首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To enable arrayed or pooled loss-of-function screens in a wide range of mammalian cell types, including primary and nondividing cells, we are developing lentiviral short hairpin RNA (shRNA) libraries targeting the human and murine genomes. The libraries currently contain 104,000 vectors, targeting each of 22,000 human and mouse genes with multiple sequence-verified constructs. To test the utility of the library for arrayed screens, we developed a screen based on high-content imaging to identify genes required for mitotic progression in human cancer cells and applied it to an arrayed set of 5,000 unique shRNA-expressing lentiviruses that target 1,028 human genes. The screen identified several known and approximately 100 candidate regulators of mitotic progression and proliferation; the availability of multiple shRNAs targeting the same gene facilitated functional validation of putative hits. This work provides a widely applicable resource for loss-of-function screens, as well as a roadmap for its application to biological discovery.  相似文献   

2.
摘要 目的:构建靶向约200个AML基因突变的sgRNA基因敲除文库,为进一步探索诱发AML的信号通路网络奠定基础。方法:TCGA对200名AML病人进行了全基因组或全外显子组测序,鉴定出约2000个AML相关基因突变,从中选出了约200个突变两次或以上的基因作为靶向基因;接着,从Brie文库中挑选出相应基因的sgRNA序列,每个基因对应4条sgRNA;利用Gibson组装酶连接到慢病毒载体内,得到sgRNA文库;之后,采用pSSA荧光素酶基因报告系统鉴定文库sgRNA的切割活性;对文库进行高通量测序鉴定;用慢病毒包装文库,并测定病毒滴度。结果:1、构建了一个靶向约200个AML突变的sgRNA基因敲除文库;2、pSSA荧光素酶基因报告系统鉴定文库sgRNA具有切割活性;3、鉴定的7个单克隆质粒序列完全正确;4、高通量测序鉴定文库丰度和均一性符合要求;5、用慢病毒包装成病毒文库,测定病毒文库滴度为4.4×107符合后续实验要求。结论:成功构建了靶向约200个基因突变的sgRNA敲除文库,可用于大规模地筛选诱发AML的基因突变,为探索AML发生、发展的分子机制以及药物靶点奠定基础。  相似文献   

3.
The clustered regulatory interspersed short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas) system has been widely used for gene knock-out. Lentiviral vectors have been commonly used as a delivery method for this system, however, prolonged Cas9/sgRNA expression due to lentiviral integration can lead to accumulating off-target mutations. To solve this issue in engineering a gene knock-out cell line, this study established a novel system, which was composed of two lentiviral vectors. One lentiviral vector carried simultaneously sgRNAs and CRISPR/Cas9 expression cassettes targeting single or multiple gene(s); the other lentiviral vector carried Cre that could remove excess sgRNAs and Cas9 expression cassettes in the genome after gene targeting was achieved. To prove the principle, two candidate genes, extracellular matrix protein 1 (ECM1) and progranulin (PGRN), both highly expressed in MDA-MB-231 cells, were selected for testing the novel system. A dual knock-out of ECM1 and PGRN was successfully achieved in MDA-MB-231 cell line, with the sgRNAs and Cas9 expression cassettes being removed by Cre. This system should have great potential in applications for multiple genes knock-out in vitro.  相似文献   

4.
With the widespread use of clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated nuclease (Cas) technologies in plants, large-scale genome editing is increasingly needed. Here, we developed a geminivirus-mediated surrogate system, called Wheat Dwarf Virus-Gate (WDV-surrogate), to facilitate high-throughput genome editing. WDV-Gate has two parts: one is the recipient callus from a transgenic rice line expressing Cas9 and a mutated hygromycin-resistant gene (HygM) for surrogate selection; the other is a WDV-based construct expressing two single guide RNAs (sgRNAs) targeting HygM and a gene of interest, respectively. We evaluated WDV-Gate on six rice loci by producing a total of 874 T0 plants. Compared with the conventional method, the WDV-Gate system, which was characterized by a transient and high level of sgRNA expression, significantly increased editing frequency (66.8% vs. 90.1%), plantlet regeneration efficiency (2.31-fold increase), and numbers of homozygous-edited plants (36.3% vs. 70.7%). Large-scale editing using pooled sgRNAs targeting the SLR1 gene resulted in a high editing frequency of 94.4%, further demonstrating its feasibility. We also tested WDV-Gate on sequence knock-in for protein tagging. By co-delivering a chemically modified donor DNA with the WDV-Gate plasmid, 3xFLAG peptides were successfully fused to three loci with an efficiency of up to 13%. Thus, by combining transiently expressed sgRNAs and a surrogate selection system, WDV-Gate could be useful for high-throughput gene knock-out and sequence knock-in.  相似文献   

5.
CRISPR (clustered regularly interspaced short palindromic repeats)-based gene inactivation provides a powerful means for linking genes to particular cellular phenotypes. CRISPR-based screening typically uses large genomic pools of single guide RNAs (sgRNAs). However, this approach is limited to phenotypes that can be enriched by chemical selection or FACS sorting. Here, we developed a microscopy-based approach, which we name optical enrichment, to select cells displaying a particular CRISPR-induced phenotype by automated imaging-based computation, mark them by photoactivation of an expressed photoactivatable fluorescent protein, and then isolate the fluorescent cells using fluorescence-activated cell sorting (FACS). A plugin was developed for the open source software μManager to automate the phenotypic identification and photoactivation of cells, allowing ∼1.5 million individual cells to be screened in 8 h. We used this approach to screen 6,092 sgRNAs targeting 544 genes for their effects on nuclear size regulation and identified 14 bona fide hits. These results present a scalable approach to facilitate imaging-based pooled CRISPR screens.  相似文献   

6.
文库筛选技术广泛应用于生命科学研究各领域,加速了生物医药基础科研和临床实践的进展。本文对基于CRISPR-Cas9的文库类型和应用进行综述。CRISPR-Cas9文库包括敲除、活化和抑制文库。敲除文库通过Cas9/sgRNA靶向切割DNA序列,产生移码突变进行基因敲除。活化文库包括两种:一种是dCas9/sgRNA与转录活化蛋白质融合,例如dCas9-SAM,dCas9-SunTag和dCas9-VPR系统;另一种是dCas9与表观遗传修饰酶融合,例如dCas9-Tet1和dCas9-p300系统。CRISPR-Cas9抑制文库通过dCas9与表观遗传修饰蛋白质融合,抑制转录,例如dCas9-KRAB和dCas9-Dnmt3a系统。目前,CRISPR-Cas9文库广泛用于功能基因筛选、药物靶点和耐药靶点筛选、病毒靶点筛选和揭示信号通路,并在基因互作筛选及揭示顺式调节元件功能等方面初步展现其优势。CRISPR-Cas9文库优势在于其设计灵活、操作便捷、筛选高效。伴随基因编辑系统的研发,新的筛选文库靶向性和突变将更加精准,应用将更加拓展和深化。基于CRISPR-Cas9筛选文库不仅可以筛选病理和生理过程中的关键基因和非编码DNA,还可以揭示其发挥功能的分子机制,是剖析生命复杂调控网络的手术刀。  相似文献   

7.
The CRISPR/Cas9 system has been proven as a revolutionary genome engineering tool. In most cases, single guide RNA (sgRNA) targeting sites have been designed as GN19NGG or GGN18NGG, because of restriction of the initiation nucleotide for RNA Pol III promoters. Here, we demonstrate that the U6 promoter from a lepidopteran model insect, Bombyx mori, effectively expressed the sgRNA initiated with any nucleotide bases (adenine, thymine, guanine or cytosine), which further expands the CRISPR targeting space. A detailed expansion index in the genome was analysed when N20NGG was set as the CRISPR targeting site instead of GN19NGG, and revealed a significant increase of suitable targets, with the highest increase occurring on the Z sex chromosome. Transfection of different types of N20NGG sgRNAs targeting the enhanced green fluorescent protein (EGFP) combined with Cas9, significantly reduced EGFP expression in the BmN cells. An endogenous gene, BmBLOS2, was also disrupted by using various types of N20NGG sgRNAs, and the cleavage efficiency of N20NGG sgRNAs with different initial nucleotides and GC contents was evaluated in vitro. Furthermore, transgenic silkworms expressing Cas9 and sgRNAs targeting the BmBLOS2 gene were generated with many types of mutagenesis. The typical transparent skin phenotype in knock-out silkworms was stable and inheritable, suggesting that N20NGG sgRNAs function sufficiently in vivo. Our findings represent a renewal of CRISPR/Cas9 target design and will greatly facilitate insect functional genetics research.  相似文献   

8.
9.
10.
We have developed an automated format for screening yeast two-hybrid libraries for protein-protein interactions. The format consists of a liquid array in which pooled library subsets of yeast, expressing up to 1000 different cDNAs, are mated to a yeast strain of the opposite mating type, expressing a protein of interest. Interactors are detected by a liquid assay for beta-galacsidase following prototrophic selection. The method is demonstrated by the detection of interactions between two encoded yeast RNA polymerase subunits in simulated libraries of varied complexity. To demonstrate its utility for large scale screening of complex cDNA libraries, two nuclear receptor ligand-binding domains were screened through two cDNA libraries arrayed in pooled subsets. Screening these libraries yielded clones which had previously been identified in traditional yeast two hybrid screens, as well as several new putative interacting proteins. The formatting of the cDNA library into pooled subsets lends itself to functional subtraction of the promiscuous positive class of interactor from the library. Also, the liquid arrayed format enables electronic handling of the data derived from interaction screening, which, together with the automated handling of samples, should promote large-scale proteome analysis.  相似文献   

11.
Kiwifruit is an important fruit crop; however, technologies for its functional genomic and molecular improvement are limited. The clustered regulatory interspaced short palindromic repeats (CRISPR)/CRISPR‐associated protein (Cas) system has been successfully applied to genetic improvement in many crops, but its editing capability is variable depending on the different combinations of the synthetic guide RNA (sgRNA) and Cas9 protein expression devices. Optimizing conditions for its use within a particular species is therefore needed to achieve highly efficient genome editing. In this study, we developed a new cloning strategy for generating paired‐sgRNA/Cas9 vectors containing four sgRNAs targeting the kiwifruit phytoene desaturase gene (AcPDS). Comparing to the previous method of paired‐sgRNA cloning, our strategy only requires the synthesis of two gRNA‐containing primers which largely reduces the cost. We further compared efficiencies of paired‐sgRNA/Cas9 vectors containing different sgRNA expression devices, including both the polycistronic tRNA‐sgRNA cassette (PTG) and the traditional CRISPR expression cassette. We found the mutagenesis frequency of the PTG/Cas9 system was 10‐fold higher than that of the CRISPR/Cas9 system, coinciding with the relative expressions of sgRNAs in two different expression cassettes. In particular, we identified large chromosomal fragment deletions induced by the paired‐sgRNAs of the PTG/Cas9 system. Finally, as expected, we found both systems can successfully induce the albino phenotype of kiwifruit plantlets regenerated from the G418‐resistance callus lines. We conclude that the PTG/Cas9 system is a more powerful system than the traditional CRISPR/Cas9 system for kiwifruit genome editing, which provides valuable clues for optimizing CRISPR/Cas9 editing system in other plants.  相似文献   

12.
G-protein-coupled receptors (GPCRs) are valuable molecular targets for drug discovery. An important aspect of the early drug discovery process is the design and implementation of high-throughput GPCR functional assays that allow the cost-effective screening of large compound libraries to identify novel drug candidates. Several functional assay kits based on fluorescence and/or chemiluminescence detection are commercially available for convenient screen development, each having advantages and disadvantages. In addition, new GPCR biosensors and high-content imaging technologies have recently been developed that hold promise for the development of functional GPCR screens in living cells.  相似文献   

13.
Loss‐of‐function screening by CRISPR/Cas9 gene knockout with pooled, lentiviral guide libraries is a widely applicable method for systematic identification of genes contributing to diverse cellular phenotypes. Here, Random Sequence Labels (RSLs) are incorporated into the guide library, which act as unique molecular identifiers (UMIs) to allow massively parallel lineage tracing and lineage dropout screening. RSLs greatly improve the reproducibility of results by increasing both the precision and the accuracy of screens. They reduce the number of cells needed to reach a set statistical power, or allow a more robust screen using the same number of cells.  相似文献   

14.
单碱基编辑器是实用且高效的基因编辑工具,其编辑效率与单向导RNA(single guide RNA, sgRNA)序列的设计密切相关。目前单碱基编辑器sgRNA序列的设计缺少特定的法则,主要依靠经验和大量尝试完成。本研究基于卷积神经网络,开发了一个单碱基编辑器sgRNA序列设计工具BEguider。BEguider利用TensorFlow 2深度学习框架建立编辑效率预测模型,能够在人基因组范围内针对NGG PAM序列依赖的单碱基编辑器ABE7.10-NGG和BE4-NGG批量设计sgRNA序列,预测编辑效率。此外,通过整合Cas-OFFinder, BEguider能够提供对sgRNA脱靶情况的评估。利用BEguider设计sgRNA序列,有助于研究人员提高实验效率,节约实验成本。  相似文献   

15.
16.
RNA interference (RNAi) is an intrinsic cellular mechanism for the regulation of gene expression. Harnessing the innate power of this system enables us to knockdown gene expression levels in loss of gene function studies.There are two main methods for performing RNAi. The first is the use of small interfering RNAs (siRNAs) that are chemically synthesized, and the second utilizes short-hairpin RNAs (shRNAs) encoded within plasmids 1. The latter can be transfected into cells directly or packaged into replication incompetent lentiviral particles. The main advantages of using lentiviral shRNAs is the ease of introduction into a wide variety of cell types, their ability to stably integrate into the genome for long term gene knockdown and selection, and their efficacy in conducting high-throughput loss of function screens. To facilitate this we have created the LentiPlex pooled shRNA library.The MISSION LentiPlex Human shRNA Pooled Library is a genome-wide lentiviral pool produced using a proprietary process. The library consists of over 75,000 shRNA constructs from the TRC collection targeting 15,000+ human genes 2. Each library is tested for shRNA representation before product release to ensure robust library coverage. The library is provided in a ready-to-use lentiviral format at titers of at least 5 x 108 TU/ml via p24 assay and is pre-divided into ten subpools of approximately 8,000 shRNA constructs each. Amplification and sequencing primers are also provided for downstream target identification.Previous studies established a synergistic antitumor activity of TRAIL when combined with Paclitaxel in A549 cells, a human lung carcinoma cell line 3, 4. In this study we demonstrate the application of a pooled LentiPlex shRNA library to rapidly conduct a positive selection screen for genes involved in the cytotoxicity of A549 cells when exposed to TRAIL and Paclitaxel. One barrier often encountered with high-throughput screens is the cost and difficulty in deconvolution; we also detail a cost-effective polyclonal approach utilizing traditional sequencing.  相似文献   

17.
Suppression of gene expression by small interfering RNA (siRNA) has proved to be a gene-specific and cost effective alternative to other gene suppression technologies. Short hairpin RNAs (shRNAs) generated from the vector-based expression are believed to be processed into functional siRNAs in vivo, leading to gene silencing. Since an shRNA library carries a large pool of potential siRNAs, such a library makes it possible to knock down gene expression at the genome wide scale. Although much of research has been focused on generating shRNA libraries from either individually made gene specific sequences or cDNA libraries, there is no report on constructing randomized shRNA libraries, which could provide a good alternative to these existing libraries. We have developed a method of constructing shRNAs from randomized oligonucleotides. Through this method, one can generate a partially or fully randomized shRNA library for various functional analyses. We validated this procedure by constructing a p53-specific shRNA. Western blot revealed that the p53-shRNA successfully suppressed expression of the endogenous p53 in MCF-7 cells. We then made a partially randomized shRNA library. Sequencing of 15 randomly picked cloned confirmed the randomness of the library. Therefore, the library can be used for various functional assays, such as target validation when a suitable screening or selection method is available.  相似文献   

18.
19.
20.
Systems based on the clustered, regularly interspaced, short palindromic repeat (CRISPR) and CRISPR-associated proteins (Cas) have revolutionized genome editing in many organisms, including plants. Most CRISPR-Cas strategies in plants rely on genetic transformation using Agrobacterium tumefaciens to supply the gene editing reagents, such as Cas nucleases or the synthetic guide RNA (sgRNA). While Cas nucleases are constant elements in editing approaches, sgRNAs are target-specific and a screening process is usually required to identify those most effective. Plant virus-derived vectors are an alternative for the fast and efficient delivery of sgRNAs into adult plants, due to the virus capacity for genome amplification and systemic movement, a strategy known as virus-induced genome editing. We engineered Potato virus X (PVX) to build a vector that easily expresses multiple sgRNAs in adult solanaceous plants. Using the PVX-based vector, Nicotiana benthamiana genes were efficiently targeted, producing nearly 80% indels in a transformed line that constitutively expresses Streptococcus pyogenes Cas9. Interestingly, results showed that the PVX vector allows expression of arrays of unspaced sgRNAs, achieving highly efficient multiplex editing in a few days in adult plant tissues. Moreover, virus-free edited progeny can be obtained from plants regenerated from infected tissues or infected plant seeds, which exhibit a high rate of heritable biallelic mutations. In conclusion, this new PVX vector allows easy, fast and efficient expression of sgRNA arrays for multiplex CRISPR-Cas genome editing and will be a useful tool for functional gene analysis and precision breeding across diverse plant species, particularly in Solanaceae crops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号