首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Almost half of the human genome consists of repetitive DNA. Understanding what role these elements have in setting up chromatin states that underlie gene and chromosome function in complex genomes is paramount. The function of some types of repetitive DNA is obvious by virtue of their location, such as the alphoid arrays that define active centromeres. However, there are many other types of repetitive DNA whose evolutionary origins and current roles in genome biology remain unknown. One type of repetitive DNA that falls into this class is the macrosatellites. The relevance of these sequences to disease is clearly demonstrated by the 4q macrosatellite (D4Z4), whereupon contraction in the size of the array is associated with the onset of facioscapulohumeral muscular dystrophy. Here, I describe recent findings relating to the chromatin organization of D4Z4 and that of the X-linked macrosatellite DXZ4, highlighting the fact that these enigmatic sequences share more than a similar name.  相似文献   

2.
Tandem repeats often confound large genome assemblies. A survey of tandemly arrayed repetitive sequences was carried out in whole genome sequences of the green alga Chlamydomonas reinhardtii, the moss Physcomitrella patens, the monocots rice and sorghum, and the dicots Arabidopsis thaliana, poplar, grapevine, and papaya, in order to test how these assemblies deal with this fraction of DNA. Our results suggest that plant genome assemblies preferentially include tandem repeats composed of shorter monomeric units (especially dinucleotide and 9–30-bp repeats), while higher repetitive units pose more difficulties to assemble. Nevertheless, notwithstanding that currently available sequencing technologies struggle with higher arrays of repeated DNA, major well-known repetitive elements including centromeric and telomeric repeats as well as high copy-number genes, were found to be reasonably well represented. A database including all tandem repeat sequences characterized here was created to benefit future comparative genomic analyses.  相似文献   

3.
Both genetic and epigenetic alterations contribute to Facio-Scapulo-Humeral Dystrophy (FSHD), which is linked to the shortening of the array of D4Z4 repeats at the 4q35 locus. The consequence of this rearrangement remains enigmatic, but deletion of this 3.3-kb macrosatellite element might affect the expression of the FSHD-associated gene(s) through position effect mechanisms. We investigated this hypothesis by creating a large collection of constructs carrying 1 to >11 D4Z4 repeats integrated into the human genome, either at random sites or proximal to a telomere, mimicking thereby the organization of the 4q35 locus. We show that D4Z4 acts as an insulator that interferes with enhancer–promoter communication and protects transgenes from position effect. This last property depends on both CTCF and A-type Lamins. We further demonstrate that both anti-silencing activity of D4Z4 and CTCF binding are lost upon multimerization of the repeat in cells from FSHD patients compared to control myoblasts from healthy individuals, suggesting that FSHD corresponds to a gain-of-function of CTCF at the residual D4Z4 repeats. We propose that contraction of the D4Z4 array contributes to FSHD physio-pathology by acting as a CTCF-dependent insulator in patients.  相似文献   

4.
We report the results of a comprehensive search of Drosophila melanogaster DNA sequences in GenBank for di-, tri-, and tetranucleotide repeats of more than four repeat units, and a DNA library screen for dinucleotide repeats. Dinucleotide repeats are more abundant (66%) than tri- (30%) or tetranucleotide (4%) repeats. We estimate that 1917 dinucleotide repeats with 10 or more repeat units are present in the euchromatic D. melanogaster genome and, on average, they occur once every 60 kb. Relative to many other animals, dinucleotide repeats in D. melanogaster are short. Tri- and tetranucleotide repeats have even fewer repeat units on average than dinucleotide repeats. Our WorldWide Web site (http://www.bio.cornell.edu/genetics/aquadro/aquadro.html) posts the complete list of 1298 microsatellites (≥ five repeat units) identified from the GenBank search. We also summarize assay conditions for 70 D. melanogaster microsatellites characterized in previous studies and an additional 56 newly characterized markers.  相似文献   

5.
Oparina  N. Yu.  Lacroix  M.-H.  Rychkov  A. A.  Mashkova  T. D. 《Molecular Biology》2003,37(2):200-204
Intrachromosomal and interchromosomal segmental duplications account for more than 5% of the human genome. To analyze the processes resulting in the complex mosaic structure of duplicons, a draft human genome sequence was searched for duplicated segments of a genomic fragment of the pericentric region of the chromosome 21 short arm. The duplicons found consist of modules having paralogs in various genome regions. Module ends are flanked with various tandem or interspersed repeats, which are more unstable as compared with unique sequences. In most cases, the boundaries of duplicated segments exactly coincide with or are in close proximity to hot spots of various rearrangements within repeats or boundaries between repeats and unique sequences or between two different repeats. Homologous recombination between repetitive elements was assumed to be the major mechanism contributing to the mosaic structure of duplicons.  相似文献   

6.
Purine repeat sequences present in a gene are unique as they have high propensity to form unusual DNA-triple helix structures. Friedreich’s ataxia is the only human disease that is well known to be associated with DNA-triplexes formed by purine repeats. The purpose of this study was to recognize the expanded purine repeats (EPRs) in human genome and find their correlation with cancer pathogenesis. We developed “PuRepeatFinder.pl” algorithm to identify non-overlapping EPRs without pyrimidine interruptions in the human genome and customized for searching repeat lengths, n ≥ 200. A total of 1158 EPRs were identified in the genome which followed Wakeby distribution. Two hundred and ninety-six EPRs were found in geneic regions of 282 genes (EPR-genes). Gene clustering of EPR-genes was done based on their cellular function and a large number of EPR-genes were found to be enzymes/enzyme modulators. Meta-analysis of 282 EPR-genes identified only 63 EPR-genes in association with cancer, mostly in breast, lung, and blood cancers. Protein–protein interaction network analysis of all 282 EPR-genes identified proteins including those in cadherins and VEGF. The two observations, that EPRs can induce mutations under malignant conditions and that identification of some EPR-gene products in vital cell signaling-mediated pathways, together suggest the crucial role of EPRs in carcinogenesis. The new link between EPR-genes and their functionally interacting proteins throws a new dimension in the present understanding of cancer pathogenesis and can help in planning therapeutic strategies. Validation of present results using techniques like NGS is required to establish the role of the EPR genes in cancer pathology.  相似文献   

7.
8.
9.
Subtelomeres are dynamic structures composed of blocks of homologous DNA sequences. These so-called duplicons are dispersed over many chromosome ends. We studied the human 4q and 10q subtelomeres, which contain the polymorphic macrosatellite repeat D4Z4 and which share high sequence similarity over a region of, on average, >200 kb. Sequence analysis of four polymorphic markers in the African, European, and Asian HAPMAP panels revealed 17 subtelomeric 4q and eight subtelomeric 10qter haplotypes. Haplotypes that are composed of a mixture of 4q and 10q sequences were detected at frequencies >10% in all three populations, seemingly supporting a mechanism of ongoing interchromosomal exchanges between these chromosomes. We constructed an evolutionary network of most haplotypes and identified the 4q haplotype ancestral to all 4q and 10q haplotypes. According to the network, all subtelomeres originate from only four discrete sequence-transfer events during human evolution, and haplotypes with mixtures of 4q- and 10q-specific sequences represent intermediate structures in the transition from 4q to 10q subtelomeres. Haplotype distribution studies on a large number of globally dispersed human DNA samples from the HGDP-CEPH panel supported our findings and show that all haplotypes were present before human migration out of Africa. D4Z4 repeat array contractions on the 4A161 haplotype cause Facioscapulohumeral muscular dystrophy (FSHD), whereas contractions on most other haplotypes are nonpathogenic. We propose that the limited occurrence of interchromosomal sequence transfers results in an accumulation of haplotype-specific polymorphisms that can explain the unique association of FSHD with D4Z4 contractions in a single 4q subtelomere.  相似文献   

10.
Analysis of DNA sequences of the human chromosomes 21 and 22 performed using a specially designed MegaGene software allowed us to obtain the following results. Purine and pyrimidine nucleotide residues are unevenly distributed along both chromosomes, displaying maxima and minima (waves) with a period of about 3 Mbp. Distribution of G+C along both chromosomes has no distinct maxima and minima, however, chromosome 21 contains considerably less G+C than chromosome 22. Both exons and Alurepeats are unevenly distributed along chromosome 21: they are scarce in its left part and abundant in the right part, while MIR elements are quite monotonously spread along this chromosome. The Alurepeats show a wave-like distribution pattern similar for both repeat orientations. The number of the Alurepeats of opposite orientations was equal for both studied chromosomes, and this may be considered a new property of the human genome. The positive correlation between the exon and Aludistribution patterns along the chromosome, the concurrent distribution of Alurepeats in both orientations along the chromosome, and the equal copy numbers for Aluin direct and inverted orientations within an individual chromosome point to their important role in the human genome, and do not fit the notion that Alurepeats belong to parasitic (junk) DNA.  相似文献   

11.
12.
Autosomal dominant facioscapulohumeral muscular dystrophy (FSHD) has an unusual pathogenic mechanism. FSHD is caused by deletion of a subset of D4Z4 macrosatellite repeat units in the subtelomere of chromosome 4q. Recent studies provide compelling evidence that a retrotransposed gene in the D4Z4 repeat, DUX4, is expressed in the human germline and then epigenetically silenced in somatic tissues. In FSHD, the combination of inefficient chromatin silencing of the D4Z4 repeat and polymorphisms on the FSHD-permissive alleles that stabilize the DUX4 mRNAs emanating from the repeat result in inappropriate DUX4 protein expression in muscle cells. FSHD is thereby the first example of a human disease caused by the inefficient repression of a retrogene in a macrosatellite repeat array.  相似文献   

13.
14.
PK Reddy  S Ramlal  MH Sripathy  H Batra 《Gene》2012,492(1):104-109
A potential relationship between transposon-derived repeats (TDR) and human germline methylation is of biological importance since many genes are flanked by TDR and methylation could affect the expression of nearby genes. Furthermore, DNA methylation has been suggested as a global defense mechanism against genome instability threatened by TDR. We studied the correlation between the density of HapMap methyl-associated SNPs (mSNPs), a marker of germline methylation, and proportion of TDR.After correcting for confounding variables, we found a negative correlation between proportion of Alu repeats and mSNP density for 125-1000 kb windows. Similar results were found for the most active subgroup of repeats. In contrast, a negative correlation between proportion of L1 repeats and mSNP density was found only in the larger 1000 kb windows.Using methylation data on germ cells (sperm) from the Human Epigenome Project, we found a lower proportion of Alu repeats adjacent (3-15 kb) to hypermethylated amplicons. On the contrary, there was a higher proportion of L1 repeats in the 3-5 kb of sequence flanking hypermethylated amplicons but not in the 10-15 kb flanks.Our data indicate a differential response to the major repeat families and that DNA methylation is unlikely to be a uniform global defense system against all TDR. It appears to play a role for the L1 subgroup, with sequences adjacent to L1 repeats methylated in response to their proximity. In contrast, sequences adjacent to Alu repeats appear to be hypomethylated, arguing against a role of methylation in germline defense against those elements.  相似文献   

15.
16.
Macrosatellites are large polymorphic tandem arrays. The human subtelomeric macrosatellite D4Z4 has 11-150 repeats, each containing a copy of the intronless DUX4 gene. DUX4 is linked to facioscapulohumeral muscular dystrophy, but its normal function is unknown. The DUX gene family includes DUX4, the intronless Dux macrosatellites in rat and mouse, as well as several intron-containing members (DUXA, DUXB, Duxbl, and DUXC). Here, we report that the genomic organization (though not the syntenic location) of primate DUX4 is conserved in the Afrotheria. In primates and Afrotheria, DUX4 arose by retrotransposition of an ancestral intron-containing DUXC, which is itself not found in these species. Surprisingly, we discovered a similar macrosatellite organization for DUXC in cow and other Laurasiatheria (dog, alpaca, dolphin, pig, and horse), and in Xenarthra (sloth). Therefore, DUX4 and Dux are not the only DUX gene macrosatellites. Our data suggest a new retrotransposition-displacement model for the evolution of intronless DUX macrosatellites.  相似文献   

17.
Repetitive DNA is present in the eukaryotic genome in the form of segmental duplications, tandem and interspersed repeats, and satellites. Repetitive sequences can be beneficial by serving specific cellular functions (e.g. centromeric and telomeric DNA) and by providing a rapid means for adaptive evolution. However, such elements are also substrates for deleterious chromosomal rearrangements that affect fitness and promote human disease. Recent studies analyzing the role of nuclear organization in DNA repair and factors that suppress non-allelic homologous recombination (NAHR) have provided insights into how genome stability is maintained in eukaryotes. In this review, we outline the types of repetitive sequences seen in eukaryotic genomes and how recombination mechanisms are regulated at the DNA sequence, cell organization, chromatin structure, and cell cycle control levels to prevent chromosomal rearrangements involving these sequences.  相似文献   

18.
Extrachromosomal circular DNA (eccDNA) is one characteristic of the plasticity of the eukaryotic genome. It was found in various non-plant organisms from yeast to humans. EccDNA is heterogeneous in size and contains sequences derived primarily from repetitive chromosomal DNA. Here, we report the occurrence of eccDNA in small and large genome plant species, as identified using two-dimensional gel electrophoresis. We show that eccDNA is readily detected in both Arabidopsis thaliana and Brachycome dichromosomatica , reflecting a normal phenomenon that occurs in wild-type plants. The size of plant eccDNA ranges from > 2 kb to < 20 kb, which is similar to the sizes found in other organisms. These DNA molecules correspond to 5S ribosomal DNA (rDNA), non-coding chromosomal high-copy tandem repeats and telomeric DNA of both species. Circular multimers of the repeating unit of 5S rDNA were identified in both species. In addition, similar multimers were also demonstrated with the B. dichromosomatica repetitive element Bdm29. Such circular multimers of tandem repeats were found in animal models, suggesting a common mechanism for eccDNA formation among eukaryotes. This mechanism may involve looping-out via intrachromosomal homologous recombination. The implications of these results on genome plasticity and evolutionary processes are discussed.  相似文献   

19.
Grover D  Kannan K  Brahmachari SK  Mukerji M 《Genetica》2005,124(2-3):273-289
Elucidation of complete nucleotide sequence of the human has revealed that coding sequences that store the information needed to synthesize functional proteins, occupy only 2% of the genomic region. The remaining 98%, barring few regulatory sequences, has been referred to as non-functional or junk DNA and consists of many kinds of repeat elements. In fact, human genome is the most repeat rich genome sequenced so far, in which more than half of the region is occupied by such sequences. Determination of significance of these repeats in the human genome has become the focus of many studies all over the world, especially after genome sequencing did not reveal any significant difference in coding regions between lower eukaryotes and human. In this article, we have focused on Alu repeats that are primate specific elements with many interesting biological properties. Moreover, these are the repeats with highest copy number in the human genome. We have highlighted different facets of their interaction with the genome and changing paradigms regarding their role in genome organization.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号