首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aberrant DNA methylation often occurs in colorectal cancer (CRC). In our study we applied a genome-wide DNA methylation analysis approach, MethylCap-seq, to map the differentially methylated regions (DMRs) in 24 tumors and matched normal colon samples. In total, 2687 frequently hypermethylated and 468 frequently hypomethylated regions were identified, which include potential biomarkers for CRC diagnosis. Hypermethylation in the tumor samples was enriched at CpG islands and gene promoters, while hypomethylation was distributed throughout the genome. Using epigenetic data from human embryonic stem cells, we show that frequently hypermethylated regions coincide with bivalent loci in human embryonic stem cells. DNA methylation is commonly thought to lead to gene silencing; however, integration of publically available gene expression data indicates that 75% of the frequently hypermethylated genes were most likely already lowly or not expressed in normal tissue. Collectively, our study provides genome-wide DNA methylation maps of CRC, comprehensive lists of DMRs, and gives insights into the role of aberrant DNA methylation in CRC formation.  相似文献   

2.
Aberrant DNA methylation often occurs in colorectal cancer (CRC). In our study we applied a genome-wide DNA methylation analysis approach, MethylCap-seq, to map the differentially methylated regions (DMRs) in 24 tumors and matched normal colon samples. In total, 2687 frequently hypermethylated and 468 frequently hypomethylated regions were identified, which include potential biomarkers for CRC diagnosis. Hypermethylation in the tumor samples was enriched at CpG islands and gene promoters, while hypomethylation was distributed throughout the genome. Using epigenetic data from human embryonic stem cells, we show that frequently hypermethylated regions coincide with bivalent loci in human embryonic stem cells. DNA methylation is commonly thought to lead to gene silencing; however, integration of publically available gene expression data indicates that 75% of the frequently hypermethylated genes were most likely already lowly or not expressed in normal tissue. Collectively, our study provides genome-wide DNA methylation maps of CRC, comprehensive lists of DMRs, and gives insights into the role of aberrant DNA methylation in CRC formation.  相似文献   

3.
DNA methylation changes contribute to bladder carcinogenesis. Trihalomethanes (THM), a class of disinfection by-products, are associated with increased urothelial bladder cancer (UBC) risk. THM exposure in animal models produces DNA hypomethylation. We evaluated the relationship of LINE-1 5-methylcytosine levels (LINE-1%5mC) as outcome of long-term THM exposure among controls and as an effect modifier in the association between THM exposure and UBC risk. We used a case-control study of UBC conducted in Spain. We obtained personal lifetime residential THM levels and measured LINE-1%5mC by pyrosequencing in granulocyte DNA from blood samples in 548 incident cases and 559 hospital controls. Two LINE-1%5mC clusters (above and below 64%) were identified through unsupervised hierarchical cluster analysis. The association between THM levels and LINE-1%5mC was evaluated with β regression analyses and logistic regression was used to estimate odds ratios (OR) adjusting for covariables. LINE-1%5mC change between percentiles 75th and 25th of THM levels was 1.8% (95% confidence interval (CI): 0.1, 3.4%) among controls. THM levels above vs. below the median (26 μg/L) were associated with increased UBC risk, OR = 1.86 (95% CI: 1.25, 2.75), overall and among subjects with low levels of LINE-1%5mC (n = 975), OR = 2.14 (95% CI: 1.39, 3.30), but not associated with UBC risk among subjects’ high levels of LINE-1%5mC (n = 162), interaction P = 0.03. Results suggest a positive association between LINE-1%5mC and THM levels among controls, and LINE-1%5mC status may modify the association between UBC risk and THM exposure. Because reverse causation and chance cannot be ruled out, confirmation studies are warranted.  相似文献   

4.
《Epigenetics》2013,8(11):1532-1539
DNA methylation changes contribute to bladder carcinogenesis. Trihalomethanes (THM), a class of disinfection by-products, are associated with increased urothelial bladder cancer (UBC) risk. THM exposure in animal models produces DNA hypomethylation. We evaluated the relationship of LINE-1 5-methylcytosine levels (LINE-1%5mC) as outcome of long-term THM exposure among controls and as an effect modifier in the association between THM exposure and UBC risk. We used a case-control study of UBC conducted in Spain. We obtained personal lifetime residential THM levels and measured LINE-1%5mC by pyrosequencing in granulocyte DNA from blood samples in 548 incident cases and 559 hospital controls. Two LINE-1%5mC clusters (above and below 64%) were identified through unsupervised hierarchical cluster analysis. The association between THM levels and LINE-1%5mC was evaluated with β regression analyses and logistic regression was used to estimate odds ratios (OR) adjusting for covariables. LINE-1%5mC change between percentiles 75th and 25th of THM levels was 1.8% (95% confidence interval (CI): 0.1, 3.4%) among controls. THM levels above vs. below the median (26 μg/L) were associated with increased UBC risk, OR = 1.86 (95% CI: 1.25, 2.75), overall and among subjects with low levels of LINE-1%5mC (n = 975), OR = 2.14 (95% CI: 1.39, 3.30), but not associated with UBC risk among subjects’ high levels of LINE-1%5mC (n = 162), interaction P = 0.03. Results suggest a positive association between LINE-1%5mC and THM levels among controls, and LINE-1%5mC status may modify the association between UBC risk and THM exposure. Because reverse causation and chance cannot be ruled out, confirmation studies are warranted.  相似文献   

5.
6.
Aberrant DNA methylation seems to be associated with prostate cancer behavior. We investigated LINE-1 methylation in prostate cancer and non-neoplastic tissue adjacent to tumor (NTAT) in association with mortality from prostate cancer. We selected 157 prostate cancer patients with available NTAT from 2 cohorts of patients diagnosed between 1982–1988 and 1993–1996, followed up until 2010. An association between LINE-1 hypomethylation and prostate cancer mortality in tumor was suggested [hazard ratio per 5% decrease in LINE-1 methylation levels: 1.40, 95% confidence interval (CI): 0.95–2.01]. After stratification of the patients for Gleason score, the association was present only for those with a Gleason score of at least 8. Among these, low (<75%) vs. high (>80%) LINE-1 methylation was associated with a hazard ratio of 4.68 (95% CI: 1.03–21.34). LINE-1 methylation in the NTAT was not associated with prostate cancer mortality. Our results are consistent with the hypothesis that tumor tissue global hypomethylation may be a late event in prostate cancerogenesis and is associated with tumor progression.  相似文献   

7.
Genome-wide DNA hypomethylation is an early event in the carcinogenic process. Percent methylation of long interspersed nucleotide element-1 (LINE-1) is a biomarker of genome-wide methylation and is a potential biomarker for breast cancer. Understanding factors associated with percent LINE-1 DNA methylation in histologically normal tissues could provide insight into early stages of carcinogenesis. In a cross-sectional study of 121 healthy women with no prior history of cancer who underwent reduction mammoplasty, we examined associations between plasma and breast folate, genetic variation in one-carbon metabolism, and percent LINE-1 methylation using multivariable regression models (adjusting for race, oral contraceptive use, and alcohol use). Results are expressed as the ratio of LINE-1 methylation relative to that of the referent group, with the corresponding 95% confidence intervals (CI). We found no significant associations between plasma or breast folate and percent LINE-1 methylation. Variation in MTHFR, MTR, and MTRR were significantly associated with percent LINE-1 methylation. Variant allele carriers of MTHFR A1289C had 4% lower LINE-1 methylation (Ratio 0.96, 95% CI 0.93–0.98), while variant allele carriers of MTR A2756G (Ratio 1.03, 95% CI 1.01–1.06) and MTRR A66G (Ratio 1.03, 95% CI 1.01–1.06) had 3% higher LINE-1 methylation, compared to those carrying the more common genotypes of these SNPs. DNA methylation of LINE-1 elements in histologically normal breast tissues is influenced by polymorphisms in genes in the one-carbon metabolism pathway. Future studies are needed to investigate the sociodemographic, environmental and additional genetic determinants of DNA methylation in breast tissues and the impact on breast cancer susceptibility.  相似文献   

8.
9.
Illumina’s Infinium HumanMethylation450 BeadChip arrays were used to examine genome-wide DNA methylation profiles in 22 sample pairs from colorectal cancer (CRC) and adjacent tissues and 19 colon tissue samples from cancer-free donors. We show that the methylation profiles of tumors and healthy tissue samples can be clearly distinguished from one another and that the main source of methylation variability is associated with disease status. We used different statistical approaches to evaluate the methylation data. In general, at the CpG-site level, we found that common CRC-specific methylation patterns consist of at least 15,667 CpG sites that were significantly different from either adjacent healthy tissue or tissue from cancer-free subjects. Of these sites, 10,342 were hypermethylated in CRC, and 5,325 were hypomethylated. Hypermethylated sites were common in the maximum number of sample pairs and were mostly located in CpG islands, where they were significantly enriched for differentially methylated regions known to be cancer-specific. In contrast, hypomethylated sites were mostly located in CpG shores and were generally sample-specific. Despite the considerable variability in methylation data, we selected a panel of 14 highly robust candidates showing methylation marks in genes SND1, ADHFE1, OPLAH, TLX2, C1orf70, ZFP64, NR5A2, and COL4A. This set was successfully cross-validated using methylation data from 209 CRC samples and 38 healthy tissue samples from The Cancer Genome Atlas consortium (AUC = 0.981 [95% CI: 0.9677–0.9939], sensitivity = 100% and specificity = 82%). In summary, this study reports a large number of loci with novel differential methylation statuses, some of which may serve as candidate markers for diagnostic purposes.  相似文献   

10.
11.
12.
13.
14.
Post-translational modifications of histone proteins have a crucial role in regulating gene expression. If efficiently re-established after chromosome duplication, histone modifications could help propagate gene expression patterns in dividing cells by epigenetic mechanisms. We used an integrated approach to investigate the dynamics of the conserved methylation of histone H3 Lys 79 (H3K79) by Dot1. Our results show that methylation of H3K79 progressively changes after histone deposition, which is incompatible with a rapid copy mechanism. Instead, methylation accumulates on ageing histones, providing the cell with a timer mechanism to directly couple cell-cycle length to changes in chromatin modification on the nucleosome core.  相似文献   

15.
In the last years, epigenetic processes have emerged as a promising area of complex diseases research. DNA methylation measured in Long Interspersed Nucleotide Element 1 (LINE-1) sequences has been considered a surrogate marker for global genome methylation. New findings have suggested the potential involvement of epigenetic mechanisms in Type 2 diabetes (T2DM) as a crucial interface between the effects of genetic predisposition and environmental influences. Our study evaluated whether global DNA methylation predicted increased risk from T2DM or other carbohydrate metabolism disorders in a cohort study. We used a prospective cohort intervention study and a control group. We collected phenotypic, anthropometric, biochemical, and nutritional information from all subjects. Global LINE-1 DNA methylation was quantified by pyrosequencing technology. Subjects that did not improve their carbohydrate metabolism status showed lower levels of global LINE-1 DNA methylation (63.9 ± 1.7 vs. 64.7 ± 2.4) and they practiced less intense physical activity (5.8% vs. 21.5%). Logistic regression analyses showed a significant association between LINE-1 DNA methylation and metabolic status after adjustment for sex, age, BMI, and physical activity. Our study showed that lower LINE-1 DNA methylation levels were associated with a higher risk metabolic status worsening, independent of other classic risk factors. This finding highlights the potential role for epigenetic biomarkers as predictors of T2DM risk or other related metabolic disorders.  相似文献   

16.
《Epigenetics》2013,8(11):1238-1248
Epigenetic dysfunction is a known contributor in carcinogenesis, and is emerging as a mechanism involved in toxicant-induced malignant transformation for environmental carcinogens such as arsenicals or cadmium. In addition to aberrant DNA methylation of single genes, another manifestation of epigenetic dysfunction in cancer is agglomerative DNA methylation, which can participate in long-range epigenetic silencing that targets many neighboring genes and has been shown to occur in several types of clinical cancers. Using in vitro model systems of toxicant-induced malignant transformation, we found hundreds of aberrant DNA methylation events that emerge during malignant transformation, some of which occur in an agglomerative fashion. In an arsenite-transformed prostate epithelial cell line, the protocadherin (PCDH), HOXC and HOXD gene family clusters are targeted for agglomerative DNA methylation. The agglomerative DNA methylation changes induced by arsenicals appear to be common and clinically relevant events, since they occur in other human cancer cell lines and models of malignant transformation, as well as clinical cancer specimens. Aberrant DNA methylation in general occurred more often within histone H3 lysine-27 trimethylation stem cell domains. We found a striking association between enrichment of histone H3 lysine-9 trimethylation stem cell domains and toxicant-induced agglomerative DNA methylation, suggesting these epigenetic modifications may become aberrantly linked during malignant transformation. In summary, we found an association between toxicant-induced malignant transformation and agglomerative DNA methylation, which lends further support to the hypothesis that epigenetic dysfunction plays an important role in toxicant-induced malignant transformation.  相似文献   

17.
Epigenetic dysfunction is a known contributor in carcinogenesis, and is emerging as a mechanism involved in toxicant-induced malignant transformation for environmental carcinogens such as arsenicals or cadmium. In addition to aberrant DNA methylation of single genes, another manifestation of epigenetic dysfunction in cancer is agglomerative DNA methylation, which can participate in long-range epigenetic silencing that targets many neighboring genes and has been shown to occur in several types of clinical cancers. Using in vitro model systems of toxicant-induced malignant transformation, we found hundreds of aberrant DNA methylation events that emerge during malignant transformation, some of which occur in an agglomerative fashion. In an arsenite-transformed prostate epithelial cell line, the protocadherin (PCDH), HOXC and HOXD gene family clusters are targeted for agglomerative DNA methylation. The agglomerative DNA methylation changes induced by arsenicals appear to be common and clinically relevant events, since they occur in other human cancer cell lines and models of malignant transformation, as well as clinical cancer specimens. Aberrant DNA methylation in general occurred more often within histone H3 lysine-27 trimethylation stem cell domains. We found a striking association between enrichment of histone H3 lysine-9 trimethylation stem cell domains and toxicant-induced agglomerative DNA methylation, suggesting these epigenetic modifications may become aberrantly linked during malignant transformation. In summary, we found an association between toxicant-induced malignant transformation and agglomerative DNA methylation, which lends further support to the hypothesis that epigenetic dysfunction plays an important role in toxicant-induced malignant transformation.  相似文献   

18.
《Epigenetics》2013,8(10):1322-1328
In the last years, epigenetic processes have emerged as a promising area of complex diseases research. DNA methylation measured in Long Interspersed Nucleotide Element 1 (LINE-1) sequences has been considered a surrogate marker for global genome methylation. New findings have suggested the potential involvement of epigenetic mechanisms in Type 2 diabetes (T2DM) as a crucial interface between the effects of genetic predisposition and environmental influences. Our study evaluated whether global DNA methylation predicted increased risk from T2DM or other carbohydrate metabolism disorders in a cohort study. We used a prospective cohort intervention study and a control group. We collected phenotypic, anthropometric, biochemical, and nutritional information from all subjects. Global LINE-1 DNA methylation was quantified by pyrosequencing technology. Subjects that did not improve their carbohydrate metabolism status showed lower levels of global LINE-1 DNA methylation (63.9 ± 1.7 vs. 64.7 ± 2.4) and they practiced less intense physical activity (5.8% vs. 21.5%). Logistic regression analyses showed a significant association between LINE-1 DNA methylation and metabolic status after adjustment for sex, age, BMI, and physical activity. Our study showed that lower LINE-1 DNA methylation levels were associated with a higher risk metabolic status worsening, independent of other classic risk factors. This finding highlights the potential role for epigenetic biomarkers as predictors of T2DM risk or other related metabolic disorders.  相似文献   

19.
The effects of chronic arsenic exposure mode on DNA methylation and skin lesion type are unclear. These relationships were investigated in an arsenic-contaminated area of southern Thailand. Cases with arsenical skin lesions (n = 131) and lesion-free controls (n = 163) were selected from an arsenic-contaminated sub-district, as well as 105 controls from a non-contaminated area. Type and severity of skin lesions and salivary global DNA methylation (LINE-1) were determined. Arsenic exposure was characterized as occupational, domestic and current (toe-nail arsenic). Associations were explored using logistic regression. Cases and controls had lower LINE-1 methylation and higher toenail arsenic than external controls (74.65% and 74.61% vs 76.05%, p < 0.001 for each). Cases were more likely to have been exposed domestically (ORtotal 1.76, 95% ci 1.00, 3.11; and 2.22, 95% ci 1.22, 4.03; Ptrend = 0.005 for exposure <36 and ≥36 years). More severe spotty hyperpigmentation was related to higher LINE-1 methylation (Ptrend=0.006). LINE-1 methylation was positively associated with toenail arsenic only among non-symptomatic exposed subjects (OR 1.31, 95% ci 1.06, 1.64; p = 0.014). Exposure to an arsenic-contaminated environment results in global DNA hypomethylation. However, among symptomatic subjects, increased global DNA methylation was associated with increased severity of spotty hyperpigmentation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号