首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel quartz crystal microbalance (QCM) sensor with a high selectivity and sensitivity has been developed for bilirubin determination, based on the modification of bilirubin-imprinted titania film onto a quartz crystal by molecular imprinting and surface sol-gel techniques. The performance of the developed bilirubin biosensor was evaluated and the results indicated that a sensitive bilirubin biosensor could be fabricated. The obtained bilirubin biosensor presents high-selectivity monitoring of bilirubin, better reproducibility, shorter response time (30 min), wider linear range (0.1-50 μM), and lower detection limit (0.05 μM). The analytical application of the bilirubin biosensor confirms the feasibility of bilirubin determination in serum sample.  相似文献   

2.
A nonenzymatic electrochemical biosensor was developed for the detection of glucose based on an electrode modified with palladium nanoparticles (PdNPs)-functioned graphene (nafion-graphene). The palladium nanoparticle-graphene nanohybrids were synthesized using an in situ reduction process. Nafion-graphene was first assembled onto an electrode to chemically adsorb Pd(2+). And Pd(2+) was subsequently reduced by hydrazine hydrate to form PdNPs in situ. Such a PdNPs-graphene nanohybrids-based electrode shows a very high electrochemical activity for electrocatalytic oxidation of glucose in alkaline medium. The proposed biosensor can be applied to the quantification of glucose with a wide linear range covering from 10 μM to 5mM (R=0.998) with a low detection limit of 1 μM. The experiment results also showed that the sensor exhibits good reproducibility and long-term stability, as well as high selectivity with no interference from other potential competing species.  相似文献   

3.
A compact portable chemiluminescent biosensor for simple, rapid, and ultrasensitive on-site quantification of fumonisins (fumonisin B1+fumonisin B2) in maize has been developed. The biosensor integrates a competitive lateral flow immunoassay based on enzyme-catalyzed chemiluminescence detection and a highly sensitive portable charge-coupled device (CCD) camera, employed in a contact imaging configuration. The use of chemiluminescence detection allowed accurate and objective analyte quantification, rather than qualitative or semi-quantitative information usually obtained employing conventional lateral flow immunoassays based on colloidal gold labeling. A limit of detection of 2.5 μgL(-1) for fumonisins was achieved, with an analytical working range of 2.5-500 μgL(-1) (corresponding to 25-5000 μgkg(-1) in maize flour samples, according to the extraction procedure). Total assay time was 25 min, including sample preparation. A simple and convenient extraction procedure, performed by suspending the sample in a buffered solution and rapidly heating to eliminate endogenous peroxidase enzyme activity was employed for maize flour samples analysis, obtaining recoveries in the range 90-115%, when compared with LC-MS/MS analysis. The chemiluminescence immunochromatography-based biosensor is a rapid, low cost portable test suitable for point-of-use applications.  相似文献   

4.
A sensitive glutamate biosensor is prepared based on glutamate dehydrogenase/vertically aligned carbon nanotubes (GLDH, VACNTs). Vertically aligned carbon nanotubes were grown on a silicon substrate by direct current plasma enhanced chemical vapor deposition (DC-PECVD) method. The electrochemical behavior of the synthesized VACNTs was investigated by cyclic voltammetry and electrochemical impedance spectroscopic methods. Glutamate dehydrogenase covalently attached on tip of VACNTs. The electrochemical performance of the electrode for detection of glutamate was investigated by cyclic and differential pulse voltammetry. Differential pulse voltammetric determinations of glutamate are performed in mediator-less condition and also, in the presence of 1 and 5 μM thionine as electron mediator. The linear calibration curve of the concentration of glutamate versus peak current is investigated in a wide range of 0.1-500 μM. The mediator-less biosensor has a low detection limit of 57 nM and two linear ranges of 0.1-20 μM with a sensitivity of 0.976 mA mM(-1) cm(-2) and 20-300 μM with a sensitivity of 0.182 mA mM(-1) cm(-2). In the presence of 1 μM thionine as an electron mediator, the prepared biosensor shows a low detection limit of 68 nM and two linear ranges of 0.1-20 with a calibration sensitivity of 1.17 mA mM(-1) cm(-2) and 20-500 μM with a sensitivity of 0.153 mA mM(-1) cm(-2). The effects of the other biological compounds on the voltammetric behavior of the prepared biosensor and its response stability are investigated. The results are demonstrated that the GLDH/VACNTs electrode even without electron mediator is a suitable basic electrode for detection of glutamate.  相似文献   

5.
A novel cholesterol biosensor was prepared based on gold nanoparticles-catalyzed luminol electrogenerated chemiluminescence (ECL). Firstly, l-cysteine-reduced graphene oxide composites were modified on the surface of a glassy carbon electrode. Then, gold nanoparticles (AuNPs) were self-assembled on it. Subsequently, cholesterol oxidase (ChOx) was adsorbed on the surface of AuNPs to construct a cholesterol biosensor. The stepwise fabrication processes were characterized with cyclic voltammetry and atomic force microscopy. The ECL behaviors of the biosensor were also investigated. It was found that AuNPs not only provided larger surface area for higher ChOx loading but also formed the nano-structured interface on the electrode surface to improve the analytical performance of the ECL biosensor for cholesterol. Besides, based on the efficient catalytic ability of AuNPs to luminol ECL, the response of the biosensor to cholesterol was linear range from 3.3 μM to 1.0 mM with a detection limit of 1.1 μM (S/N=3). In addition, the prepared ECL biosensor exhibited satisfying reproducibility, stability and selectivity. Taking into account the advantages of ECL, we confidently expect that ECL would have potential applications in biotechnology and clinical diagnosis.  相似文献   

6.
This paper describes the preparation of a biomimetic Langmuir-Blodgett film of tyrosinase incorporated in a lipidic layer and the use of lutetium bisphthalocyanine as an electron mediator for the voltammetric detection of phenol derivatives, which include one monophenol (vanillic acid), two diphenols (catechol and caffeic acid) and two triphenols (gallic acid and pyrogallol). The first redox process of the voltammetric responses is associated with the reduction of the enzymatically formed o-quinone and is favoured by the lutetium bisphthalocyanine because significant signal amplification is observed, while the second is associated with the electrochemical oxidation of the antioxidant and occurs at lower potentials in the presence of an electron mediator. The biosensor shows low detection limit (1.98×10(-6)-27.49×10(-6) M), good reproducibility, and high affinity to antioxidants (K(M) in the range of 62.31-144.87 μM). The excellent functionality of the enzyme obtained using a biomimetic immobilisation method, the selectivity afforded by enzyme catalysis, the signal enhancement caused by the lutetium bisphthalocyanine mediator and the increased selectivity of the curves due to the occurrence of two redox processes make these sensors exceptionally suitable for the detection of phenolic compounds.  相似文献   

7.
A novel affinity biosensor is proposed based on the hybrid plasmonic platform. The proposed biosensor benefits from the high sensitivity of the surface plasmon resonance (SPR), while at the same time, it is capable of performing measurements in both the TM and TE polarizations (p- and s-polarizations). Unlike the conventional SPR biosensors, the polarization diversity of the hybrid sensor allows for decoupling of the bulk index variations in the fluidic channels (due to variations in concentration, decomposition, temperature, and so on) from the surface properties of the attached molecules. Compatibility of the proposed hybrid plasmonic biosensor with standard Si-processing techniques and the simplicity of its design are other advantages of the sensor which makes its fabrication straightforward. The best figure of merit for the biosensor is defined based on the minimum detection limit and a genetic algorithm is used to optimize the device. A method of de-convolving the surface and bulk effects is also discussed.  相似文献   

8.
An amperometric glucose biosensor based on an n-alkylamine-stabilized palladium nanoparticles (PdNPs)-glucose oxidase (GOx) modified glassy carbon (GC) electrode has been successfully fabricated. PdNPs were initially synthesized by a biphase mixture of water and toluene method using n-alkylamines (dodecylamine, C??-NH? and octadecylamine, C??-NH?) as stabilizing ligands. The performance of the PdNPs-GOx/GC biosensor was studied by cyclic voltammetry. The optimum working potential for amperometric measurement of glucose in pH 7.0 phosphate buffer solution is -0.02 V (vs. Ag/AgCl). The analytical performance of the biosensor prepared from C??-PdNPs-GOx is better than that of C??-PdNPs-GOx. The C??-PdNPs-GOx/GC biosensor exhibits a fast response time of ca. 3s, a detection limit of 3.0 μM (S/N=3) and a linear range of 3.0 μM-8.0 mM. The linear dependence of current density with glucose concentration is 70.8 μA cm?2 mM?1. The biosensor shows good stability, repeatability and reproducibility. It has been successfully applied to determine the glucose content in human blood serum samples.  相似文献   

9.
In order to develop the C-reactive protein (CRP) sensor chips for clinical detection of atherosclerosis and coronary heart disease, we used an atomic force microscope (AFM) and a dual polarization interferometric (DPI) biosensor to probe the surface ultrastructure and to measure the dimensions of CRP. A single pentagonal structure was directly visualized by AFM, and quantitative measurements of the dimensions of the protein were provided. The average height calculated for each pentagonal CRP particle was approximately 3.03+/-0.37 nm, which basically corresponds to that (36 A in protomer diameter) previously obtained from the structure of CRP determined by X-ray crystallography. Moreover, a experiment using dual polarization interferometric (DPI) as a biosensor was then performed, and the average monolayer thickness value (3.18+/-0.43 nm) that was calculated basically corresponds to that obtained from the experimental value (3.03+/-0.37 nm) of the height measured by an AFM method for CRP. Further investigations will be performed to study the surface ultrastructure of a single pentagonal CRP molecule, and for this purpose a CRP sample (at low concentration) was scanned in vacuum by AFM. The higher-resolution images clearly revealed the presence of doughnut-shaped CRP molecules. In addition, phase images of CRP molecules were captured simultaneously with their height images, and the lateral dimensions of the doughnut-shaped CRP molecules were then measured. It was found that the average values calculated for the outer diameter (11.13+/-1.47 nm) and pore diameter (3.52+/-0.42 nm) are respectively close to those (102 A in outer diameter and 30 A in pore diameter) previously obtained from the structure of CRP determined by X-ray crystallography. This study represents the first direct characterization of the surface ultrastructure and dimensional measurement of the CRP molecule on the sensor chip.  相似文献   

10.
A plastic optical fibre biosensor based on surface plasmon resonance for the detection of C‐reactive protein (CRP) in serum is proposed. The biosensor was integrated into a home‐made thermo‐stabilized microfluidic system that allows avoiding any thermal and/or mechanical fluctuation and maintaining the best stable conditions during the measurements. A working range of 0.006–70 mg L–1 and a limit of detection of 0.009 mg L–1 were achieved. These results are among the best compared to other SPR‐based biosensors for CRP detection, especially considering that they were achieved in a real and complex medium, i.e. serum. In addition, since the sensor performances satisfy those requested in physiologically‐relevant clinical applications, the whole biosensing platform could well address high sensitive, easy to realize, real‐time, label‐free, portable and low cost diagnosis of CRP for future lab‐on‐a‐chip applications.

3D sketch (left) of the thermo‐stabilized home‐made flow cell developed to house the SPR‐based plastic optical fibre biosensor. Exemplary response curve (shift of the SPR wavelength versus time) of the proposed biosensor (right) for the detection of C‐reactive protein in serum.  相似文献   


11.
A highly sensitive and selective amperometric hydrogen peroxide (H(2)O(2)) biosensor based on immobilization of hemoglobin (Hb) at multiwalled carbon nanotubes-zinc oxide (MWCNT/ZnO) composite modified glassy carbon electrode (GCE) is reported. ZnO microsponges were electrochemically grown on MWCNT surface by the simple, cost-effective, green, electrochemical method at room temperature. The MWCNT/ZnO/Hb composite film showed a pair of well-defined, quasi-reversible redox peaks with a formal potential (E°') of -0.336V, characteristic features of heme redox couple of Hb. The electron transfer rate constant (k(s)) of immobilized Hb was 1.26s(-1). The developed biosensor showed a very fast response (>2s) toward H(2)O(2) with good sensitivity, wide linear range, and low detection limit of 0.02μM. The fabricated biosensor showed interesting features, including high selectivity, acceptable stability, good reproducibility, and repeatability along with excellent conductivity, facile electron mobility of MWCNT, and good biocompatibility of ZnO. The fabrication method of this biosensor is simple and effective for determination of H(2)O(2) in real samples with quick response, good sensitivity, high selectivity, and acceptable recovery.  相似文献   

12.
Mao K  Wu D  Li Y  Ma H  Ni Z  Yu H  Luo C  Wei Q  Du B 《Analytical biochemistry》2012,422(1):22-27
For the specificity of prostate cancer markers, prostate specific antigen (PSA) has been widely used in prostate cancer screening, diagnosis, and treatment after monitoring. In normal male serum, PSA can only be detected in traces of 0-4 ng mL(-1). In this paper, we constructed an electrochemical immunosensor for PSA detection using a nanocomposite film of graphene sheets-methylene blue-chitosan (GS-MB-CS) as electrode material. The nanocomposite film showed high binding affinity to the electrode and was used to immobilize the antibody of PSA. The modification procedure was monitored by cyclic voltammetry (CV). An amperometric biosensor was easily developed based on the response of peak current to the capture of PSA induced by specific antigen-antibody reactions. Under optimum conditions, the amperometric signal decreased linearly with PSA concentration (0.05-5.00 ng mL(-1)). A low limit of detection (13 pg mL(-1)) and a high selectivity are obtained. Moreover, the prepared immunosensor was applied for the analysis of PSA in serum samples with satisfactory results. The proposed method may have a promising future in biochemical assays for high selectivity, good reproducibility, and stability.  相似文献   

13.
A porous silicon biosensor based on P450 enzyme for arachidonic acid detection was developed. A new transduction method is presented with a simultaneous measurement of refractive index and fluorescence intensity changes when the analyte is binding to an enzyme on the porous silicon surface. A fluorophore bound to a cysteine residue in an allosteric position of the haem domain (BMP) of cytochrome P450 BM3 enhances its fluorescence intensity upon interaction with its substrate arachidonic acid, involved in diseases such as Alzheimer's, liver cancer and cellular inflammation processes. BMP has been anchored on porous silicon surface and the new transduction method has been successfully exploited to develop a biosensor for arachidonic acid, reaching a detection limit of 10 μM arachidonic acid in a dynamic range of 10-200 μM. Moreover, the change of the refractive index has been also monitored at the same time, displaying a higher detection limit of 30 μM. Preliminary test were also conducted in plasma proving the high specificity and selectivity of the sensor even in presence of interferents in the range of 50-100 μM. Here we suggest these two detection systems could be used simultaneously to increase the accuracy and the dynamic range of the sensor avoiding a false positive response.  相似文献   

14.
Theophylline is a potent bronchodilator with a narrow therapeutic index. A simple fluorescent biosensor that detects clinically relevant theophylline concentrations has been developed using the well-characterized theophylline binding RNA aptamer. Hybridization of the RNA aptamer to a fluorescently labeled DNA strand (FL-DNA) yields a fluorescent RNA:DNA hybrid that is sensitive to theophylline. The biosensor retains the remarkable selectivity of the RNA aptamer for theophylline over caffeine and is sensitive to 0–2 μM theophylline, well below the clinically relevant concentration (5–20 mg/L or ~10–50 μM). Adding a dabcyl quenching dye to the 3′-terminus of the fluorescently labeled DNA strand yielded a dual-labeled DNA strand (FL-DNA-Q) and increased the dynamic range of this simple biosensor from 1.5-fold to 4-fold.  相似文献   

15.
Trace contamination of ground water sources has been a problem ever since the introduction of high-soil-mobility pesticides, one such example is atrazine. In this paper we present a novel nanoporous portable bio-sensing device that can identify trace contamination of atrazine through a label-free assay. We have designed a pesticide sensor comprising of a nanoporous alumina membrane integrated with printed circuit board platform. Nanoporous alumina in the biosensor device generates a high density array of nanoscale confined spaces. By leveraging the size based immobilization of atrazine small molecules we have designed electrochemical impedance spectroscopy based biosensor to detect trace amounts of atrazine. We have calibrated the sensor using phosphate buffered saline and demonstrated trace detection from river and bottled drinking water samples. The limit of detection in all the three cases was in the femtogram/mL (fg/mL) (parts-per-trillion) regime with a dynamic range of detection spanning from 10 fg/mL to 1 ng/mL (0.01 ppt to 1 ppm). The selectivity of the device was tested using a competing pesticide; malathion and selectivity in detection was observed in the fg/mL regime in all the three cases.  相似文献   

16.
A sensitive, selective and stable amperometric glucose biosensor employing novel PtPd bimetallic nanoparticles decorated on multi-walled carbon nanotubes (PtPd-MWCNTs) was investigated. PtPd-MWCNTs were prepared by a modified Watanabe method, and characterized by XRD and TEM. The biosensor was constructed by immobilizing the PtPd-MWCNTs catalysts in a Nafion film on a glassy carbon electrode. An inner Na?on film coating was used to eliminate common interferents such as uric acid, ascorbic acid and fructose. Finally, a highly porous surface with an orderly three-dimensional network enzyme layer (CS-GA-GOx) was fabricated by electrodeposition. The resulting biosensor exhibited a good response to glucose with a wide linear range (0.062-14.07 mM) and a low detection limit 0.031 mM. The biosensor also showed a short response time (within 5 s), and a high sensitivity (112 μA mM(-1)cm(-2)). The Michaelis-Menten constant (K(m)) was determined as 3.3 mM. In addition, the biosensor exhibited high reproducibility, good storage stability and satisfactory anti-interference ability. The applicability of the biosensor to actual serum sample analysis was also evaluated.  相似文献   

17.
The spherical porous Pd nanoparticle assemblies (NPAs) have been successfully synthesized by starch-assisted chemical reduction of Pd(II) species at room temperature. Such Pd NPAs are not simply used to enlarge the surface area and to promote the electron transfer. They also catalyze the reduction of H(2)O(2) which are regarded as horseradish peroxidase (HRP) substitutes in electron transfer process. By using them as electrocatalysts, as low as 6.8×10(-7) M H(2)O(2) can be detected with a linear range from 1.0×10(-6) to 8.2×10(-4) M. Moreover, through co-immobilization of such Pd NPAs and glucose oxidase (GOx), a sensitive and selective glucose biosensor is developed. The detection principle lies on measuring the increase of cathodic current by co-reduction of dissolved oxygen and the in situ generated H(2)O(2) during the enzymatic reaction. Under optimal conditions, the detection limit is down to 6.1×10(-6) M with a very wide linear range from 4.0×10(-5) to 2.2×10(-2) M. The proposed biosensor shows a fast response, good stability, high selectivity and reproducibility of serum glucose level. It provides a promising strategy to construct fast, sensitive, stable and anti-interferential amperometric biosensors for early diagnosis and prevention of diabetes.  相似文献   

18.
The direct electrical communication between hemoglobin (Hb) and GCE surface was achieved based on the immobilization of Hb in a cationic gemini surfactant film and characterized by electrochemical techniques. The cyclic voltammograms showed that direct electron transfer between Hb and electrode surface was obviously promoted and then a novel unmediated nitric oxide (NO) biosensor was constructed in view of this protein-based electrode. This modified electrode showed an enzyme-like activity towards the reduction of NO and its amperometric response to NO was well-behaved with a rapid response time and displaying Michaelis-Menten kinetics with a calculated Km(app) value of 84.37 micromol L(-1). The detection limit was estimated to be 2.00 x 10(-8)mol L(-1). This biosensor was behaving as expected that it had a good stability and reproducibility, a higher sensitivity and selectivity and should has a potential application in monitoring NO released from biologic samples.  相似文献   

19.
Yang Z  Ren Y  Zhang Y  Li J  Li H  Hu XH  Xu Q 《Biosensors & bioelectronics》2011,26(11):4337-4341
A novel biosensor is developed based on immobilization of proteins on nanoflake-like SnS? modified glass carbon electrode (GCE). With glucose oxidase (GOD) as a model, direct electrochemistry of the GOD/nanoflake-like SnS? is studied. The prepared SnS? has large surface area and can offer favorable microenvironment for facilitating the electron transfer between protein and electrode surface. The properties of GOD/SnS? are characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR) and cyclic voltammetry (CV), respectively. The immobilized enzyme on nanoflake-like SnS? retains its native structure and bioactivity and exhibits a surface-controlled, reversible two-proton and two-electron transfer reaction with the apparent electron transfer rate constant (k(s)) of 3.68 s?1. The proposed biosensor shows fast amperometric response (8s) to glucose with a wide linear range from 2.5 × 10?? M to 1.1 × 10?3 M, a low detection limit of 1.0 × 10?? M at signal-to-noise of 3 and good sensitivity (7.6 ± 0.5 mA M?1 cm?2). The resulting biosensor has acceptable operational stability, good reproducibility and excellent selectivity and can be successfully applied in the reagentless glucose sensing at -0.45 V. It should be worthwhile noting that it opens a new avenue for fabricating excellent electrochemical biosensor.  相似文献   

20.
In this work, serving as supports in immobilizing luminol reagent, catalysts of luminol chemiluminescence (CL), and buffer solutions for the CL reaction, Mg-Al-CO(3) layered double hydroxides (LDHs) were found to trigger luminol CL in weak acid solutions (pH 5.8). The silica sol-gel with glucose oxidase and horseradish peroxidase was immobilized in the first half of the inside surface of a clear quartz tube, and luminol-hybrid Mg-Al-CO(3) LDHs were packed in the second half. Therefore, a novel CL flow-through biosensor for glucose was constructed in weak acid solutions. The CL intensity was linear with glucose concentration in the range of 0.005-1.0mM, and the detection limit for glucose (S/N=3) was 0.1μM. The proposed biosensor exhibited excellent stability, high reproducibility and high selectivity for the determination of glucose and has been successfully applied to determine glucose in human plasma samples with satisfactory results. The success of this work has broken the bottleneck of the pH incompatibility between luminol CL and enzyme activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号