首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Airborne fungal spore concentrations in Szczecin, Poland, were studied between 2004 and 2006 with the objective of determining a seasonal variation in the concentrations of selected fungal spore types in relation to meteorological parameters. The presence of spores of five taxa, namely, Cladosporium, Ganoderma, Alternaria, Leptosphaeria and Didymella, was recorded using a volumetric method (Hirst type). Fungal spores were present in the air in large numbers during the summer, with the highest concentrations recorded mainly in June, July and August. The peak concentrations of two of the studied spore types, Ganoderma and Alternaria, occurred in August, while the concentrations of Cladosporium, Leptosphaeria and Didymella spores were the highest in July. Multiple regression analysis was performed for three fungal seasons—2004, 2005 and 2006. Spore concentration was found to be positively correlated with the minimum temperature. For some spore types, there was also a significant correlation between concentrations, relative humidity and rain.  相似文献   

2.
The investigation of airborne fungal spore concentrations was carried out in Szczecin, Poland between 2004 and 2006. The objective of the studies was to determine a seasonal variation in concentrations of selected fungal spore types due to meteorological parameters. The presence of spores of ten taxa: Cladosporium, Ganoderma, Alternaria, Epicoccum, Didymella, Torula, Dreschlera‐type, Polythrincium, Stemphylium and Pithomyces was recorded in Szczecin using a volumetric method (Hirst type). Fungal spores were present in the air in large numbers in summer. The highest concentrations were noted in June, July and August. The peak period was recorded in August for most of the studied spore types: Ganoderma, Alternaria, Epicoccum, Dreschlera‐type, Polythrincium and Stemphylium. Cladosporium and Didymella spores reached their highest concentrations in July while concentrations of Torula were highest in May and Pithomyces in September. Multiple regression analysis was performed for three fungal seasons: 2004, 2005, and 2006. Spore concentrations were positively correlated with minimum temperature for seven spore types in 2004, for five spore types in 2005, and for eight spore types in 2006 (significance level of α = 0.05). Some spore types are also significantly correlation among their concentrations, pressure, relative humidity and rain. Minimum temperature appeared to be the most influential factor for most spore types.  相似文献   

3.
The investigation into airborne fungal spore concentrations was conducted in Szczecin (Poland) between 2004 and 2009. The objective of the studies was to determine a seasonal variation in concentrations of amerospores on the basis of meteorological parameters. The presence of spores in Szczecin was recorded using a volumetric method. Fungal spores were present in the air in high numbers in late summer and early autumn. The highest concentrations were noted in September, October and November. The peak period was recorded in August, September, October and November. The highest annual number of spores occurred in 2005 and 2007 and the lowest in 2006. High values of daily concentration of amerospores occurred during the afternoon and late at night. In 2005 and 2007 the late-night maximum was overdue about 1 or 2 h. For daily values of dew point temperature and relative humidity, the coefficients were positive, significant for p = 0.001 and ranged from 0.342 to 0.258. The average wind speed was positively correlated for p = 0.01 and the coefficient was 0.291. The similar relations were noted for hourly values of spore concentrations for p = 0.05, p = 0.01 and p = 0.001. For these spore types, the dew point temperature and relative humidity appeared to be the most influential factor.  相似文献   

4.
A study of airborne fungal spore was carried out at nine locations in the southern part of the state of Enugu, Nigeria, from March 2005 to February 2006. The aim of the study was to ascertain the variations in selected fungal spore types at the sites owing to weather conditions. The variation in airborne fungal spores of 14 taxa was studied using modified Tauber pollen traps including Alternaria, Corynespora, Curvularia, Drechslera type, Endophragmiella, Botryodiplodia, Ganoderma, Gliomastrix, Nigrospora, Pithomyces, Spegazzinia, Sporidesmium, Tetraploa and Ustilago. The frequency of the spore types recorded showed considerable variation. The highest spore counts were recorded in July, June and October. The highest numbers of fungal spores were recorded during the rainy season (June–October) to early dry season (November–December). The peak of occurrence of most selected fungal spore types was July. The highest percentages of fungal spores were documented at the recording stations Mgbowo Junction, UNTH Ituku Ozalla and Oji River Express Junction. Spearman’s correlation analyses were performed for the monthly amounts of the fungal spore types and monthly meteorological factors. The numbers of Curvularia, Nigrospora and Sporidesmium was significantly correlated with relative humidity, while those of Endophragmiella, Pithomyces and Nigrospora were significantly correlated with temperature. A significant correlation was also found between the number of Nigrospora spores and light intensity and Sporidesmium spores and wind velocity. Relative humidity and temperature seem to be the most important weather conditions affecting the frequency of the selected spore types in the atmosphere.  相似文献   

5.
Although fungal spores are an ever-present component of the atmosphere throughout the year, their concentration oscillates widely. This work aims to establish correlations between fungal spore concentrations in Porto and Amares and meteorological data. The seasonal distribution of fungal spores was studied continuously (2005–2007) using volumetric spore traps. To determine the effect of meteorological factors (temperature, relative humidity and rainfall) on spore concentration, the Spearman rank correlation test was used. In both locations, the most abundant fungal spores were Cladosporium, Agaricus, Agrocybe, Alternaria and Aspergillus/Penicillium, the highest concentrations being found during summer and autumn. In the present study, with the exception of Coprinus and Pleospora, spore concentrations were higher in the rural area than in the urban location. Among the selected spore types, spring-autumn spores (Coprinus, Didymella, Leptosphaeria and Pleospora) exhibited negative correlations with temperature and positive correlations both with relative humidity and rainfall level. On the contrary, late spring-early summer (Smuts) and summer spores (Alternaria, Cladosporium, Epicoccum, Ganoderma, Stemphylium and Ustilago) exhibited positive correlations with temperature and negative correlations both with relative humidity and rainfall level. Rust, a frequent spore type during summer, had a positive correlation with temperature. Aspergillus/Penicillium, showed no correlation with the meteorological factors analysed. This knowledge can be useful for agriculture, allowing more efficient and reliable application of pesticides, and for human health, by improving the diagnosis and treatment of respiratory allergic disease.  相似文献   

6.
Because fungal spore emission intensity varies throughout the year and even throughout the day, study of the hourly distribution is an important aspect of aerobiological monitoring. The objective of this work was to determine seasonal and intradiurnal variation of allergenic airborne fungal spores in urban and rural areas. The aerobiological study was performed from 2005 to 2007 using Hirst-type volumetric spore traps. Fungal spore types (Cladosporium, Alternaria, and Aspergillus/Penicillium) were selected according to their allergenic capacity and their frequency in the atmosphere. Cladosporium was the most frequent fungal spore in both locations, together with Alternaria; its concentration was higher during summer whereas Aspergillus/Penicillium was more abundant during autumn. Alternaria and Cladosporium maximum daily spore concentration was reached from 16.00 to 20.00 h. Aspergillus/Penicillium spore distribution differed in the two locations, and although it was difficult to establish a distribution pattern the highest concentration were found during the night. Determination of periods of high concentration may help allergic patients to avoid the daily periods when the allergen concentration is highest.  相似文献   

7.
 The effect of an urban climate upon the spatial and temporal distribution of Deuteromycete spores was studied during 1991 using Burkard volumetric spore traps in two areas of Mexico City with different degrees of urbanization. Deuteromycete conidia formed the largest component of the total airborne fungal spore load in the atmosphere of Mexico City, contributing 52% of the spores trapped in an urban-residential area (southern area) and 65% of those in an urban-commercial area (central area). Among the most common spore types, Cladosporium and Alternaria showed a marked seasonal periodicity with significant differences in concentration (P<0.05) between the dry and wet seasons. Maximum conidial concentrations were found during the end of the wet season and the beginning of the cool, dry season (October–December). Daily mean concentrations of the predominant airborne spore types did not differ significantly between the southern and central areas. Daily mean spore concentrations were significantly correlated (P<0.05) in southern and central areas with maximum temperature (south, r = –0.35; central, r = –0.40) and relative humidity (south, r = 0.43; central, r = 0.29) from the previous day. Moreover, multiple regression analysis of spore concentrations with several meteorological factors showed significant interactions between fungal spores, relative humidity and maximum temperature in both areas. The diurnal periodicity of Cladosporium conidia characteristically showed two or three peaks in concentration during the day at 0200–0400, ∼ 1400 and 2000–2200 hours, while that of Alternaria showed only one peak (1200 to 2000 hours) in both areas. Maximum concentrations of these spores generally occurred 2–4 h earlier in the southern than in the central area. The lag in reaching maximum concentrations in the central area probably resulted from differences in the local conditions between the study areas, and from spores transported aerially into the city from distant sources. The analysis of maximum hourly concentrations of Cladosporium and Alternaria spores during 1 month of the dry season (February), and another month of the wet season (September) showed significant differences between the two study areas. Environmental factors and sources (green areas) affected diurnal changes in conidial concentration in the southern area (urbanization index, UI, 0.25), but not in the central area (UI 0.97). In general, spore concentrations were greatest in the southern area when relative humidities were low, and temperatures and wind velocities were high. It was difficult to establish effects of climatic factors on the spore concentration in the city centre. This probably results from the large amounts of air pollution, the heat island phenomenon, and from the distant origin of trapped conidia obviating aerial transport. Nevertheless, the seasonal and diurnal distributions of conidia found were similar to those reported for other tropical regions of the world. Received: 13 August 1996 / Accepted: 4 December 1996  相似文献   

8.
Airborne viable and total fungal spores were sampled inside and outside 80 houses in the Latrobe Valley, Victoria, Australia as part of a larger indoor environmental study. Each residence was visited six times over a period of 1 year for sample collection, and fungal spore samples were collected from at least three indoor sites and from an outdoor site. Viable spores were sampled using an Andersen sampler, while total spores were assessed using a Burkard spore trap. Identification of fungal colonies to genera level was performed in two seasons; winter and late spring. The most common fungal genera/groups wereCladosporium, Penicillium, and yeasts, both indoors and outdoors in winter and late spring. Outdoor levels were higher than those indoors throughout the year, and a significant seasonal variation in spore levels was seen both indoors and outdoors with overall maxima in summer. Contrary to this trend, the levels ofAspergillus, yeasts,Cephalosporium andGliocladium were higher in winter. Most fungal genera were found in greater concentrations outdoors compared to indoors, butPenicillium was more common indoors. Outdoor spore levels were a significant influence on indoor levels, but seasonal differences suggest that other influences are important.  相似文献   

9.
The concentration of fungal spores in the atmosphere of Madrid was recorded and analyzed for the year 2003. Airborne spores were sampled continuously with a Hirst-type spore trap located on the roof of a building of the School of Pharmacy, at about 8 m above ground level. Correlation between the mean daily spore concentrations and meteorological variables were explored by means of Spearman’s correlation analyses. Seventy spore types were identified, of which the most numerous were Cladosporium, Aspergillaceae (conidia), Coprinus, Agaricales (basidiospores), Ustilago (teliospores) and Pleospora (ascospores). These six types of spores represented more than 70% of the total. Cladosporium represented 41% of the total fungal spores, while Ustilago spores, the concentrations of which in May and June exceeded 47% of the monthly total spore count, constituted the second most important group. Spores reached their highest concentrations in the spring months, and in the autumn, mainly in October. A␣positive significant correlation was found between airborne spore counts and temperature and relative humidity. The results provide a picture of the spectrum of airborne fungal spores present in the atmosphere of Madrid and of the `peak' periods of their presence. Future studies will provide more detailed information on the seasonal dynamics of the spores most frequently found in the air as well as on the extent to which atmospheric conditions influence their release, dispersion and sedimentation processes.  相似文献   

10.
Nicoleta Ianovici 《Grana》2017,56(6):424-435
The present aeromycological investigation was undertaken to study atmospheric fungal spores in Timi?oara (western Romania). This study was carried out using a Hirst type volumetric sampler. The study revealed the existence of a rich airborne mycoflora. The atmospheric fungal spores were classified and evaluated into three groups (‘major’, ‘minor’ and ‘sporadic’) depending upon their catch percentage in the air. Cladosporium/Fusarium/Leptosphaeria-group, Alternaria, Helminthosporium airborne fungal spores and airborne fungal fragments regularly recorded (frequency 100% of days). Cladosporium accounted for 81.09% of the outdoor fungal spores. The airborne fungal fragments have been identified as abundant in our geographic area. Spearman’s correlations were applied to meteorological parameters and airborne fungal spore concentrations. In addition, correlations were calculated between the fungal spore concentrations and the meteorological variables from the previous day. A total of eleven weather factors were selected for this investigation. Following Spearman’s correlations, I identified two patterns of behaviour: most of the airborne fungal spores prefer cloudiness, lower near-surface soil temperature, lower atmospheric pressure, higher relative humidity and precipitation (pattern A) while other spore concentrations favour increased sunshine, higher near-surface soil temperature and dry conditions (pattern B). The behaviour of some fungal spores during the warm season has proven unclear (pattern C). This study demonstrates the need for investigations throughout the year and the evaluation with complementary statistical methods, regarding the correct interpretation of airborne mycoflora relationships with meteorological parameters.  相似文献   

11.
Alternaria is an airborne fungal spore type known to trigger respiratory allergy symptoms in sensitive patients. Aiming to reduce the risk for allergic individuals, we constructed predictive models for the fungal spore circulation in Szczecin, Poland. Monthly forecasting models were developed for the airborne spore concentrations of Alternaria, which is one of the most abundant fungal taxa in the area. Aerobiological sampling was conducted over 2004–2007, using a Lanzoni trap. Simultaneously, the following meteorological parameters were recorded: daily level of precipitation; maximum and average wind speed; relative humidity; and maximum, minimum, average, and dew point temperature. The original factors as well as with lags (up to 3 days) were used as the explaining variables. Due to non-linearity and non-normality of the data set, the modelling technique applied was the artificial neural network (ANN) method. The final model was a split model with classification (spore presence or absence) followed by regression for spore seasons and log(x+1) transformed Alternaria spore concentration. All variables except maximum wind speed and precipitation were important factors in the overall classification model. In the regression model for spore seasons, close relationships were noted between Alternaria spore concentration and average and maximum temperature (on the same day and 3 days previously), humidity (with lag 1) and maximum wind speed 2 days previously. The most important variable was humidity recorded on the same day. Our study illustrates a novel approach to modelling of time series with short spore seasons, and indicates that the ANN method provides the possibility of forecasting Alternaria spore concentration with high accuracy.  相似文献   

12.
Seasonal and diurnal changes in concentrations of airborne basidiomycete spores (basidiospores, rusts, smuts) were studied, using Burkard volumetric spore traps, in two areas of Mexico City with different degrees of urbanization and related to changes in climatic variables through 1991. Basidiomycete spores formed a large component of the total airborne fungal spore load in the atmosphere of Mexico City. They were the second most abundant spore type after Deuteromycotina (Hyphomycetes), forming 32% of the total fungal spores trapped in an urban-residential area and 28% in an urban-commercial area. The most abundant basidiomycete spores were basidiospores although smut-type spores were trapped on more days than basidiospores and rusts on fewer. Basidiospores occurred in concentrations up to 2,000 spores m-3 in the urban-residential area. Basidiospores showed a marked seasonal distribution, especially in the southern area, with their greatest abundance during the wet season. The correlation coefficients associated with regressions between basidiospore concentration and some environmental factors were increased when a lag period of 2 to 4 days was used between environmental measurements and the day of spore collection. Basidiospore concentrations exceeded the 75 percentile concentration (>400 spores m-3) most often when rainfall was up to 6 mm and relative humidity was >70%. Basidiospores showed a diurnal periodicity with greatest concentrations in the early morning. The most common basidiospore type was Coprinus which formed 67% of basidiospores trapped in the southern area and 63% in the central area. Smut spores were trapped on 87% of days through the year while rust spores occurred in only 35%. Both rusts and smuts were present in only small concentrations.  相似文献   

13.
Temporal variation of airborne bracken (Pteridium aquilinum) spores concentration in Salamanca during 10 years from January 1998 to December 2007 were studied by using a Burkard spore trap, and correlations with some meteorological parameters were analyzed. The number of spores that were counted was very low, due probably to the distance between the spore trap and the main bracken populations which were located 70 km away from the city. Long-range transport caused by winds coming from the Second Quadrant (IIQ) is supposed to be responsible for the appearance of bracken spores in Salamanca. The season period from August to late October shows the most intense spore dispersal process, with an early morning distribution along the day. Years 2002 and 2007 with a low quantity of airborne spores were also characterized by low mean temperatures, always under 18°C from May to June. Daily spore concentration shows positive correlation with temperature and sun hours but negative with IVQ winds and with relative humidity. No correlation between daily spore concentration and rainfall was found. Also, a positive correlation between number of spores and IIQ winds was observed during the main spore season (MSS) and prepeak period (PRE).  相似文献   

14.
Ganoderma sp. is an airborne fungal spore type known to trigger respiratory allergy symptoms in sensitive patients. Aiming to reduce the risk for allergic individuals, we analysed fungal spore circulation in Szczecin, Poland, and its dependence on meteorological conditions. Statistical models for the airborne spore concentrations of Ganoderma sp.—one of the most abundant fungal taxa in the area—were developed. Aerobiological sampling was conducted over 2004–2008 using a volumetric Lanzoni trap. Simultaneously, the following meteorological parameters were recorded: daily level of precipitation, maximum and average wind speed, relative humidity and maximum, minimum, average and dew point temperatures. These data were used as the explaining variables. Due to the non-linearity and non-normality of the data set, the applied modelling techniques were artificial neural networks (ANN) and mutlivariate regression trees (MRT). The obtained classification and MRT models predicted threshold conditions above which Ganoderma sp. appeared in the air. It turned out that dew point temperature was the main factor influencing the presence or absence of Ganoderma sp. spores. Further analysis of spore seasons revealed that the airborne fungal spore concentration depended only slightly on meteorological factors.  相似文献   

15.
The spores ofAlternaria andCladosporium are present throughout the year in the atmosphere of León (NW Spain), although they show an important seasonal variation. To understand the relationship between the number of spores and climatic factors,Alternaria andCladosporium spores counts for January 1994 to December 1995 were examined by means of correlation analyses. The results of weekly samples of both years showed that the spores concentration of two taxa are significantly and positively correlated with maximum and minimum temperature and sunshine hours and negatively with relative humidity. The statistical analysis of daily samples generally showed the same results. In the hourly distribution of spore concentrations we can see a similar behaviour ofAlternaria andCladosporium, with most spores collected in the 12–14 h period.  相似文献   

16.
A comparative survey of airborne fungal spores in fiveindoor and five outdoor environments in Burdwan, WestBengal, India, was carried out for a period of twoyears using rotorod samplers and sedimentation plates(culture plate). A total of 29 spore types wereidentified, of which three were Phycomycetous (Mucor, Rhizopus, Syncephalastrum), one Ascomycetous(Chaetomium), one Basidiomycetous (Ganoderma) and the remainder were Fungi Imperfecti. The results revealed lowest count during summer andmaximum during the rainy season. Aspergilluswas quite abundant in all the environments surveyed. The predominance of Aspergillus, Curvularia,Alternaria, Cladosporium, Drechslera, Fusarium in allthe surveyed environments has been attributed to theirability to grow in various substrata. The occurrenceof Cladosporium in the winter months suggestthat it is sensitive to high temperature. Allspore types were common in both environmentsexcept Bispora, Cercospora, Papularia, Spegazzinia, Trichothecium in the outdoor sites. Acorrelation has been made between the volumetriccomposition of airspora and the incidence of seasonalmold allergy.  相似文献   

17.
The aim of this paper was to determine for first time the influence of the main meteorological parameters on the atmospheric fungal spore concentration in Havana (Cuba). This city is characterized by a subtropical climate with two different marked annual rainfall seasons during the year: a “dry season” and a “rainy season”. A nonviable volumetric methodology (Lanzoni VPPS-2000 sampler) was used to sample airborne spores. The total number of spores counted during the 2 years of study was 293,594, belonging to 30 different genera and five spore types. Relative humidity was the meteorological parameter most influencing the atmospheric concentration of the spores, mainly during the rainy season of the year. Winds coming from the SW direction also increased the spore concentration in the air. In terms of spore intradiurnal variation we found three different patterns: morning maximum values for Cladosporium, night peaks for Coprinus and Leptosphaeria, and uniform behavior throughout the whole day for Aspergillus/Penicillium."  相似文献   

18.
Naim Uddin 《Aerobiologia》2004,20(2):127-134
Aeromycoflora studies over a paddy field in West Bengal during rabi season were initiated with the help of culture plate exposure technique for two consecutive crop seasons. The total CFUs was found to vary with growth stages, since the null hypothesis about the number of spores at different stages got rejected at 5% level of significance. A more or less uniform spore count was recorded up to maximum vegetative growth stages after that there were a gradual rise in count with peaks (214 and 444CFUs, respectively) during harvesting of the two crop seasons. A number of fungi was isolated.. The dominant genus identified was Cladosporium which appeared in huge amount in the earlier stages; declined gradually in late stages with the onset of summer showing a seasonal periodicity. Penicillium showed a reverse picture. Its' predominancy was increased with the termination of winter and simultaneously increased with increase in temperature. Curvularia showed no seasonal variation. Alternaria, Fusarium, Helminthosporium and Nigrospora were the phytopathogenic fungi recorded from air; of which Alternaria was the dominant. Alternaria was recorded to be present regularly with peaks at flowering onwards. A species of Alternaria was detected as a virulent disease causing agent in this variety of rice which caused leaf damage to the host plant. It was heavily present at later stages, also confirmed by statistical analysis. Fusarium, Helminthosporium and Nigrospora were found more or less frequently. Fungi failed to sporulate were grouped under sterile forms and were found regularly throughout the period of investigation.  相似文献   

19.
A study was made of the link between time of day, weather variables and the hourly content of certain fungal spores in the atmosphere of the city of Szczecin, Poland, in 2004–2007. Sampling was carried out with a Lanzoni 7-day-recording spore trap. The spores analysed belonged to the taxa Alternaria and Cladosporium. These spores were selected both for their allergenic capacity and for their high level presence in the atmosphere, particularly during summer. Spearman correlation coefficients between spore concentrations, meteorological parameters and time of day showed different indices depending on the taxon being analysed. Relative humidity (RH), air temperature, air pressure and clouds most strongly and significantly influenced the concentration of Alternaria spores. Cladosporium spores correlated less strongly and significantly than Alternaria. Multivariate regression tree analysis revealed that, at air pressures lower than 1,011 hPa the concentration of Alternaria spores was low. Under higher air pressure spore concentrations were higher, particularly when RH was lower than 36.5%. In the case of Cladosporium, under higher air pressure (>1,008 hPa), the spores analysed were more abundant, particularly after 0330 hours. In artificial neural networks, RH, air pressure and air temperature were the most important variables in the model for Alternaria spore concentration. For Cladosporium, clouds, time of day, air pressure, wind speed and dew point temperature were highly significant factors influencing spore concentration. The maximum abundance of Cladosporium spores in air fell between 1200 and 1700 hours.  相似文献   

20.
The concentration of airborne Didymella spores has been investigated at two monitoring sites situated along the west–south transect in Poland (Szczecin, Kraków), i.e. from a height of 100 to 219 m, respectively, above sea level. The aerobiological monitoring of fungal spores was performed by means of two Lanzoni volumetric spore traps. The high Didymella spore numbers were observed at both cities in June, July and August. Statistically significant correlations have been found mainly between the Didymella spore concentrations in the air and the minimum air temperature and relative air humidity. The spore count of Didymella is determined by the diversity of local flora and weather conditions, especially by the relative air humidity. The identification of factors that influence and shape spore concentrations may significantly improve the current methods of allergy prevention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号