response to either caffeine or acetylcholine (ACh). However, decreasing internal Ca(2+) stores by removing external Ca(2+) inhibited histamine-induced Ca(2+) mobilization in only 22% of cells. A similar small fraction of cells was inhibited when sarcoplasmic reticulum (SR) Ca(2+) pumps were quickly blocked to avoid a significant reduction of luminal Ca(2+). In conclusion, lowering the luminal Ca(2+) content in combination with an impairment of the SR Ca(2+) pump activity significantly diminishes the ability of histamine to evoke an all-or-none intracellular Ca(2+) release.  相似文献   

13.
In this work we tested the hypothesis that skeletal muscle fibers from aging mice exhibit a significant decline in myoplasmic Ca(2+) concentration resulting from a reduction in L-type Ca(2+) channel (dihydropyridine receptor, DHPR) charge movement. Skeletal muscle fibers from the flexor digitorum brevis (FDB) muscle were obtained from 5-7-, 14-18-, or 21-24-month-old FVB mice and voltage-clamped in the whole-cell configuration of the patch-clamp technique according to described procedures (Wang, Z.-M., M. L. Messi, and O. Delbono. 1999. Biophys. J. 77:2709-2716). Total charge movement or the DHPR charge movement was measured simultaneously with intracellular Ca(2+) concentration. The maximum charge movement (Q(max)) recorded (mean +/- SEM, in nC microF(-1)) was 53 +/- 3.2 (n = 47), 51 +/- 3.2 (n = 35) (non-significant, ns), and 33 +/- 1.9 (n = 32) (p < 0.01), for the three age groups, respectively. Q(max) corresponding to the DHPR was 43 +/- 3.3, 38 +/- 4.1 (ns), and 25 +/- 3.4 (p < 0.01) for the three age groups, respectively. The peak intracellular [Ca(2+)] recorded at 40 mV (in microM) was 15.7 +/- 0. 12, 16.7 +/- 0.18 (ns), and 8.2 +/- 0.07 (p < 0.01) for the three age groups, respectively. No significant changes in the voltage distribution or steepness of the Q-V or [Ca(2+)]-V relationship were found. These data support the concept that the reduction in the peak intracellular [Ca(2+)] results from a larger number of ryanodine receptors uncoupled to DHPRs in skeletal muscle fibers from aging mammals.  相似文献   

14.
Mechanicalstretch has been implicated in phenotypic changes as an adaptiveresponse to stretch stress physically loaded in bladder smooth musclecells (BSMCs). To investigate stretch-induced signaling, we examinedthe mitogen-activated protein kinase (MAPK) family using rat primaryBSMCs. When BSMCs were subjected to sustained mechanical stretch usingcollagen-coated silicon membranes, activation of c-JunNH2-terminal kinase (JNK) was most relevant among three subsets of MAPK family members: the activity was elevated from 5 minafter stretch and peaked at 10 min with an 11-fold increase. Activationof p38 was weak compared with that of JNK, and ERK was notactivated at all. JNK activation by mechanical stretch was totallydependent on extracellular Ca2+ and inhibited byGd3+, a blocker of stretch-activated (SA) ion channels.Nifedipine and verapamil, inhibitors for voltage-dependentCa2+ channels, had no effect on this JNK activation.Moreover, none of the inhibitors pertussis toxin, genistein,wortmannin, or calphostin C affected stretch-induced JNK activation,indicating that G protein-coupled and tyrosine kinase receptors areunlikely to be involved in this JNK activation. On the other hand, W-7,a calmodulin inhibitor, and cyclosporin A, a calcineurin inhibitor,prevented JNK activation by stretch. These results suggest a novelpathway for stretch-induced activation of JNK in BSMCs: mechanicalstretch evokes Ca2+ influx via Gd3+-sensitiveSA Ca2+ channels, resulting in JNK activation underregulation in part by calmodulin and calcineurin.

  相似文献   

15.
To explain that bronchial smooth muscle undergoes sustained agonist-induced contractions in a Ca(2+)-free medium, we hypothesized that caveolae in the plasma membrane (PM) contain protected Ca(2+). We isolated caveolae from canine tracheal smooth muscle by detergent treatment of PM-derived microsomes. Detergent-resistant membranes were enriched in caveolin-1, a specific marker for caveolae as well as for L-type Ca(2+) channels and Ca(2+) binding proteins (calsequestrin and calreticulin) as determined by Western blotting. Also, the PM Ca(2+) pump was present but not connexin 43 (a noncaveolae PM protein), the sarcoplasmic reticulum (SR) Ca(2+) pump, or the type 1 inositol 1,4, 5-trisphosphate receptor, supporting the idea that SR-derived membranes were not present. Antibodies to caveolin coimmunoprecipitated caveolin with calsequestrin or calreticulin. Thus some of the cellular calsequestrin and calreticulin associated with caveolin on the cytoplasmic face of each caveola. Immunohistochemistry of tracheal smooth muscle crysosections confirmed the localization of caveolin and the PM Ca(2+) pump to the cell periphery, whereas the SR Ca(2+) pump was located deeper in the cell. The presence of L-type Ca(2+) channels, the PM Ca(2+) pump, and the Ca(2+) bindng proteins calsequestrin and calreticulin in caveolin-enriched membranes supports caveola involvement in airway smooth muscle Ca(2+) handling.  相似文献   

16.
平滑肌收缩中Ca^2+敏感性调节的机理   总被引:4,自引:0,他引:4  
Zhu WZ  Han QD 《生理科学进展》1997,28(3):243-245
多种激动剂增加细胞器对Ca^2+的敏感性,即Ca^2+的敏感性,即Ca^2+敏感化作用。激动剂的这种作用可能是通过G蛋白,经信号分子花生四烯酸和二酰基甘油,反暹号传递到肌球蛋白轻链磷酸酶(MLCP),增加肌球蛋白磷酸化。细胞内游离Ca^2+升高到一定程度,calmodulin激酶Ⅱ活化,导致MLCK磷酸化,降低了其对Ca^2+-calmodulin亲和力,MLCK对Ca^2+敏感性降低,即Ca^2  相似文献   

17.
18.
Peptides with the Arg-Gly-Asp (RGD) motif induce vasoconstriction in rat afferent arterioles by increasing the intracellular Ca(2+) concentration ([Ca(2+)](i)) in vascular smooth muscle cells (VSMC). This finding suggests that occupancy of integrins on the plasma membrane of VSMC might affect vascular tone. The purpose of this study was to determine whether occupancy of integrins by exogenous RGD peptides initiates intracellular Ca(2+) signaling in cultured renal VSMC. When smooth muscle cells were exposed to 0.1 mM hexapeptide GRGDSP, [Ca(2+)](i) rapidly increased from 91 +/- 4 to 287 +/- 37 nM and then returned to the baseline within 20 s (P < 0.05, 34 cells/5 coverslips). In controls, the hexapeptide GRGESP did not trigger Ca(2+) mobilization. Local application of the GRGDSP induced a regional increase of cytoplasmic [Ca(2+)](i), which propagated as Ca(2+) waves traveling across the cell and induced a rapid elevation of nuclear [Ca(2+)](i). Spontaneous recurrence of smaller-amplitude Ca(2+) waves were found in 20% of cells examined after the initial response to RGD-containing peptides. Blocking dihydropyridine-sensitive Ca(2+) channels with nifedipine or removal of extracellular Ca(2+) did not inhibit the RGD-induced Ca(2+) mobilization. However, pretreatment of 20 microM ryanodine completely eliminated the RGD-induced Ca(2+) mobilization. Anti-beta(1) and anti-beta(3)-integrin antibodies with functional blocking capability simulate the effects of GRGDSP in [Ca(2+)](i). Incubation with anti-beta(1)- or beta(3)-integrin antibodies inhibited the increase in [Ca(2+)](i) induced by GRGDSP. We conclude that exogenous RGD-containing peptides induce release of Ca(2+) from ryanodine-sensitive Ca(2+) stores in renal VSMC via integrins, which can trigger cytoplasmic Ca(2+) waves propagating throughout the cell.  相似文献   

19.
The melastatin transient receptor potential (TRP) channel, TRPM4, is a critical regulator of smooth muscle membrane potential and arterial tone. Activation of the channel is Ca(2+)-dependent, but prolonged exposures to high global Ca(2+) causes rapid inactivation under conventional whole-cell patch clamp conditions. Using amphotericin B perforated whole cell patch clamp electrophysiology, which minimally disrupts cytosolic Ca(2+) dynamics, we recently showed that Ca(2+) released from 1,2,5-triphosphate receptors (IP(3)R) on the sarcoplasmic reticulum (SR) activates TRPM4 channels, producing sustained transient inward cation currents (TICCs). Thus, Ca(2+)-dependent inactivation of TRPM4 may not be inherent to the channel itself but rather is a result of the recording conditions. We hypothesized that under conventional whole-cell configurations, loss of intrinsic cytosolic Ca(2+) buffering following cell dialysis contributes to inactivation of TRPM4 channels. With the inclusion of the Ca(2+) buffers ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA, 10mM) or bis-ethane-N,N,N',N'-tetraacetic acid (BAPTA, 0.1mM) in the pipette solution, we mimic endogenous Ca(2+) buffering and record novel, sustained whole-cell TICC activity from freshly-isolated cerebral artery myocytes. Biophysical properties of TICCs recorded under perforated and whole-cell patch clamp were nearly identical. Furthermore, whole-cell TICC activity was reduced by the selective TRPM4 inhibitor, 9-phenanthrol, and by siRNA-mediated knockdown of TRPM4. When a higher concentration (10mM) of BAPTA was included in the pipette solution, TICC activity was disrupted, suggesting that TRPM4 channels on the plasma membrane and IP(3)R on the SR are closely opposed but not physically coupled, and that endogenous Ca(2+) buffer proteins play a critical role in maintaining TRPM4 channel activity in native cerebral artery smooth muscle cells.  相似文献   

20.
ZM Wang  ML Messi    O Delbono 《Biophysical journal》1999,77(5):2709-2716
Intramembrane charge movement (Q), Ca(2+) conductance (G(m)) through the dihydropyridine-sensitive L-type Ca(2+) channel (DHPR) and intracellular Ca(2+) fluorescence (F) have been recorded simultaneously in flexor digitorum brevis muscle fibers of adult mice, using the whole-cell configuration of the patch-clamp technique. The voltage distribution of Q was fitted to a Boltzmann equation; the Q(max), V(1/2Q), and effective valence (z(Q)) values were 41 +/- 3.1 nC/&mgr;F, -17.6 +/- 0.7 mV, and 2.0 +/- 0.12, respectively. V(1/2G) and z(G) values were -0.3 +/- 0.06 mV and 5.6 +/- 0.34, respectively. Peak Ca(2+) transients did not change significantly after 30 min of recording. F was fit to a Boltzmann equation, and the values for V(F1/2) and z(F) were 6.2 +/- 0.04 mV and 2.4, respectively. F was adequately fit to the fourth power of Q. These results demonstrate that the patch-clamp technique is appropriate for recording Q, G(m), and intracellular [Ca(2+)] simultaneously in mature skeletal muscle fibers and that the voltage distribution of the changes in intracellular Ca(2+) can be predicted by a Hodgkin-Huxley model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号