首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A 6-year study was carried out in an apple-growing region of North Italy by trapping airborne ascospores of Venturia inaequalis with a volumetric spore trap operated continuously during the ascospore season, with the aim of better defining the weather conditions that allow ascospores both to discharge and to disperse into the orchard air. A total of more than 60 ascospore trapping events occurred. Rain events were the only occurrences allowing ascospores to become airborne (a rain event is a period with measurable rainfall ≥0.2 mm/h – lasting one to several hours, uninterrupted or interrupted by a maximum of two dry hours); on the contrary, dew was always insufficient to allow ascospores to disperse into the air at a measurable rate, in the absence of rain. In some cases, rain events did not cause ascospore dispersal; this occurred when: (i) rain fell within 4–5 h after the beginning of a previous ascospore trapping; (ii) rain fell at night but the leaf litter dried rapidly; (iii) nightly rainfalls were followed by heavy dew deposition that persisted some hours after sunrise. Daytime rain events caused the instantaneous discharge and dispersal of mature ascospores so that they became airborne immediately; for night-time rainfall there was a delay, so that ascospores became airborne during the first 2 h after sunrise. This delay did not always occur, and consequently the ascospore trapping began in the dark, when: (i) the cumulative proportion of ascospores already trapped was greater than 80% of the total season's ascospores; (ii) more than one-third of the total season's ascospores was mature inside pseudothecia and ready to be discharged.  相似文献   

2.
Fusarium graminearum is a predominant component of the Fusarium head blight (FHB) complex of small grain cereals. Ascosporic infection plays a relevant role in the spread of the disease. A 3-year study was conducted on ascospore discharge. To separate the effect of weather on discharge from the effect of weather on the production and maturation of ascospores in perithecia, discharge was quantified with a volumetric spore sampler placed near maize stalk residues bearing perithecia with mature ascospores; the residues therefore served as a continuous source of ascospores. Ascospores were discharged from perithecia on 70% of 154 days. Rain (R) and vapor pressure deficit (VPD) were the variables that most affected ascospore discharge, with 84% of total discharges occurring on days with R≥0.2 mm or VPD≤11 hPa, and with 70% of total ascospore discharge peaks (≥ 30 ascospores/m3 air per day) occurring on days with R≥0.2 mm and VPD≤6.35 hPa. An ROC analysis using these criteria for R and VPD provided True Positive Proportion (TPP) = 0.84 and True Negative Proportion (TNP) = 0.63 for occurrence of ascospore discharge, and TPP = 0.70 and TNP = 0.89 for occurrence of peaks. Globally, 68 ascospores (2.5% of the total ascospores sampled) were trapped on the 17 days when no ascospores were erroneously predicted. When a discharge occurred, the numbers of F. graminearum ascospores sampled were predicted by a multiple regression model with R2 = 0.68. This model, which includes average and maximum temperature and VPD as predicting variables, slightly underestimated the real data and especially ascospore peaks. Numbers of ascospores in peaks were best predicted by wetness duration of the previous day, minimum temperature, and VPD, with R2 = 0.71. These results will help refine the epidemiological models used as decision aids in FHB management programs.  相似文献   

3.
A 6-year study was carried out to evaluate the accuracy of some models in estimating airborne ascospores of Venturia inaequalis . The proportion of the season's ascospores trapped on each discharge event was compared with the proportion of mature ascospores, estimated by the New Hampshire model or by some related models. The models differed from each other in the degree-day cumulation, accounting or not for the leaf litter wetness caused by rainfall or by deposition of atmospheric humidity. The New Hampshire model did not fit spore trappings well: 59% of the actual values fell outside the range of the estimates, and 83% of them were overestimates. The wide discrepancy between reality and estimates resulted from the effect of dryness: when many consecutive rainless days occurred, the proportion of ascospores trapped was constantly lower than the model estimates, due to a slowed spore maturation. The effect of dryness was evident during the greater part of the ascospore maturity season, irrespective of the proportion of the season's ascospores that had just matured when the dry period began. Models accounting for leaf litter wetness significantly improved estimates. Therefore, in the Po Valley, the accuracy of the New Hampshire model can be improved by accumulating degree-days only when leaf litter is wet.  相似文献   

4.
An isolate of P. herbarum from beet seed failed to discharge ascospores in darkness but did so when exposed to light either continuously or cyclically (12 h light/12 h dark). When colonies with mature asci were subjected to a regime of alternating light and darkness for 54 days at a constant temperature of 20°C, ascospores were discharged over the entire period. Maximum discharge occurred on the 23rd day; few spores were liberated towards the end of the period. Light-induced spore discharge occurred over a wide temperature range (10–30°C) with the optimum being approximately 14–23°C. When light of different wavelengths (300 nm-infrared) was tested, only near-ultraviolet (310–330 nm) radiation stimulated ascospore discharge. Vertical height of ascospore discharge was also determined. When ascospores were trapped above colonies over a range of heights (2–80 mm), most spores were caught at 2 mm; none was caught at heights above 30 mm. The number of spores trapped at 30 mm was only 1.3% of the capture at 2 mm.  相似文献   

5.
Seven-day volumetric spore samplers were installed in pear orchards of northern Italy, in the years between 1993 and 2002, and operated continuously during the development of brown spot epidemics (mid-April–mid-August), caused by Stemphylium vesicarium. Aerial concentration of conidia was recorded at 2 h intervals to study their diurnal and seasonal patterns and the influence of weather conditions. The diurnal periodicity of aerial conidia showed a peak around midday and low counts in the dark. The increase in spore concentration was significantly correlated with the reduction of relative humidity and wetness in early morning, and the increase of wind in late morning and afternoon. Conidia of S. vesicarium became easily airborne to form a regular component of the air-spora in pear orchards, while ascospores were caught only sporadically. Differences between years concerned total spore counts and numbers of peaks (defined as days with more than 30 conidia/m3 air per day). Periods with highest spore counts occurred in late-May to early-June (in 2 years), mid to end of June (5 years), or after mid-July (3 years). There was a significant correlation between spore peaks and days with favourable weather conditions, defined as days with air temperature between 15 and 25°C and high humidity, particularly a wet period longer than 10 h. Occurrence of one or more consecutive days with favourable weather conditions determined an increase in the airborne concentration of conidia, which usually lasted some days and then decreased.  相似文献   

6.
Atmospheric ascospores have been monitored using volumetric spore trap. Spore concentration data were analysed using Spearman's correlation. Our results show that the meteorological factor with the greatest effect on spore concentration was the duration of rain. Temperature increase strongly reduced the ascospore concentration; but the length of windless periods resulted in an increase in spore count. The only measurable effect wind perse actually had on spore count, was registered when a strong wind blew after a long windless period. We observed that the count of ascospores during wet weather could surpass the total concentration of dry conidia measured on a typical, highly polluted summer day. Using selected air samples to study the effect of storms, certain aspects of long-distance spore transport were elucidated. We describe here three main strategies for long-range ascospore transport, "splash-off", "secondary emission" and "sporematrix projectiles".  相似文献   

7.
Banana leaves showing different levels of black Sigatoka disease were collected from an unsprayed plantation in Costa Rica during two separate periods representing the wet to dry season transition (October 1993 – February 1994) and the dry to wet season transition (April – September 1995). Laboratory studies were used to investigate the relationship between the release of Mycosphaerella fijiensis ascospores and the amount of inoculum on banana plants showing different levels of infection, as assessed by leaf necrotic area. The number of perithecia present in the necrotic area was used as an indication of potential ascospore loads and was investigated as a series of regression equations. A series of rewetting and incubation regimes was used to investigate spore release under field conditions (21°C and 100% relative humidity in the early morning and 28°C, 60% relative humidity on days when it rained in mid-afternoon). Results suggest that rainfall, combined with a high temperature, may lead to peaks of ascospore release but without necessarily increasing overall numbers released over periods of up to 4 days and that a high level of spore release was less sensitive to changes in temperature once it had been initiated. The exact role of temperature in spore release is still unclear, however, as leaf samples kept at atypically low temperatures also released non-germinating ascospores. An average of 4.5 ascospores was released per perithecium. This does not resolve ambiguities in the literature regarding the number of ascospores present in each perithecium. A linear model relating the average ascospore numbers and necrotic area, using quick estimates of the amounts of necrotic area on the leaves of a random sample of plants across a plantation, is proposed, to give an indication of the relative amount of airborne inoculum potentially available between different plantations.  相似文献   

8.
Leptosphaeria maculans and L. biglobosa are fungal pathogens able to cause allergic reactions in humans and infect plants of Brassica species. The rate of their development and subsequent spore release depend on weather conditions. The aim of this paper was to pinpoint the exact meteorological conditions triggering the release of L. maculans and L. biglobosa ascospores in central and eastern Poland. Multiple regressions indicated that the frequency and amount of rainfall over short periods were important in mediating spore release. The first ascospore event depended mainly on the number of rainy days during the first 10 days of July and the cumulative precipitation during July and September. The most important variables for maximum spore release were cumulative rainfall in the beginning of July and the end of September, as well as the number of days with precipitation events in the first 10 days of August. The results highlighted for the first time the importance of the days preceding the collection of oilseed rape plants from the field. Higher moisture content of senescing but still living stems play a crucial role in the early start of the ascospore season and the maximum release of ascospores. This was not yet considered to date.  相似文献   

9.
Diurnal patterns of spore release have been observed in a number of fungal pathogens that undergo wind-assisted dispersal. The mechanisms that drive these patterns, while not well understood, are thought to relate to the ability of dispersing spores to survive their journey and infect new hosts. In this paper, we characterise the diurnal pattern of ascospore release by a Western Australian population of Leptosphaeria maculans. Although L. maculans has been previously shown to exhibit diurnal patterns of ascospore release, these patterns appear to vary from region to region. In order to characterise the pattern of release in the Mediterranean climate of Western Australia, we analysed historical data describing the bi-hourly count of airborne ascospores at Mt Barker, Western Australia. Results of this analysis showed diurnal patterns that differ from those previously observed in other countries, with ascospore release in our study most likely to occur in the afternoon. Furthermore, we found that the time of peak release can shift from month to month within any one season, and from year to year. In explaining the hourly pattern of spore release over an entire season, time since rainfall, time since last release, temperature, hour and month were all shown to be significant variables.  相似文献   

10.
A recessive ascospore mutant of Neurospora tetrasperma, named bud, was isolated from a wild-collected heterokaryotic strain with four different nuclear components. bud segregates as a single mendelian gene. When bud is homozygous, meiosis is apparently normal but postmeiotic events are not. Abnormal orientation of spindles at the postmeiotic mitosis often results in failed pair-wise association of nuclei and their irregular distribution along the length of the ascus prior to spore delimitation. Consequently, many asci cut out more than four ascospores; some contain no nuclei while others contain more than two. The most dramatic effect of bud is on ascospore delimitation itself. Many ascospores are irregularly shaped and are often interconnected, because of incomplete spore delimitation. Ascospores also show one or two lobes or bud-like extensions of varying sizes. Over 75% of ascospores from bud x bud remain white or tan and are inviable. The interaction of bud with a dominant Eight-spore mutant (E) was examined in both heterozygous and homozygous crosses. When both bud and E are heterozygous, bud has no effect on ascospore delimitation or on the phenotype of E because bud is recessive; many asci produce 5-8 ascospores just as in E x E(+). And when bud is homozygous and E is heterozygous, ascospore delimitation is less affected than when E is absent. Moreover, when both bud and E are homozygous, the effect on ascospore development is less extreme than when E is homozygous singly.  相似文献   

11.
The ultrastructural features of developing and mature ascospores were delineated after mating Arthroderma quadrifidum on pablum cereal agar. Incipient ascospores each contained a granulated nucleus bounded by a nuclear envelope while presumptive ascospore cytoplasm was bounded by a double membrane and resided in glycogen-rich epiplasm of the ascus. Mature ascospores contained nuclei and mitochondria while the ascus epiplasm still retained abundant inclusions. The ascospore wall demonstrated the presence of heterogeneous material between the plasmalemma and the outer spore membrane which appeared smooth.  相似文献   

12.
Fungal spores are morphologically highly diverse and are therefore frequently used as diagnostic characters in taxonomy. However, the connection between spore morphology and fungal ecology remains poorly understood. Using phylogenetic comparative analyses, we investigated the putative relationships between four ascospore traits and the dominant place of infection, host ecology, and host taxonomic placement in 123 species of biotrophic parasites of bryophytes. Ascospore shape, ornamentation height and relative lipid content are significantly correlated in bryophilous Pezizales. Species attached by their hyphae to bryophyte rhizoids have more globose ascospores with higher ornamentation and relative lipid content than species attached to aboveground organs. Furthermore, some ascospore traits are significantly associated with host lifespan, habitat preferences, and taxonomic placement of their host bryophytes. Our results suggest that the ascospore morphology in this fungal group is closely linked to its ecology and several of the detected relationships point to the existence of distinct dispersal strategies.  相似文献   

13.
We describe a new microtiter immunospore trapping device (MTIST device) that uses a suction system to directly trap air particulates by impaction in microtiter wells. This device can be used for rapid detection and immunoquantification of ascospores of Mycosphaerella brassicicola and conidia of Botrytis cinerea by an enzyme-linked immunosorbent assay (ELISA) under controlled environmental conditions. For ascospores of M. brassicicola correlation coefficients (r2) of 0.943 and 0.9514 were observed for the number of MTIST device-impacted ascospores per microtiter well and the absorbance values determined by ELISA, respectively. These values were not affected when a mixed fungal spore population was used. There was a relationship between the number of MTIST device-trapped ascospores of M. brassicicola per liter of air sampled and the amount of disease expressed on exposed plants of Brassica oleracea (Brussels sprouts). Similarly, when the MTIST device was used to trap conidia of B. cinerea, a correlation coefficient of 0.8797 was obtained for the absorbance values generated by the ELISA and the observed number of conidia per microtiter well. The relative collection efficiency of the MTIST device in controlled plant growth chambers with limited airflow was 1.7 times greater than the relative collection efficiency of a Burkard 7-day volumetric spore trap for collection of M. brassicicola ascospores. The MTIST device can be used to rapidly differentiate, determine, and accurately quantify target organisms in a microflora. The MTIST device is a portable, robust, inexpensive system that can be used to perform multiple tests in a single sampling period, and it should be useful for monitoring airborne particulates and microorganisms in a range of environments.  相似文献   

14.
Airborne ascospores have been reported to be allergenic or plant pathogens, and their presence has traditionally been associated with rainfall events. The aim of the present study was to analyze the presence of airborne ascospores in relation to weather parameters in a town in SW Spain. A seven-day recording spore trap (Burkard) was used to sample the air over 2 years at 15 m above ground level on the terrace roof of the hospital in Mérida (SW Spain). Fungal spores were identified and counted by means of two longitudinal scans over the slides under ×1000 microscopy. A correlation analysis was made of the daily meteorological data and the airborne ascospore concentrations, and t-tests were used to compare data between the 2 years. Nineteen ascospore types were defined, including one-cell ascospores (Chaetomium, Diatrype, Helvella, Xylaria), tow-cell ascospores (Diaporthe, Mycosphaerella, Nectria, Venturia), transversally septate ascospores (Melanomma, Leptosphaeria, Paraphaeosphaeria, Sporormiella, Massaria), transversally and longitudinally septate ascospores (Pleospora), and ascospores within asci (Sordaria). Leptosphaeria consisted of a group of four types described according to the number of cells, hyaline grade, wall thickness, and ornamentation, and other ascospores comprised one last additional type. The average airborne ascospore concentration was 153 ascospores/m3. One-third each of this total were from the Leptosphaeria group, with an average 54 ascospores/m3, and the two-cell ascospores or Venturia-like group (Diaporthe, Mycosphaerella, Nectria, Venturia) with 51 ascospores/m3 on average. In third position was Pleospora with 27 ascospores/m3 on average. The month with highest concentration was September, with 238 ascospores/m3, and the lowest March, with 56 ascospores/m3. By seasons, autumn had the highest concentrations, followed by winter, spring, and summer. The maximum daily concentration reached was 3,371 ascospores/m3. Daily rainfall was significantly correlated with the ascospore types Diatrype, Mycosphaerella, Nectria, two subtypes of Leptosphaeria, and Pleospora. Relative humidity was positively correlated with those ascospore types and also with Diaporthe and Paraphaeosphaeria, and negatively with Chaetomium and Melanomma. The concentration was higher on rainy days than on days without rain for Pleospora, Leptosphaeria (3 subtypes), Diatrype, Diaporthe, Nectria, Mycosphaerella, and Paraphaeosphaeria. The daily temperatures were in general correlated with the same types as the relative humidity, but with the opposite sign. For the monthly data, there were no statistically significant differences between the 2 years studied.  相似文献   

15.
Ascospores of both A‐group and B‐group Leptosphaeria maculans germinated at temperatures from 5–20°C on distilled water agar or detached oilseed rape leaves. After 2 h of incubation on water agar, some A‐group ascospores had germinated at 10–20°C and some B‐group ascospores had germinated at 5–20°C. The percentages of both A‐group and B‐group ascospores that had germinated after 24 h of incubation increased with increasing temperature from 5–20°C. The observed time (Vo50) which elapsed from inoculation until 50% of the spores had germinated was shorter for B‐group than for A‐group ascospores. Germ tube length increased with increasing temperature from 5–20°C for both ascospore groups. Germ tubes from B‐group ascospores were longer than germ tubes from A‐group ascospores at all temperatures tested, but the mean diameter of germ tubes from A‐group ascospores (1.8 μm) was greater than that of those from B‐group ascospores (1.2μm) at 15°C and 20°C. The average number of germ tubes produced from A‐group ascospores (3.8) was greater than that from B‐group ascospores (3.1) after 24 h of incubation at 20°C, on both water agar and leaf surfaces. Germ tubes originated predominantly from interstitial cells or terminal cells of A‐group or B‐group ascospores, respectively, on both water agar and leaf surfaces. Hyphae from A‐group ascospores grew tortuously with extensive branching, whilst those from B‐group ascospores were predominantly long and straight with little branching, whether the ascospores were produced from oilseed rape debris or from crosses between single ascospore isolates, and whether ascospores were germinating on water agar or leaf surfaces.  相似文献   

16.
1. When ascospores of Neurospora tetrasperma were irradiated with 11 kv. X-rays, the single spore cultures obtained displayed a wide variety of mutated forms. 2. Control germinations of ascospores showed uniform behavior, ranging from 92–95 per cent germination. 3. The shape of the survival curves was found to be a function of the criterion of death. The following criteria were used: germination, growth, production of mature ascospores, and the production of normal perithecia. 4. The germination survival curve exhibited a rhythmic variation with dosage. Germination is not a significant criterion of death. 5. Half-survival dosages for growth and ascospore production were approximately 30,000 and 20,000 roentgens, respectively. 6. Multiple hit-to-kill relations were found on the basis of the quantum hit theory; no accurate analysis was possible. 7. The studies indicate that ascospore death does not result from a single well defined reaction, but rather from the integrated effects of several deleterious processes initiated by the radiation.  相似文献   

17.
The effects of air humidity and temperature on the ascospore discharge of Graphostroma platystoma were experimentally investigated. The ascospores were not discharged from the stromata in air at 100% relative humidity (RH). However, they were discharged from the wetted stromata at 3°, 10°, and 24°C under 100% RH or nearly so. The amount of the discharged ascospore was large at 24°C, medium at 10°C, and small at 3°C. The ascospores in the rainwater that washed down the stromata were counted after rainfall in the field. The discharge was observed from September to the following May.  相似文献   

18.
19.
Leptosphaeria maculans and L. biglobosa are closely related sibling fungal pathogens that cause phoma leaf spotting, stem canker (blackleg) and stem necrosis of oilseed rape (Brassica napus). The disease is distributed worldwide, and it is one of the main causes of considerable decrease in seed yield and quality. Information about the time of ascospore release at a particular location provides important data for decision making in plant protection, thereby enabling fungicides to be used only when necessary and at optimal times and doses. Although the pathogens have been studied very extensively, the effect of climate change on the frequencies and distributions of their aerially dispersed primary inoculum has not been reported to date. We have collected a large dataset of spore counts from Poznan, located in central-west part of Poland, and studied the relationships between climate and the daily concentrations of airborne propagules over a period of 17 years (1998–2014). The average air temperature and precipitation for the time of development of pseudothecia and ascospore release (July–November), increased during the years under study at the rates of 0.1 °C and 6.3 mm per year. The day of the year (DOY) for the first detection of spores, as well as the date with maximum of spores, shifted from 270 to 248 DOY, and from 315 to 265 DOY, respectively. The acceleration of the former parameter by 22 days and the latter by 50 days has great influence on the severity of stem canker of oilseed rape.  相似文献   

20.
Cochliobolus heterostrophus produces eight filiform ascospores per ascus, following meiosis and a postmeiotic mitosis. Early ascus development and nuclear divisions in C. heterostrophus resemble those of the prototypic Pyrenomycete Neurospora crassa. However, the two fungi differ in several important details owing to differences in ascus and ascospore shape, spindle pole body (SPB) behavior during spore delimitation, and ascospore development. In C. heterostrophus, the two spindles at meiosis II, and the four spindles at the postmeiotic mitosis are aligned irregularly, unlike the tandem or ladder rung-like orientation of spindles of N. crassa. Prior to ascospore delimitation, all eight nuclei reorient themselves and their SPB plaques migrate toward the base of the ascus. The SPB plaques facilitate demarcation of the lower end of each incipient ascospore. The filiform ascospores are uninucleate and unsegmented at inception but they become highly multinucleate, multisegmented, and helically coiled when mature. An account of ascus development, nuclear divisions, and ascospore delimitation and maturation is presented here and supported by a series of photomicrographs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号