首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Obesity is associated with increased risk of several diseases and has become epidemic. Obesity is highly heritable but the genetic variants identified by genome-wide association studies explain only limited variability. Epigenetics could contribute to explain the missing variability. The study aim was to discover differential methylation patterns related to obesity. We designed an epigenome-wide association study with a discovery phase in a subsample of 641 REGICOR study participants, validated by analysis of 2,515 participants in the Framingham Offspring Study. Blood DNA methylation was assessed using Illumina HumanMethylation450 BeadChip. Next, we meta-analyzed the data using the fixed effects method and performed a functional and pathway analysis using the Ingenuity Pathway Analysis software. We were able to validate 94 CpGs associated with body mass index (BMI) and 49 CpGs associated with waist circumference, located in 95 loci. In addition, we newly discovered 70 CpGs associated with BMI and 33 CpGs related to waist circumference. These CpGs explained 25.94% and 29.22% of the variability of BMI and waist circumference, respectively, in the REGICOR sample. We also evaluated 65 of the 95 validated loci in the GIANT genome-wide association data; 10 of them had Tag SNPs associated with BMI. The top-ranked diseases and functions identified in the functional and pathway analysis were neurologic, psychological, endocrine, and metabolic.  相似文献   

2.
DNA methylation is a widely studied epigenetic mechanism and alterations in methylation patterns may be involved in the development of common diseases. Unlike inherited changes in genetic sequence, variation in site-specific methylation varies by tissue, developmental stage, and disease status, and may be impacted by aging and exposure to environmental factors, such as diet or smoking. These non-genetic factors are typically included in epigenome-wide association studies (EWAS) because they may be confounding factors to the association between methylation and disease. However, missing values in these variables can lead to reduced sample size and decrease the statistical power of EWAS. We propose a site selection and multiple imputation (MI) method to impute missing covariate values and to perform association tests in EWAS. Then, we compare this method to an alternative projection-based method. Through simulations, we show that the MI-based method is slightly conservative, but provides consistent estimates for effect size. We also illustrate these methods with data from the Atherosclerosis Risk in Communities (ARIC) study to carry out an EWAS between methylation levels and smoking status, in which missing cell type compositions and white blood cell counts are imputed.  相似文献   

3.
Prenatal maternal stress exposure has been associated with neonatal differential DNA methylation. However, the available evidence in humans is largely based on candidate gene methylation studies, where only a few CpG sites were evaluated. The aim of this study was to examine the association between prenatal exposure to maternal stress and offspring genome-wide cord blood methylation using different methods. First, we conducted a meta-analysis and follow-up pathway analyses. Second, we used novel region discovery methods [i.e., differentially methylated regions (DMRs) analyses]. To this end, we used data from two independent population-based studies, the Generation R Study (n = 912) and the Avon Longitudinal Study of Parents and Children (ALSPAC, n = 828), to (i) measure genome-wide DNA methylation in cord blood and (ii) extract a prenatal maternal stress composite. The meta-analysis (ntotal = 1,740) revealed no epigenome-wide (meta P <1.00e-07) associations of prenatal maternal stress exposure with neonatal differential DNA methylation. Follow-up analyses of the top hits derived from our epigenome-wide meta-analysis (meta P <1.00e-04) indicated an over-representation of the methyltransferase activity pathway. We identified no Bonferroni-corrected (P <1.00e-06) DMRs associated with prenatal maternal stress exposure. Combining data from two independent population-based samples in an epigenome-wide meta-analysis, the current study indicates that there are no large effects of prenatal maternal stress exposure on neonatal DNA methylation. Such replication efforts are essential in the search for robust associations, whether derived from candidate gene methylation or epigenome-wide studies.  相似文献   

4.
Intrauterine exposure to hyperglycemia is reported to confer increased metabolic risk in later life, supporting the ‘developmental origins of health and disease’ hypothesis. Epigenetic alterations are suggested as one of the possible underlying mechanisms. In this study, we compared pairwise DNA methylation differences between siblings whose intrauterine exposure to maternal gestational diabetes (GDM) were discordant. Methylation of peripheral blood DNA of 18 sibling pairs was measured using Infinium HumanMethylation450 BeadChip assays. Of the 465,447 CpG sites analyzed, 12 showed differential methylation (false discovery rate <0.15), including markers within genes associated with monogenic diabetes (HNF4A) or obesity (RREB1). The overall methylation at HNF4A showed inverse correlations with mRNA expression levels, though non significant. In a gene set enrichment analysis, metabolism and signal transduction pathways were enriched. In conclusion, we found DNA methylation markers associated with intrauterine exposure to maternal GDM, including those within genes previously implicated in diabetes or obesity.  相似文献   

5.
DNA methylation at cytosine-phosphate-guanine (CpG) dinucleotides changes as a function of age in humans and animal models, a process that may contribute to chronic disease development. Recent studies have investigated the role of an oxidized form of DNA methylation – 5-hydroxymethylcytosine (5hmC) – in the epigenome, but its contribution to age-related DNA methylation remains unclear. We tested the hypothesis that 5hmC changes with age, but in a direction opposite to 5-methylcytosine (5mC), potentially playing a distinct role in aging. To characterize epigenetic aging, genome-wide 5mC and 5hmC were measured in longitudinal blood samples (2, 4, and 10 months of age) from isogenic mice using two sequencing methods – enhanced reduced representation bisulfite sequencing and hydroxymethylated DNA immunoprecipitation sequencing. Examining the epigenome by age, we identified 28,196 unique differentially methylated CpGs (DMCs) and 8,613 differentially hydroxymethylated regions (DHMRs). Mouse blood showed a general pattern of epigenome-wide hypermethylation and hypo-hydroxymethylation with age. Comparing age-related DMCs and DHMRs, 1,854 annotated genes showed both differential 5mC and 5hmC, including one gene – Nfic – at five CpGs in the same 250 bp chromosomal region. At this region, 5mC and 5hmC levels both decreased with age. Reflecting these age-related epigenetic changes, Nfic RNA expression in blood decreased with age, suggesting that age-related regulation of this gene may be driven by 5hmC, not canonical DNA methylation. Combined, our genome-wide results show age-related differential 5mC and 5hmC, as well as some evidence that changes in 5hmC may drive age-related DNA methylation and gene expression.  相似文献   

6.
Recent studies have identified both heritable DNA methylation effects and differential methylation in disease-discordant identical twins. Larger sample sizes, replication, genetic-epigenetic analyses and longitudinal assays are now needed to establish the role of epigenetic variants in disease.  相似文献   

7.
8.
Trihalomethanes (THM) are undesired disinfection byproducts (DBPs) formed during water treatment. Mice exposed to DBPs showed global DNA hypomethylation and c-myc and c-jun gene-specific hypomethylation, while evidence of epigenetic effects in humans is scarce. We explored the association between lifetime THM exposure and DNA methylation through an epigenome-wide association study. We selected 138 population-based controls from a case-control study of colorectal cancer conducted in Barcelona, Spain, exposed to average lifetime THM levels ≤85 μg/L vs. >85 μg/L (N = 68 and N = 70, respectively). Mean age of participants was 70 years, and 54% were male. Average lifetime THM level in the exposure groups was 64 and 130 µg/L, respectively. DNA was extracted from whole blood and was bisulphite converted to measure DNA methylation levels using the Illumina HumanMethylation450 BeadChip. Data preprocessing was performed using RnBeads. Methylation was compared between exposure groups using empirical Bayes moderated linear regression for CpG sites and Gaussian kernel for CpG regions. ConsensusPathDB was used for gene set enrichment. Statistically significant differences in methylation between exposure groups was found in 140 CpG sites and 30 gene-related regions, after false discovery rate <0.05 and adjustment for age, sex, methylation first principal component, and blood cell proportion. The annotated genes were localized to several cancer pathways. Among them, 29 CpGs had methylation levels associated with THM levels (|Δβ|≥0.05) located in 11 genes associated with cancer in other studies. Our results suggest that THM exposure may affect DNA methylation in genes related to tumors, including colorectal and bladder cancers. Future confirmation studies are required.  相似文献   

9.

Background

Epigenome-wide association scans (EWAS) are an increasingly powerful and widely-used approach to assess the role of epigenetic variation in human complex traits. However, this rapidly emerging field lacks dedicated visualisation tools that can display features specific to epigenetic datasets.

Result

We developed coMET, an R package and online tool for visualisation of EWAS results in a genomic region of interest. coMET generates a regional plot of epigenetic-phenotype association results and the estimated DNA methylation correlation between CpG sites (co-methylation), with further options to visualise genomic annotations based on ENCODE data, gene tracks, reference CpG-sites, and user-defined features. The tool can be used to display phenotype association signals and correlation patterns of microarray or sequencing-based DNA methylation data, such as Illumina Infinium 450k, WGBS, or MeDIP-seq, as well as other types of genomic data, such as gene expression profiles. The software is available as a user-friendly online tool from http://epigen.kcl.ac.uk/cometand as an R Bioconductor package. Source code, examples, and full documentation are also available from GitHub.

Conclusion

Our new software allows visualisation of EWAS results with functional genomic annotations and with estimation of co-methylation patterns. coMET is available to a wide audience as an online tool and R package, and can be a valuable resource to interpret results in the fast growing field of epigenetics. The software is designed for epigenetic data, but can also be applied to genomic and functional genomic datasets in any species.  相似文献   

10.
Interindividual variability in the epigenome has gained tremendous attention for its potential in pathophysiological investigation, disease diagnosis, and evaluation of clinical intervention. DNA methylation is the most studied epigenetic mark in epigenome-wide association studies (EWAS) as it can be detected from limited starting material. Infinium 450K methylation array is the most popular platform for high-throughput profiling of this mark in clinical samples, as it is cost-effective and requires small amounts of DNA. However, this method suffers from low genome coverage and errors introduced by probe cross-hybridization. Whole-genome bisulfite sequencing can overcome these limitations but elevates the costs tremendously. Methyl-Capture Sequencing (MC Seq) is an attractive intermediate solution to increase the methylome coverage in large sample sets. Here we first demonstrate that MC Seq can be employed using DNA amounts comparable to the amounts used for Infinium 450K. Second, to provide guidance when choosing between the 2 platforms for EWAS, we evaluate and compare MC Seq and Infinium 450K in terms of coverage, technical variation, and concordance of methylation calls in clinical samples. Last, since the focus in EWAS is to study interindividual variation, we demonstrate the utility of MC Seq in studying interindividual variation in subjects from different ethnicities.  相似文献   

11.
Evolving evidence links maternal stress exposure to changes in placental DNA methylation of specific genes regulating placental function that may have implications for the programming of a host of chronic disorders. Few studies have implemented an epigenome-wide approach. Using the Infinium HumanMethylation450 BeadChip (450K), we investigated epigenome-wide placental DNA methylation in relation to maternal experiences of traumatic and non-traumatic stressors over her lifetime assessed using the Life Stressor Checklist-Revised (LSC-R) survey (n = 207). We found differential DNA methylation at epigenome-wide statistical significance (FDR = 0.05) for 112 CpGs. Additionally, we observed three clusters that exhibited differential methylation in response to high maternal lifetime stress. Enrichment analyses, conducted at an FDR = 0.20, revealed lysine degradation to be the most significant pathway associated with maternal lifetimes stress exposure. Targeted enrichment analyses of the three largest clusters of probes, identified using the gap statistic, were enriched for genes associated with endocytosis (i.e., SMAP1, ANKFY1), tight junctions (i.e., EPB41L4B), and metabolic pathways (i.e., INPP5E, EEF1B2). These pathways, also identified in the top 10 KEGG pathways associated with maternal lifetime stress exposure, play important roles in multiple physiological functions necessary for proper fetal development. Further, two genes were identified to exhibit multiple probes associated with maternal lifetime stress (i.e., ANKFY1, TM6SF1). The methylation status of the probes belonging to each cluster and/or genes exhibiting multiple hits, may play a role in the pathogenesis of adverse health outcomes in children born to mothers with increased lifetime stress exposure.  相似文献   

12.
Preterm birth (PTB) affects one in six Black babies in the United States. Epigenetics is believed to play a role in PTB; however, only a limited number of epigenetic studies of PTB have been reported, most of which have focused on cord blood DNA methylation (DNAm) and/or were conducted in white populations. Here we conducted, by far, the largest epigenome-wide DNAm analysis in 300 Black women who delivered early spontaneous preterm (sPTB, n = 150) or full-term babies (n = 150) and replicated the findings in an independent set of Black mother-newborn pairs from the Boston Birth Cohort. DNAm in maternal blood and/or cord blood was measured using the Illumina HumanMethylation450 BeadChip. We identified 45 DNAm loci in maternal blood associated with early sPTB, with a false discovery rate (FDR) <5%. Replication analyses confirmed sPTB associations for cg03915055 and cg06804705, located in the promoter regions of the CYTIP and LINC00114 genes, respectively. Both loci had comparable associations with early sPTB and early medically-indicated PTB, but attenuated associations with late sPTB. These associations could not be explained by cell composition, gestational complications, and/or nearby maternal genetic variants. Analyses in the newborns of the 110 Black women showed that cord blood methylation levels at both loci had no associations with PTB. The findings from this study underscore the role of maternal DNAm in PTB risk, and provide a set of maternal loci that may serve as biomarkers for PTB. Longitudinal studies are needed to clarify temporal relationships between maternal DNAm and PTB risk.  相似文献   

13.
《Epigenetics》2013,8(3):291-299
Head and neck cancer accounts for an estimated 47,560 new cases and 11,480 deaths annually in the United States, the majority of which are squamous cell carcinomas (HNSCC). The overall 5 year survival is approximately 60% and declines with increasing stage at diagnosis, indicating a need for non-invasive tests that facilitate the detection of early disease. DNA methylation is a stable epigenetic modification that is amenable to measurement and readily available in peripheral blood. We used a semi-supervised recursively partitioned mixture model (SS-RPMM) approach to identify novel blood DNA methylation markers of HNSCC using genome-wide methylation array data for peripheral blood samples from 92 HNSCC cases and 92 cancer-free control subjects. To assess the performance of the resultant markers, we constructed receiver operating characteristic (ROC) curves and calculated the corresponding area under the curve (AUC). Cases and controls were best differentiated by a methylation profile of six CpG loci (associated with FGD4, SERPINF1, WDR39, IL27, HYAL2 and PLEKHA6), with an AUC of 0.73 (95% CI: 0.62–0.82). After adjustment for subject age, gender, smoking, alcohol consumption and HPV16 serostatus, the AUC increased to 0.85 (95% CI: 0.76–0.92). We have identified a novel blood-based methylation profile that is indicative of HNSCC with a high degree of accuracy. This profile demonstrates the potential of DNA methylation measured in blood for development of non-invasive applications for detection of head and neck cancer.  相似文献   

14.
Most research to date has focused on epigenetic modifications in the nuclear genome, with little attention devoted to mitochondrial DNA (mtDNA). Placental mtDNA content has been shown to respond to environmental exposures that induce oxidative stress, including airborne particulate matter (PM). Damaged or non-functioning mitochondria are specifically degraded through mitophagy, exemplified by lower mtDNA content, and could be primed by epigenetic modifications in the mtDNA. We studied placental mtDNA methylation in the context of the early life exposome. We investigated placental tissue from 381 mother-newborn pairs that were enrolled in the ENVIRONAGE birth cohort. We determined mtDNA methylation by bisulfite-pyrosequencing in 2 regions, i.e., the D-loop control region and 12S rRNA (MT-RNR1), and measured mtDNA content by qPCR. PM2.5 exposure was calculated for each participant''s home address using a dispersion model. An interquartile range (IQR) increment in PM2.5 exposure over the entire pregnancy was positively associated with mtDNA methylation (MT-RNR1: +0.91%, P = 0.01 and D-loop: +0.21%, P = 0.05) and inversely associated with mtDNA content (relative change of −15.60%, P = 0.001) in placental tissue. mtDNA methylation was estimated to mediate 54% [P = 0.01 (MT-RNR1)] and 27% [P = 0.06 (D-loop)] of the inverse association between PM2.5 exposure and mtDNA content. This study provides new insight into the mechanisms of altered mitochondrial function in the early life environment. Epigenetic modifications in the mitochondrial genome, especially in the MT-RNR1 region, substantially mediate the association between PM2.5 exposure during gestation and placental mtDNA content, which could reflect signs of mitophagy and mitochondrial death.  相似文献   

15.
16.
Age-related macular degeneration (AMD) is a major cause of blindness in the western world. While genetic studies have linked both common and rare variants in genes involved in regulation of the complement system to increased risk of development of AMD, environmental factors, such as smoking and nutrition, can also significantly affect the risk of developing the disease and the rate of disease progression. Since epigenetics has been implicated in mediating, in part, the disease risk associated with some environmental factors, we investigated a possible epigenetic contribution to AMD. We performed genome-wide DNA methylation profiling of blood from AMD patients and controls. No differential methylation site reached genome-wide significance; however, when epigenetic changes in and around known GWAS-defined AMD risk loci were explored, we found small but significant DNA methylation differences in the blood of neovascular AMD patients near age-related maculopathy susceptibility 2 (ARMS2), a top-ranked GWAS locus preferentially associated with neovascular AMD. The methylation level of one of the CpG sites significantly correlated with the genotype of the risk SNP rs10490924, suggesting a possible epigenetic mechanism of risk. Integrating genome-wide DNA methylation analysis of retina samples with and without AMD together with blood samples, we further identified a consistent, replicable change in DNA methylation in the promoter region of protease serine 50 (PRSS50). These methylation changes may identify sites in novel genes that are susceptible to non-genetic factors known to contribute to AMD development and progression.  相似文献   

17.
18.
Cattle are an attractive animal model of fertility in women due to their high degree of similarity relative to follicle selection, embryo cleavage, blastocyst formation, and gestation length. To facilitate future studies of the epigenetic underpinnings of aging effects in the female reproductive axis, several DNA methylation‐based biomarkers of aging (epigenetic clocks) for bovine oocytes are presented. One such clock was germane to only oocytes, while a dual‐tissue clock was highly predictive of age in both oocytes and blood. Dual species clocks that apply to both humans and cattle were also developed and evaluated. These epigenetic clocks can be used to accurately estimate the biological age of oocytes. Both epigenetic clock studies and epigenome‐wide association studies revealed that blood and oocytes differ substantially with respect to aging and the underlying epigenetic signatures that potentially influence the aging process. The rate of epigenetic aging was found to be slower in oocytes compared to blood; however, oocytes appeared to begin at an older epigenetic age. The epigenetic clocks for oocytes are expected to address questions in the field of reproductive aging, including the central question: how to slow aging of oocytes.  相似文献   

19.
20.
Analysis of DNA methylation helps to understand the effects of environmental exposures as well as the role of epigenetics in human health. Illumina, Inc. recently replaced the HumanMethylation450 BeadChip (450K) with the EPIC BeadChip, which nearly doubles the measured CpG sites to >850,000. Although the new chip uses the same underlying technology, it is important to establish if data between the two platforms are comparable within cohorts and for meta-analyses. DNA methylation was assessed by 450K and EPIC using whole blood from newborn (n = 109) and 14-year-old (n = 86) participants of the Center for the Health Assessment of Mothers and Children of Salinas. The overall per-sample correlations were very high (r >0.99), although many individual CpG sites, especially those with low variance of methylation, had lower correlations (median r = 0.24). There was also a small subset of CpGs with large mean methylation β-value differences between platforms, in both the newborn and 14-year datasets. However, estimates of cell type proportion prediction by 450K and EPIC were highly correlated at both ages. Finally, differentially methylated positions between boys and girls replicated very well by both platforms in newborns and older children. These findings are encouraging for application of combined data from EPIC and 450K platforms for birth cohorts and other population studies. These data in children corroborate recent comparisons of the two BeadChips in adults and in cancer cell lines. However, researchers should be cautious when characterizing individual CpG sites and consider independent methods for validation of significant hits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号