首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Exposure to maternal mood disorder in utero may program infant neurobehavior via DNA methylation of the glucocorticoid receptor (NR3C1) and 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD-2), two placental genes that have been implicated in perturbations of the hypothalamic pituitary adrenocortical (HPA) axis. We tested the relations among prenatal exposure to maternal depression or anxiety, methylation of exon 1F of NR3C1 and 11β-HSD-2, and newborn neurobehavior. Controlling for relevant covariates, infants whose mothers reported depression during pregnancy and showed greater methylation of placental NR3C1 CpG2 had poorer self-regulation, more hypotonia, and more lethargy than infants whose mothers did not report depression. On the other hand, infants whose mothers reported anxiety during pregnancy and showed greater methylation of placental 11β-HSD-2 CpG4 were more hypotonic compared with infants of mothers who did not report anxiety during pregnancy. Our results support the fetal programming hypothesis and suggest that fetal adjustments to cues from the intrauterine environment, in this case an environment that could be characterized by increased exposure to maternal cortisol, may lead to poor neurodevelopmental outcomes.  相似文献   

2.

Background

Recently, an increasing number of human and animal studies have reported that exposure to benzo(a)pyrene (BaP) induces neurological abnormalities and is also associated with adverse effects, such as tumor formation, immunosuppression, teratogenicity, and hormonal disorders. However, the exact mechanisms underlying BaP-induced impairment of neurological function remain unclear. The aim of this study was to examine the regulating mechanisms underlying the impact of chronic BaP exposure on neurobehavioral performance.

Methods

C57BL mice received either BaP in different doses (1.0, 2.5, 6.25 mg/kg) or olive oil twice a week for 90 days. Memory and emotional behaviors were evaluated using Y-maze and open-field tests, respectively. Furthermore, levels of mRNA expression were measured by using qPCR, and DNA methylation of NMDA receptor 2B subunit (NR2B) was examined using bisulfate pyrosequencing in the prefrontal cortex and hippocampus.

Results

Compared to controls, mice that received BaP (2.5, 6.25 mg/kg) showed deficits in short-term memory and an anxiety-like behavior. These behavioral alterations were associated with a down-regulation of the NR2B gene and a concomitant increase in the level of DNA methylation in the NR2B promoter in the two brain regions.

Conclusions

Chronic BaP exposure induces an increase in DNA methylation in the NR2B gene promoter and down-regulates NR2B expression, which may contribute to its neurotoxic effects on behavioral performance. The results suggest that NR2B vulnerability represents a target for environmental toxicants in the brain.  相似文献   

3.
Bisphenol A (BPA), an endocrine disrupting chemical (EDC), is a ubiquitous pollutant. As part of the Consortium Linking Academic and Regulatory Insights on BPA Toxicity (CLARITY-BPA), we sought to determine whether exposure of Sprague-Dawley rats to 2,500 μg/kg/day BPA (BPA) or 0.5 μg/kg/day ethinyl estradiol (EE) from gestational day 6 through postnatal day 21 induces behavior-relevant gene expression and DNA methylation changes in hippocampus and hypothalamus at adulthood. RNA and DNA were isolated from both regions. Expression of ten genes (Dnmt1, Dnmt3a, Dnmt3b, Esr1, Esr2, Avp, Ar, Oxt, Otr, and Bdnf) presumably altered by early-life BPA/EE exposure was examined. Three genes (Bdnf, Dnmt3b, and Esr1) were studied for DNA methylation changes in their putative 5? promoter regions. Molecular changes in hippocampus were correlated to prior Barnes maze performance, including sniffing correct holes, distance traveled, and velocity. Exposure to BPA and/or EE disrupted patterns of sexually dimorphic gene expression/promoter DNA methylation observed in hippocampus and hypothalamus of controls. In the hippocampus of female offspring, BPA exposure resulted in hypermethylation of the putative 5? promoter region of Bdnf, while EE exposure induced hypomethylation. Bdnf methylation was weakly associated with Bdnf expression in hippocampi of female rats. Hippocampal Bdnf expression in females showed a weak negative association with sniffing correct hole in Barnes maze. Hippocampal expression of Avp, Esr2, Oxt, and Otr was strongly associated with velocity of control rats in Barnes maze. Findings suggest BPA exposure induced non-EE-like gene expression and epigenetic changes in adult rat hippocampi, a region involved in spatial navigation.  相似文献   

4.
The contents of some selected metals Ca, Mg, Fe, Mn, Co, Cu, Zn, Ni, and Cd in different thyme leaf samples widely consumed in Ethiopia were determined by flame atomic absorption spectroscopy (FAAS) after acid digestion with 1:1 HNO3/HClO4 for 3 h at a temperature of 240°C by a Kjeldahl apparatus hot plate digester. The level of the nutrients in the four samples ranged from 1,239–2,517 μg/g, Ca; 1,524–1,786 μg/g, Mg; 728–2,517 μg/g, Fe; 37.7–114 μg/g, Mn; 2.59–4.3 μg/g, Co; 7.69–9.3 μg/g, Cu; 8.7–52 μg/g, Zn; and 9.83–14.2 μg/g, Ni; respectively. While the level of toxic metal Cd in the four samples ranged from 0.87–1.3 μg/g. The concentration of Ca was higher than the other metals in the three samples and Cd was the least of all the metals in the analyzed samples. The overall reproducibility of the method obtained from spiking experiment was within the range ±10%. This result will complement available data on food composition in Ethiopia.  相似文献   

5.
《Epigenetics》2013,8(1):19-30
DNA methylation data assayed using pyrosequencing techniques are increasingly being used in human cohort studies to investigate associations between epigenetic modifications at candidate genes and exposures to environmental toxicants and to examine environmentally-induced epigenetic alterations as a mechanism underlying observed toxicant-health outcome associations. For instance, in utero lead (Pb) exposure is a neurodevelopmental toxicant of global concern that has also been linked to altered growth in human epidemiological cohorts; a potential mechanism of this association is through alteration of DNA methylation (e.g., at growth-related genes). However, because the associations between toxicants and DNA methylation might be weak, using appropriate quality control and statistical methods is important to increase reliability and power of such studies. Using a simulation study, we compared potential approaches to estimate toxicant-DNA methylation associations that varied by how methylation data were analyzed (repeated measures vs. averaging all CpG sites) and by method to adjust for batch effects (batch controls vs. random effects). We demonstrate that correcting for batch effects using plate controls yields unbiased associations, and that explicitly modeling the CpG site-specific variances and correlations among CpG sites increases statistical power. Using the recommended approaches, we examined the association between DNA methylation (in LINE-1 and growth related genes IGF2, H19 and HSD11B2) and 3 biomarkers of Pb exposure (Pb concentrations in umbilical cord blood, maternal tibia, and maternal patella), among mother-infant pairs of the Early Life Exposures in Mexico to Environmental Toxicants (ELEMENT) cohort (n = 247). Those with 10 μg/g higher patella Pb had, on average, 0.61% higher IGF2 methylation (P = 0.05). Sex-specific trends between Pb and DNA methylation (P < 0.1) were observed among girls including a 0.23% increase in HSD11B2 methylation with 10 μg/g higher patella Pb.  相似文献   

6.
In the present investigation a chromate tolerant rhizobacterium Kocuria flava was isolated and inoculated to the Cicer arietinum L to evaluate its effects on growth and chromium accumulation upon exposure of different concentration of chromium (1–10 μg ml?1) as Cr (VI) for 24 d. K. flava inoculated plant of C. arietinum demonstrated luxuriant growth as compared to non inoculated plant at respective concentration of Cr (VI). K. flava found to ameliorate chromium induced phytotoxicity in terms of chlorophylls, carotenoid and protein contents and thus helps the plant in acquiring higher biomass with high chromium concentration. After 24 d, maximum concentration of chromium recorded in root of C. arietinum (4892.39 μg g?1dw) inoculated with K. flava as compared to non inoculated plant (1762.22 μg g?1dw) upon exposure of 5 μg ml?1Cr (VI). Therefore, application of C. arietinum in association with K. flava could be more efficient in decontamination of chromium polluted site. Moreover, K. flava may be used as a bioresource for developing microbes assisted phytoremediation system due to its compatibility.  相似文献   

7.
《Epigenetics》2013,8(2):97-106
Background: In animal models, variations in early maternal care are associated with differences in hypothalamic-pituitary-adrenal (HPA) stress response in the offspring, mediated via changes in the epigenetic regulation of glucocorticoid receptor (GR) gene (Nr3c1) expression. Objective: To study this in humans, relationships between prenatal exposure to maternal mood and the methylation status of a CpG-rich region in the promoter and exon 1F of the human GR gene (NR3C1) in newborns and HPA stress reactivity at age 3 months were examined. Methods: The methylation status of a CpG-rich region of the NR3C1 gene, including exon 1F, in genomic DNA from cord blood mononuclear cells was quantified by bisulfite pyrosequencing in infants of depressed mothers treated with a serotonin reuptake inhibitor antidepressant (SRI) (n=33), infants of depressed non treated mothers (n=13) and infants of non depressed/non treated mothers (n=36). To study the functional implications of the newborn methylation status of NR3C1 in newborns, HPA function was assessed at 3 months using salivary cortisol obtained before and following a non noxious stressor and at a late afternoon basal time. Results: Prenatal exposure to increased third trimester maternal depressed/anxious mood was associated with increased methylation of NR3C1 at a predicted NGFI-A binding site. Increased NR3C1 methylation at this site was also associated with increased salivary cortisol stress responses at 3 months, controlling for prenatal SRI exposure, postnatal age, and pre and postnatal maternal mood. Conclusions: Methylation status of the human NR3C1 gene in newborns is sensitive to prenatal maternal mood and may offer a potential epigenetic process that links antenatal maternal mood and altered HPA stress reactivity during infancy.  相似文献   

8.
Prenatal stress has been widely associated with a number of short- and long-term pathological outcomes. Epigenetic mechanisms are thought to partially mediate these environmental insults into the fetal physiology. One of the main targets of developmental programming is the hypothalamic-pituitary-adrenal (HPA) axis as it is the main regulator of the stress response. Accordingly, an increasing number of researchers have recently focused on the putative association between DNA methylation at the glucocorticoid receptor gene (NR3C1) and prenatal stress, among other types of psychosocial stress. The current study aims to systematically review and meta-analyze the existing evidence linking several forms of prenatal stress with DNA methylation at the region 1F of the NR3C1 gene. The inclusion of relevant articles allowed combining empirical evidence from 977 individuals by meta-analytic techniques, whose methylation assessments showed overlap across 5 consecutive CpG sites (GRCh37/hg19 chr5:142,783,607-142,783,639). From this information, methylation levels at CpG site 36 displayed a significant correlation to prenatal stress (r = 0.14, 95% CI: 0.05–0.23, P = 0.002). This result supports the proposed association between a specific CpG site located at the NR3C1 promoter and prenatal stress. Several confounders, such as gender, methylation at other glucocorticoid-related genes, and adjustment for pharmacological treatments during pregnancy, should be taken into account in further studies.  相似文献   

9.
10.
The aim of the current study was to investigate the effect of a permanent heat exposure during 21 days on pig performance, nutrient digestibility, physiological response and key enzyme of skeletal muscle energy metabolism. Twenty-four male finishing pigs (crossbreed castrates, 79.0 ± 1.50 kg body weight) were allocated to three groups (n = 8): (1) Control (ambient temperature (AT) 22°C, ad libitum feeding), (2) Group HE (AT 30°C, ad libitum feeding) and (3) Group PF (AT 22°C, pair-fed to Group HE). The permanent heat exposure decreased feed intake (p < 0.01), daily body weight gain (p < 0.05) and the digestibility of gross energy, dry matter, crude protein and ash (p < 0.05); rectal temperature and respiration rate were significantly increased (p < 0.01). The levels of plasma cortisol, creatine kinase and lactate dehydrogenase were also significantly increased in Group HE (p < 0.05). Furthermore, the heat exposure changed intracellular energy metabolism, where the AMP-activated protein kinase was activated (= 0.02). This was combined with changes in parameters of glycolysis such as an accumulation of lactic acid (= 0.02) and a drop of pH24?h (= 0.02), an increase of hexokinase and pyruvate kinase activity (p < 0.01) and, finally, the maturation process of post mortem muscle was influenced. Due to pair-feeding it was possible to evaluate the effects of heat exposure, which were not dependent on reduced feed intake. Such effects were, e.g., reduced nutrient digestibility and changed activities of several enzymes in muscle and blood serum.  相似文献   

11.
Benzo(a)pyrene (BaP) is a carcinogenic polycyclic aromatic hydrocarbon, also found in nature due to human activities. BaP adheres to sediments showing toxic effects on benthic organisms, including midge larvae of the family Chironomidae. We tested for toxic effects of benzo(a)pyrene on Chironomus sancticaroli Strixino & Strixino 1981 using biochemical and genotoxic biomarkers, to identify changes in metabolic and antioxidant pathways, besides neurotoxic and DNA damage. Enzyme activity was compared by exposing larvae to four nominal concentrations (0.47, 2.13, 3.41, and 4.73 μg l?1) and DNA damage to two concentrations (0.47 and 4.73 μg l?1), after exposure at 24, 48, 72, and 96 h. BaP caused neurotoxic effect, showing acetylcholinesterase alterations at different treatments. Changes in the biotransformation pathway were detected, with an increased activity of alpha and beta esterase in 48 h and reduction of glutathione-S-transferase activity in all periods at the highest concentrations. Damage to the antioxidant system was observed by the increase of the superoxide dismutase and reduction of the catalase, in 48 h. Genotoxicity was detected by an increased DNA damage at 48 and 72 h. The lowest concentration (0.47 μg l?1), even presenting low mortality, also altered the biochemical parameters of the larvae. Thus, these results indicate that BaP causes metabolic, neurotoxic, and genotoxic effects on C. sancticaroli, even at low concentrations and short-term exposure. BaP can cause damage of immature invertebrates, and the ecological dynamics can be affected, since these organisms have trophic importance in the aquatic environment.  相似文献   

12.
Fifteen polycyclic aromatic hydrocarbons (PAHs) and heavy metals (Cr, Ni, As, Cd, Pb, and Hg) were quantified in 19 surface water sites of the Three Gorges Reservoir, China. The total concentrations of 15 PAHs and six heavy metals in the 19 sample sites ranged from 130.8 ng L?1 to 227.5 ng L?1 and 3.2 μg L?1 to 6.0 μg L?1, respectively. The mean concentration of As was the highest among the six heavy metals (2.1 ± 0.3 μg L?1), followed by Cr (0.5 ± 0.3 μg L?1), Ni (1.3 ± 0.1 μg L?1), Cd (0.2 ± 0.01 μg L?1), Pb (0.07 ± 0.08 μ g L?1) and Hg (0.05 ± 0.08 μg L?1). The isomer ratio results suggest that PAHs at most sites were mainly from petroleum combustion, while coal and biomass combustion was the main source at sites 1, 2, 6, 7, 9, 14, and 17. Based on principal component analysis, the main source of heavy metals was anthropogenic activities and weathering of bedrocks. Depending on characteristic of RQ(NCs) ≥ 1 and RQ(MPCs) < 1, BaA showed higher potential ecological risk than other PAHs, therefore, all sampling site needed to be paid much more attention, included some remedial actions. Meanwhile, after assessing human health risk of heavy metal, it was unlikely to experience adverse health effects, even exposing through more pathways and six kinds of heavy metals simultaneously.  相似文献   

13.
Investigating the methylation status of the circadian genes may contribute to a better understanding of the shift work-related circadian disruption in individuals exposed to artificial light at night. In the present study, we determined the methylation status of the circadian genes associated with a shift work pattern among nurses and midwives participating in a cross-sectional study in Lodz, Poland.

Quantitative methylation polymerase chain reaction assays were used to assess promoter CpG methylation in PER1, PER2, PER3, CRY1, CRY2, BMAL1, CLOCK, and NPAS2 in genomic DNA from whole blood of 347 women having a rotating-shift work schedule and 363 women working days only. The percentage of methylated reference (PMR) was assessed using fluorescent probes for PER1, PER2, PER3, CRY1, and NPAS2, and the percentage of gene methylation, as the methylation index (MI), using two sets of primers for BMAL1, CLOCK, and CRY2.

We tested the possible association between current and lifetime rotating night-shift work characteristics and circadian gene methylation by using proportional odds regression model with blood DNA methylation, categorized into tertiles, and adjusted for age, current smoking status, folate intake and blood collection time. The findings indicated that CpG methylation in PER2 promoter was significantly decreased (P < 0.004) among nurses and midwives currently working rotating shifts, as compared with day-working nurses and midwives. The lower percentage of PER2 methylation was associated with a higher monthly frequency of current night duties (2–7 night shifts, and eight or more night shifts per month) (P = 0.012) and was associated at borderline significance (P = 0.092) with the lifetime duration of shift work (>10 ≤ 20 years and >20 ≤ 43 years of rotating-shift work) among nurses and midwives (N = 710). Moreover, women with a longer lifetime duration of shift work presented a lower status of PER1 methylation (P = 0.040) than did the women with up to 10 years of rotating-shift work. Long lifetime duration of shift work (> 10 years) among current rotating night-shift workers (N = 347) was associated with BMAL1 hypomethylation (P = 0.013).

Among eight of the investigated circadian genes, only PER1, PER2, and BMAL1 showed differential methylation attributable to the rotating-shift work of nurses and midwives. The findings on blood-based DNA methylation in the circadian genes may provide a better insight into the mechanistic principles underlying the possible health effects of night-shift work but these should be verified in further studies recruiting larger populations of shift workers.  相似文献   


14.
Heavy metals accumulation in soils poses a potential threat to ecosystems, which, in turn, threat human health through food chains. Therefore, remediating polluted sites is important to environment and humanity. In this investigation, statice (L. sinuatum) was exposed to Cd (0, 15, 30, 60 mg kg?1 soil) or Pb (0, 100, 150, 300 mg kg?1 soil) in a pot experiment to assess its tolerance to each metal and study its phytoaccumulation capability. The benefits of mycorrhization (mixture of Glomus mosseae and G. intraradices) were also studied simultaneously. Single exposure to Cd or Pb reduced the plant growth, but statice was still relatively tolerant to both metals. The plants accumulated both metals in their roots; little was translocated to the shoots. Total Pb and total Cd accumulated by the roots was approximately 2 and 3 times higher in mycorrhizal than non-mycorrhizal plants (49 versus 147 and 595 versus 956 μg plant?1) respectively; however, mycorrhization alleviated metal phytotoxicity. The results suggest that statice is a potential candidate to be used as an ornamental plant in lead and cadmium polluted sites, mainly inoculated with arbuscular mycorrhizae. Besides that, it would be useful as a Pb or Cd controlling agent by means of phytostabilization.  相似文献   

15.
《Epigenetics》2013,8(12):1454-1462
Borderline personality disorder (BPD) is a complex psychiatric disease of increasing importance. Epigenetic alterations are hallmarks for altered gene expression and could be involved in the etiology of BPD. In our study we analyzed DNA methylation patterns of 14 neuropsychiatric genes (COMT, DAT1, GABRA1, GNB3, GRIN2B, HTR1B, HTR2A, 5-HTT, MAOA, MAOB, NOS1, NR3C1, TPH1 and TH). DNA methylation was analyzed by bisulfite restriction analysis and pyrosequencing in whole blood samples of patients diagnosed with DSM-IV BPD and in controls. Aberrant methylation was not detectable using bisulfite restriction analysis, but a significantly increased methylation of HTR2A, NR3C1, MAOA, MAOB and soluble COMT (S-COMT) was revealed for BPD patients using pyrosequencing. For HTR2A the average methylation of four CpG sites was 0.8% higher in BPD patients compared to controls (p = 0.002). The average methylation of NR3C1 was 1.8% increased in BPD patients compared to controls (p = 0.0003) and was higher at 2 out of 8 CpGs (p ≤ 0.04). In females, an increased average methylation (1.5%) of MAOA was observed in BPD patients compared to controls (p = 0.046). A similar trend (1.4% higher methylation) was observed for MAOB in female BPD patients and increased methylation was significant for 1 out of 6 CpG sites. For S-COMT, a higher methylation of 2 out of 4 CpG sites was revealed in BPD patients (p ≤ 0.02). In summary, methylation signatures of several promoter regions were established and a significant increased average methylation (1.7%) occurred in blood samples of BPD patients (p < 0.0001). Our data suggest that aberrant epigenetic regulation of neuropsychiatric genes may contribute to the pathogenesis of BPD.  相似文献   

16.
Phytoremediation technology has become one of the main techniques for remediating soils polluted by heavy metals because it does not damage the environment, but heavy metal-tolerant plants have the disadvantages of low biomass and slow growth. A pot experiment was conducted to study the effects of melatonin (Mel) on growth and cadmium (Cd) accumulation in the Cd accumulator Malachium aquaticum and hyperaccumulator Galinsoga parviflora by spraying different concentrations of Mel on them. The results showed that shoot biomass, photosynthetic pigment content and antioxidant enzyme activity were increased in both species after Mel was sprayed on their leaves. Mel reduced the Cd content in shoots of M. aquaticum and increased it in those of G. parviflora. In general, Cd accumulation was greatest in M. aquaticum when Mel was 200 μmol L?1 (120.71 μg plant?1, increased by 15.97% than control) and in G. parviflora when Mel was 100 μmol L?1 (132.40 μg plant?1, increased by 68.30% than control). Our results suggest it is feasible to improve the remediation efficiency of lightly Cd-contaminated soil by spraying G. parviflora with100 μmol L?1 Mel.  相似文献   

17.
《Epigenetics》2013,8(10):1257-1264
Lower levels of LINE-1 methylation in peripheral blood have been previously associated with risk of developing non-communicable conditions, the most well-explored of these being cancer, although recent research has begun to link altered LINE-1 methylation and cardiovascular disease. We examined the relationship between LINE-1 methylation and factors associated with metabolic and cardiovascular diseases through quantitative bisulfite pyrosequencing in DNA from peripheral blood samples from participants of the Samoan Family Study of Overweight and Diabetes (2002-03). The sample included 355 adult Samoans (88 men and 267 women) from both American Samoa and Samoa. In a model including all sample participants, men had significantly higher LINE-1 methylation levels than women (p=0.04), and lower levels of LINE-1 methylation were associated with higher levels of fasting LDL (p=0.02) and lower levels of fasting HDL (p=0.009). The findings from this study confirm that DNA "global" hypomethylation, (as measured by methylation at LINE-1 repeats) observed previously in cardiovascular disease is associated with altered levels of LDL and HDL in peripheral blood. Additionally, these findings strongly argue the need for further research, particularly including prospective studies, in order to understand the relationship between LINE-1 DNA methylation measured in blood and risk factors for cardiovascular disease.  相似文献   

18.
Developmental exposure to endocrine-disrupting chemicals (EDCs), 17β-estradiol-3-benzoate (EB) and bisphenol A (BPA), increases susceptibility to prostate cancer (PCa) in rodent models. Here, we used the methylated-CpG island recovery assay (MIRA)-assisted genomic tiling and CpG island arrays to identify treatment-associated methylome changes in the postnatal day (PND)90 dorsal prostate tissues of Sprague-Dawley rats neonatally (PND1, 3, and 5) treated with 25 µg/pup or 2,500 µg EB/kg body weight (BW) or 0.1 µg BPA/pup or 10 µg BPA/kg BW. We identified 111 EB-associated and 86 BPA-associated genes, with 20 in common, that have significant differentially methylated regions. Pathway analysis revealed cancer as the top common disease pathway. Bisulfite sequencing validated the differential methylation patterns observed by array analysis in 15 identified candidate genes. The methylation status of 7 (Pitx3, Wnt10b, Paqr4, Sox2, Chst14, Tpd52, Creb3l4) of these 15 genes exhibited an inverse correlation with gene expression in tissue samples. Cell-based assays, using 5-aza-cytidine-treated normal (NbE-1) and cancerous (AIT) rat prostate cells, added evidence of DNA methylation-mediated gene expression of 6 genes (exception: Paqr4). Functional connectivity of these genes was linked to embryonic stem cell pluripotency. Furthermore, clustering analyses using the dataset from The Cancer Genome Atlas revealed that expression of this set of 7 genes was associated with recurrence-free survival of PCa patients. In conclusion, our study reveals that gene-specific promoter methylation changes, resulting from early-life EDC exposure in the rat, may serve as predictive epigenetic biomarkers of PCa recurrence, and raises the possibility that such exposure may impact human disease.  相似文献   

19.
Rhizotoxic effects of many trace metals are known, but there is little information on recovery after exposure. Roots of 3-d-old cowpea (Vigna unguiculata (L.) Walp. cv. Caloona) seedlings were grown for 4 or 12 h in solutions of 960 μM Ca and 5 μM B at two concentrations (which reduce growth by 50 or 85%) of nine trace metals that rupture the outer layers of roots. Measured concentrations were 34 or 160 μM Al, 0.6 or 1.6 μM Cu, 2.2 or 8.5 μM ?Ga, 2.3 or 12 μM Gd, 0.8 or 1.9 μM Hg, 1.0 or 26 μM In, 2.4 or 7.3 μM La, 1.8 or 3.8 μM Ru, and 1.3 or 8.6 μM Sc. Roots were rinsed, transferred to solutions free of trace metals, and regrowth monitored for up to 48 h. Recovery from exposure to Hg occurred within 4 h, but regrowth was delayed for ≥?12 h with Al, Ga, or Ru. There was poor regrowth after 4 or 12 h exposure to Cu, Gd, In, La, or Sc. Roots recovered after being grown for 12 to 48 h in 170 μM Al, 5.1 μM? Ga, 2.0 μM Hg, or 1.4 μM Ru, but the extent of recovery was reduced with longer exposure time. Microscopy showed marked differences in symptoms on roots recovering from exposure to the various trace metals. Differences in (i) concentrations that are toxic, (ii) ability of roots to recover, (iii) time for recovery to occur, and (iv) symptoms that develop, suggest that each trace metal has a unique combination of rhizotoxic effects.  相似文献   

20.
《Epigenetics》2013,8(5):774-782
Prenatal arsenic exposure is associated with increased risk of disease in adulthood. This has led to considerable interest in arsenic’s ability to disrupt fetal programming. Many studies report that arsenic exposure alters DNA methylation in whole blood but these studies did not adjust for cell mixture. In this study, we examined the relationship between arsenic in maternal drinking water collected ≤ 16 weeks gestational age and DNA methylation in cord blood (n = 44) adjusting for leukocyte-tagged differentially methylated regions. DNA methylation was quantified using the Infinium HumanMethylation 450 BeadChip array. Recursively partitioned mixture modeling examined the relationship between arsenic and methylation at 473,844 CpG sites. Median arsenic concentration in water was 12 µg/L (range < 1- 510 µg/L). Log10 arsenic was associated with altered DNA methylation across the epigenome (P = 0.002); however, adjusting for leukocyte distributions attenuated this association (P = 0.013). We also observed that arsenic had a strong effect on the distribution of leukocytes in cord blood. In adjusted models, every log10 increase in maternal drinking water arsenic exposure was estimated to increase CD8+ T cells by 7.4% (P = 0.0004) and decrease in CD4+ T cells by 9.2% (P = 0.0002). These results show that prenatal exposure to arsenic had an exposure-dependent effect on specific T cell subpopulations in cord blood and altered DNA methylation in cord blood. Future research is needed to determine if these small changes in DNA methylation alter gene expression or are associated with adverse health effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号