首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Identification of subjects with a high risk of developing type 2 diabetes (T2D) is fundamental for prevention of the disease. Consequently, it is essential to search for new biomarkers that can improve the prediction of T2D. The aim of this study was to examine whether 5 DNA methylation loci in blood DNA (ABCG1, PHOSPHO1, SOCS3, SREBF1, and TXNIP), recently reported to be associated with T2D, might predict future T2D in subjects from the Botnia prospective study. We also tested if these CpG sites exhibit altered DNA methylation in human pancreatic islets, liver, adipose tissue, and skeletal muscle from diabetic vs. non-diabetic subjects. DNA methylation at the ABCG1 locus cg06500161 in blood DNA was associated with an increased risk for future T2D (OR = 1.09, 95% CI = 1.02–1.16, P-value = 0.007, Q-value = 0.018), while DNA methylation at the PHOSPHO1 locus cg02650017 in blood DNA was associated with a decreased risk for future T2D (OR = 0.85, 95% CI = 0.75–0.95, P-value = 0.006, Q-value = 0.018) after adjustment for age, gender, fasting glucose, and family relation. Furthermore, the level of DNA methylation at the ABCG1 locus cg06500161 in blood DNA correlated positively with BMI, HbA1c, fasting insulin, and triglyceride levels, and was increased in adipose tissue and blood from the diabetic twin among monozygotic twin pairs discordant for T2D. DNA methylation at the PHOSPHO1 locus cg02650017 in blood correlated positively with HDL levels, and was decreased in skeletal muscle from diabetic vs. non-diabetic monozygotic twins. DNA methylation of cg18181703 (SOCS3), cg11024682 (SREBF1), and cg19693031 (TXNIP) was not associated with future T2D risk in subjects from the Botnia prospective study.  相似文献   

2.
Epigenetic regulation has been postulated to affect glucose metabolism, insulin sensitivity and the risk of type 2 diabetes. Therefore, we performed an epigenome-wide association study for measures of glucose metabolism in whole blood samples of the population-based Cooperative Health Research in the Region of Augsburg F4 study using the Illumina HumanMethylation 450 BeadChip. We identified a total of 31 CpG sites where methylation level was associated with measures of glucose metabolism after adjustment for age, sex, smoking, and estimated white blood cell proportions and correction for multiple testing using the Benjamini-Hochberg (B-H) method (four for fasting glucose, seven for fasting insulin, 25 for homeostasis model assessment-insulin resistance [HOMA-IR]; B-H-adjusted p-values between 9.2x10-5 and 0.047). In addition, DNA methylation at cg06500161 (annotated to ABCG1) was associated with all the aforementioned phenotypes and 2-hour glucose (B-H-adjusted p-values between 9.2x10-5 and 3.0x10-3). Methylation status of additional three CpG sites showed an association with fasting insulin only after additional adjustment for body mass index (BMI) (B-H-adjusted p-values = 0.047). Overall, effect strengths were reduced by around 30% after additional adjustment for BMI, suggesting that this variable has an influence on the investigated phenotypes. Furthermore, we found significant associations between methylation status of 21 of the aforementioned CpG sites and 2-hour insulin in a subset of samples with seven significant associations persisting after additional adjustment for BMI. In a subset of 533 participants, methylation of the CpG site cg06500161 (ABCG1) was inversely associated with ABCG1 gene expression (B-H-adjusted p-value = 1.5x10-9). Additionally, we observed an enrichment of the top 1,000 CpG sites for diabetes-related canonical pathways using Ingenuity Pathway Analysis. In conclusion, our study indicates that DNA methylation and diabetes-related traits are associated and that these associations are partially BMI-dependent. Furthermore, the interaction of ABCG1 with glucose metabolism is modulated by epigenetic processes.  相似文献   

3.
DNA methylation is one of the potential epigenetic mechanisms associated with various adverse cardiovascular effects; however, its association with cardiac autonomic dysfunction, in particular, is unknown. In the current study, we aimed to identify epigenetic variants associated with alterations in cardiac autonomic responses. Cardiac autonomic responses were measured with two novel markers: acceleration capacity (AC) and deceleration capacity (DC). We examined DNA methylation levels at more than 472,506 CpG probes through the Illumina Infinium HumanMethylation450 BeadChip assay. We conducted separate linear mixed models to examine associations of DNA methylation levels at each CpG with AC and DC. One CpG (cg26829071) located in the GPR133 gene was negatively associated with DC values after multiple testing corrections through false discovery rate. Our study suggests the potential functional importance of methylation in cardiac autonomic responses. Findings from the current study need to be replicated in future studies in a larger population.  相似文献   

4.

Background

Fetal exposure to hyperglycemia impacts negatively kidney development and function.

Objective

Our objective was to determine whether fetal exposure to moderate hyperglycemia is associated with epigenetic alterations in DNA methylation in peripheral blood cells and whether those alterations are related to impaired kidney function in adult offspring.

Design

Twenty nine adult, non-diabetic offspring of mothers with type 1 diabetes (T1D) (case group) were matched with 28 offspring of T1D fathers (control group) for the study of their leukocyte genome-wide DNA methylation profile (27,578 CpG sites, Human Methylation 27 BeadChip, Illumina Infinium). In a subset of 19 cases and 18 controls, we assessed renal vascular development by measuring Glomerular Filtration Rate (GFR) and Effective Renal Plasma Flow (ERPF) at baseline and during vasodilatation produced by amino acid infusion.

Results

Globally, DNA was under-methylated in cases vs. controls. Among the 87 CpG sites differently methylated, 74 sites were less methylated and 13 sites more methylated in cases vs. controls. None of these CpG sites were located on a gene known to be directly involved in kidney development and/or function. However, the gene encoding DNA methyltransferase 1 (DNMT1)—a key enzyme involved in gene expression during early development–was under-methylated in cases. The average methylation of the 74 under-methylated sites differently correlated with GFR in cases and controls.

Conclusion

Alterations in methylation profile imprinted by the hyperglycemic milieu of T1D mothers during fetal development may impact kidney function in adult offspring. The involved pathways seem to be a nonspecific imprinting process rather than specific to kidney development or function.  相似文献   

5.
The majority of congenital heart defects (CHDs) are thought to result from the interaction between multiple genetic, epigenetic, environmental, and lifestyle factors. Epigenetic mechanisms are attractive targets in the study of complex diseases because they may be altered by environmental factors and dietary interventions. We conducted a population based, case-control study of genome-wide maternal DNA methylation to determine if alterations in gene-specific methylation were associated with CHDs. Using the Illumina Infinium Human Methylation27 BeadChip, we assessed maternal gene-specific methylation in over 27,000 CpG sites from DNA isolated from peripheral blood lymphocytes. Our study sample included 180 mothers with non-syndromic CHD-affected pregnancies (cases) and 187 mothers with unaffected pregnancies (controls). Using a multi-factorial statistical model, we observed differential methylation between cases and controls at multiple CpG sites, although no CpG site reached the most stringent level of genome-wide statistical significance. The majority of differentially methylated CpG sites were hypermethylated in cases and located within CpG islands. Gene Set Enrichment Analysis (GSEA) revealed that the genes of interest were enriched in multiple biological processes involved in fetal development. Associations with canonical pathways previously shown to be involved in fetal organogenesis were also observed. We present preliminary evidence that alterations in maternal DNA methylation may be associated with CHDs. Our results suggest that further studies involving maternal epigenetic patterns and CHDs are warranted. Multiple candidate processes and pathways for future study have been identified.  相似文献   

6.

Background

DNA methylation is a widely studied epigenetic phenomenon; alterations in methylation patterns influence human phenotypes and risk of disease. As part of the Atherosclerosis Risk in Communities (ARIC) study, the Illumina Infinium HumanMethylation450 (HM450) BeadChip was used to measure DNA methylation in peripheral blood obtained from ~3000 African American study participants. Over 480,000 cytosine-guanine (CpG) dinucleotide sites were surveyed on the HM450 BeadChip. To evaluate the impact of technical variation, 265 technical replicates from 130 participants were included in the study.

Results

For each CpG site, we calculated the intraclass correlation coefficient (ICC) to compare variation of methylation levels within- and between-replicate pairs, ranging between 0 and 1. We modeled the distribution of ICC as a mixture of censored or truncated normal and normal distributions using an EM algorithm. The CpG sites were clustered into low- and high-reliability groups, according to the calculated posterior probabilities. We also demonstrated the performance of this clustering when applied to a study of association between methylation levels and smoking status of individuals. For the CpG sites showing genome-wide significant association with smoking status, most (~96%) were seen from sites in the high reliability cluster.

Conclusions

We suggest that CpG sites with low ICC may be excluded from subsequent association analyses, or extra caution needs to be taken for associations at such sites.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2105-15-312) contains supplementary material, which is available to authorized users.  相似文献   

7.
Genetic and epigenetic alterations are required for carcinogenesis and the mutation burden across tumor types has been investigated. Here, we investigate epigenetic alterations with a novel measure of global DNA methylation dysregulation, the methylation dysregulation index (MDI), across 14 cancer types in The Cancer Genome Atlas (TCGA) database. DNA methylation data—obtained using Illumina HumanMethylation450 BeadChip—was accessed from TCGA. We calculated the MDI in 14 tumor types (n = 5,592 tumors), using adjacent normal tissues (n = 701) from each tumor site. Copy number alteration, and mutation burden were retrieved from cBioportal (n = 5,152). We tested the relation of subject MDI across tumors and with age, gender, tumor stage, estimated tumor purity, and copy number alterations for both overall MDI and genomic-context-specific MDI. We also investigated the top most dysregulated loci shared across tumor types. There was a broad range of extent in methylation dysregulation across tumor types (P < 2.2E-16). However, a consistent pattern of methylation dysregulation stratified by genomic context was observed across tumor types where the highest dysregulation occurred at non-CpG island regions. Considering other summary measures of somatic alteration, MDI was correlated with copy number alterations but not with mutation burden. Using the top dysregulated CpG sites in common across tumors, 4 classes of cancer types were observed, and the functional consequences of these alterations to gene expression were confirmed. This work identified the global DNA methylation dysregulation patterns across 14 cancer types showing a higher impact for the non-CpG island areas. The most dysregulated loci across cancer types identified common clusters across cancer types that may have implications for future treatment and prevention measures.  相似文献   

8.
9.
《Epigenetics》2013,8(11):1473-1484
In utero smoke exposure has been shown to have detrimental effects on lung function and to be associated with persistent wheezing and asthma in children. One potential mechanism of IUS effects could be alterations in DNA methylation, which may have life-long implications. The goal of this study was to examine the association between DNA methylation and nicotine exposure in fetal lung and placental tissue in early development; nicotine exposure in this analysis represents a likely surrogate for in-utero smoke. We performed an epigenome-wide analysis of DNA methylation in fetal lung tissue (n = 85, 41 smoke exposed (48%), 44 controls) and the corresponding placental tissue samples (n = 80, 39 smoke exposed (49%), 41 controls) using the Illumina HumanMethylation450 BeadChip array. Differential methylation analyses were conducted to evaluate the variation associated with nicotine exposure. The most significant CpG sites in the fetal lung analysis mapped to the PKP3 (P = 2.94 × 10?03), ANKRD33B (P = 3.12 × 10?03), CNTD2 (P = 4.9 × 10?03) and DPP10 (P = 5.43 × 10?03) genes. In the placental methylome, the most significant CpG sites mapped to the GTF2H2C and GTF2H2D genes (P = 2.87 × 10?06 ? 3.48 × 10?05). One hundred and one unique CpG sites with P-values < 0.05 were concordant between lung and placental tissue analyses. Gene Set Enrichment Analysis demonstrated enrichment of specific disorders, such as asthma and immune disorders. Our findings demonstrate an association between in utero nicotine exposure and variable DNA methylation in fetal lung and placental tissues, suggesting a role for DNA methylation variation in the fetal origins of chronic diseases.  相似文献   

10.
11.
12.
DNA methylation is an integral part of the mechanism of a remodeling and modification of the chromatin structure. The global complex net of chromatin modification and remodeling reactions is still to be determined, and studies of the mechanisms controlling the epigenetic processes of histone modification and DNA methylation are in their infancy. Cytosine methylation occurs predominantly in CpG sequences of the eukaryotic genome, and it also takes place at symmetric CpHpG and nonsymmetric CpHpH sites (where H is A, T, or C). The modification efficiency of the three types of DNA methylation sites depends on their genomic localization. Different regions of the eukaryotic genome are remarkable for their methylation features: CpG-islands, CpG-island shores, differentially methylated regions of imprinted genes, and regions of nonalternative site-specific modification. The three canonical sites (CpG, CpHpG, and CpHpH) differ in DNA methylation efficiency depending on their nucleotide context. An epigenetic code of DNA methylation can be assumed with context differences playing a specific functional role. The review summarizes the main up-to-date data on the structural and functional features of site-specific cytosine methylation in eukaryotic genomes. Pathogenesis-related alterations in the methylation pattern of the eukaryotic genome are considered.  相似文献   

13.
Mutations in pancreatic duodenal homeobox 1 (PDX-1) can cause a monogenic form of diabetes (maturity onset diabetes of the young 4) in humans, and silencing Pdx-1 in pancreatic β-cells of mice causes diabetes. However, it is not established whether epigenetic alterations of PDX-1 influence type 2 diabetes (T2D) in humans. Here we analyzed mRNA expression and DNA methylation of PDX-1 in human pancreatic islets from 55 nondiabetic donors and nine patients with T2D. We further studied epigenetic regulation of PDX-1 in clonal β-cells. PDX-1 expression was decreased in pancreatic islets from patients with T2D compared with nondiabetic donors (P = 0.0002) and correlated positively with insulin expression (rho = 0.59, P = 0.000001) and glucose-stimulated insulin secretion (rho = 0.41, P = 0.005) in the human islets. Ten CpG sites in the distal PDX-1 promoter and enhancer regions exhibited significantly increased DNA methylation in islets from patients with T2D compared with nondiabetic donors. DNA methylation of PDX-1 correlated negatively with its gene expression in the human islets (rho = -0.64, P = 0.0000029). Moreover, methylation of the human PDX-1 promoter and enhancer regions suppressed reporter gene expression in clonal β-cells (P = 0.04). Our data further indicate that hyperglycemia decreases gene expression and increases DNA methylation of PDX-1 because glycosylated hemoglobin (HbA1c) correlates negatively with mRNA expression (rho = -0.50, P = 0.0004) and positively with DNA methylation (rho = 0.54, P = 0.00024) of PDX-1 in the human islets. Furthermore, while Pdx-1 expression decreased, Pdx-1 methylation and Dnmt1 expression increased in clonal β-cells exposed to high glucose. Overall, epigenetic modifications of PDX-1 may play a role in the development of T2D, given that pancreatic islets from patients with T2D and β-cells exposed to hyperglycemia exhibited increased DNA methylation and decreased expression of PDX-1. The expression levels of PDX-1 were further associated with insulin secretion in the human islets.  相似文献   

14.
Tobacco smoking is a preventable environmental factor that contributes to a wide spectrum of age-related health outcomes; however, its association with the development of frailty is not yet well established. We examined the associations of self-reported smoking indicators, serum cotinine levels and smoking-related DNA methylation biomarkers with a quantitative frailty index (FI) in 2 independent subsets of older adults (age 50–75) recruited in Saarland, Germany in 2000 – 2002 (discovery set: n = 978, validation set: n = 531). We obtained DNA methylation profiles in whole blood samples by Illumina HumanMethylation450 BeadChip and calculated the FI according to the method of Mitnitski and Rockwood. Mixed linear regression models were implemented to assess the associations between smoking indicators and the FI. After controlling for potential covariates, current smoking, cumulative smoking exposure (pack-years), and time after smoking cessation (years) were significantly associated with the FI (P-value < 0.05). In the discovery panel, 17 out of 151 previously identified smoking-related CpG sites were associated with the FI after correction for multiple testing (FDR < 0.05). Nine of them survived in the validation phase and were designated as frailty-associated loci. A smoking index (SI) based on the 9 loci manifested a monotonic association with the FI. In conclusion, this study suggested that epigenetic alterations could play a role in smoking-associated development of frailty. The identified CpG sites have the potential to be prognostic biomarkers of frailty and frailty-related health outcomes. Our findings and the underlying mechanisms should be followed up in further, preferably longitudinal studies.  相似文献   

15.
Monozygotic twins (MZs) share an identical genomic sequence, which makes it impossible to discriminate one another with conventional genetic markers like STRs. On the other hand, phenotypic discordance between MZs implies the existence of different epigenetic characteristics. DNA methylation, an essential epigenetic modification, however, might be a potential biomarker to solve the forensic puzzle. In this study, we examined 22 pairs of MZs with a methylation BeadChip including 27,578 CpG sites. The results suggested that MZs exhibited remarkable differences of genome-wide 5-methylcytosine. According to a set of criteria of selection, 92 CpG sites with significant differences of methylation status within MZs were identified from the global epigenome. In conclusion, this pilot study suggested that CpG methylation profile could be a useful biomarker in individual identification of MZs.  相似文献   

16.
Yu Y  Zhang H  Tian F  Zhang W  Fang H  Song J 《PloS one》2008,3(7):e2672
Both epigenetic alterations and genetic variations play essential roles in tumorigenesis. The epigenetic modification of DNA methylation is catalyzed and maintained by the DNA methyltransferases (DNMT3a, DNMT3b and DNMT1). DNA mutations and DNA methylation profiles of DNMTs themselves and their relationships with chicken neoplastic disease resistance and susceptibility are not yet defined. In the present study, we analyzed the complexity of the DNA methylation variations and DNA mutations in the first exon of three DNMTs genes over generations, tissues, and ages among chickens of two highly inbred White Leghorn lines, Marek's disease-resistant line 6(3) and -susceptible line 7(2), and six recombinant congenic strains (RCSs). Among them, tissue-specific methylation patterns of DNMT3a were disclosed in spleen, liver, and hypothalamus in lines 6(3) and 7(2). The methylation level of DNMT3b on four CpG sites was not significantly different among four tissues of the two lines. However, two line-specific DNA transition mutations, CpG-->TpG (Chr20:10203733 and 10203778), were discovered in line 7(2) compared to the line 6(3) and RCSs. The methylation contents of DNMT1 in blood cell showed significant epimutations in the first CpG site among the two inbred lines and the six RCSs (P<0.05). Age-specific methylation of DNMT1 was detected in comparisons between 15 month-old and 2 month-old chickens in both lines except in spleen samples from line 7(2). No DNA mutations were discovered on the studied regions of DNMT1 and DNMT3a among the two lines and the six RCSs. Moreover, we developed a novel method that can effectively test the significance of DNA methylation patterns consisting of continuous CpG sites. Taken together, these results highlight the potential of epigenetic alterations in DNMT1 and DNMT3a, as well as the DNA mutations in DNMT3b, as epigenetic and genetic factors to neoplastic diseases of chickens.  相似文献   

17.
《Epigenetics》2013,8(1):19-30
DNA methylation data assayed using pyrosequencing techniques are increasingly being used in human cohort studies to investigate associations between epigenetic modifications at candidate genes and exposures to environmental toxicants and to examine environmentally-induced epigenetic alterations as a mechanism underlying observed toxicant-health outcome associations. For instance, in utero lead (Pb) exposure is a neurodevelopmental toxicant of global concern that has also been linked to altered growth in human epidemiological cohorts; a potential mechanism of this association is through alteration of DNA methylation (e.g., at growth-related genes). However, because the associations between toxicants and DNA methylation might be weak, using appropriate quality control and statistical methods is important to increase reliability and power of such studies. Using a simulation study, we compared potential approaches to estimate toxicant-DNA methylation associations that varied by how methylation data were analyzed (repeated measures vs. averaging all CpG sites) and by method to adjust for batch effects (batch controls vs. random effects). We demonstrate that correcting for batch effects using plate controls yields unbiased associations, and that explicitly modeling the CpG site-specific variances and correlations among CpG sites increases statistical power. Using the recommended approaches, we examined the association between DNA methylation (in LINE-1 and growth related genes IGF2, H19 and HSD11B2) and 3 biomarkers of Pb exposure (Pb concentrations in umbilical cord blood, maternal tibia, and maternal patella), among mother-infant pairs of the Early Life Exposures in Mexico to Environmental Toxicants (ELEMENT) cohort (n = 247). Those with 10 μg/g higher patella Pb had, on average, 0.61% higher IGF2 methylation (P = 0.05). Sex-specific trends between Pb and DNA methylation (P < 0.1) were observed among girls including a 0.23% increase in HSD11B2 methylation with 10 μg/g higher patella Pb.  相似文献   

18.
《Epigenetics》2013,8(9):1105-1113
Genetic loci displaying environmentally responsive epigenetic marks, termed metastable epialleles, offer a solution to the paradox presented by genetically identical yet phenotypically distinct individuals. The murine viable yellow agouti (Avy) metastable epiallele exhibits stochastic DNA methylation and histone modifications associated with coat color variation in isogenic individuals. The distribution of Avy variable expressivity shifts following maternal nutritional and environmental exposures. To characterize additional murine metastable epialleles, we utilized genome-wide expression arrays (N = 10 male individuals, 3 tissues per individual) and identified candidates displaying large variability in gene expression among individuals (Vi = inter-individual variance), concomitant with a low variability in gene expression across tissues from the three germ layers (Vt = inter-tissue variance), two features characteristic of the Avy metastable epiallele. The CpG island in the promoter of Dnajb1 and two contraoriented ERV class II repeats in Glcci1 were validated to display underlying stochasticity in methylation patterns common to metastable epialleles. Furthermore, liver DNA methylation in mice exposed in utero to 50 mg bisphenol A (BPA)/kg diet (N = 91) or a control diet (N = 79) confirmed environmental lability at validated candidate genes. Significant effects of exposure on mean CpG methylation were observed at the Glcci1 Repeat 1 locus (p &lt; 0.0001). Significant effects of BPA also were observed at the first and fifth CpG sites studied in Glcci1 Repeat 2 (p &lt; 0.0001 and p = 0.004, respectively). BPA did not affect methylation in the promoter of Dnajb1 (p = 0.59). The characterization of metastable epialleles in humans is crucial for the development of novel screening and therapeutic targets for human disease prevention.  相似文献   

19.

Background

Ageing affects many components of the immune system, including innate immune cells like monocytes. They are important in the early response to pathogens and for their role to differentiate into macrophages and dendritic cells. Recent studies have revealed significant age-related changes in genomic DNA methylation in peripheral blood mononuclear cells, however information on epigenetic changes in specific leukocyte subsets is still lacking. Here, we aimed to analyse DNA methylation in purified monocyte populations from young and elderly individuals.

Findings

We analysed the methylation changes in monocytes purified from young and elderly individuals using the HumanMethylation450 BeadChip array. Interestingly, we found that among 26 differentially methylated CpG sites, the majority of sites were hypomethylated in elderly individuals. The most hypomethylated CpG sites were located in neuropilin 1 (NRP1; cg24892069) and neurexin 2 (NRXN2; cg27209729) genes, and upstream of miR-29b-2 gene (cg10501210). The age-related hypomethylation of these three sites was confirmed in a separate group of young and elderly individuals.

Conclusions

We identified significant age-related hypomethylation in human purified monocytes at CpG sites within the regions of NRP1, NRXN2 and miR-29b-2 genes.  相似文献   

20.
We have developed a new generation of genome-wide DNA methylation BeadChip which allows high-throughput methylation profiling of the human genome. The new high density BeadChip can assay over 480K CpG sites and analyze twelve samples in parallel. The innovative content includes coverage of 99% of RefSeq genes with multiple probes per gene, 96% of CpG islands from the UCSC database, CpG island shores and additional content selected from whole-genome bisulfite sequencing data and input from DNA methylation experts. The well-characterized Infinium® Assay is used for analysis of CpG methylation using bisulfite-converted genomic DNA. We applied this technology to analyze DNA methylation in normal and tumor DNA samples and compared results with whole-genome bisulfite sequencing (WGBS) data obtained for the same samples. Highly comparable DNA methylation profiles were generated by the array and sequencing methods (average R2 of 0.95). The ability to determine genome-wide methylation patterns will rapidly advance methylation research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号