首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Parameters of photosynthesis, heat-resistance, and osmotic pressure of cell exudate of leaves of the drought-sensitive cultivar Lyutestsens 758 of wheat, Triticum aestivum, were studied under conditions of normal water supply, soil drought, and subsequent rehydration. The plants preliminarily treated with kartolin-4 were compared to untreated plants. Kartolin-4, a preparation with cytokininlike activity, partially prevented the drought-induced inhibition of the photosynthetic assimilation of carbon dioxide and carboxylation activities of ribulose-1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39), the key enzyme of carbon metabolism in plants. Upon a subsequent rehydration, kartolin-4 stimulated the reparation reactions and facilitated rapid recovery of normal photosynthetic activity. Kartolin-4 also increased plant resistance to overheating and water deficiency.  相似文献   

2.
Enzymatic activities of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) (EC 4.1.1.39), phospho(enol)pyruvate carboxylase (EC 4.1.1.31), NAD malate dehydrogenase (EC 1.1.1.37), and NADP glyceraldehyde phosphate dehydrogenase complex including phosphoglycerate kinase (EC 2.7.2.3) and glyceraldehyde phosphate dehydrogenase (EC 1.2.1.13) were comparatively assayed in wheat seedlings of the cultivar Lyutestsens 758 grown under normal conditions, water deficiency conditions, and subsequent rehydration. Water stress was found to decrease the activity of all enzymes tested, the effect being most pronounced in the case of Rubisco. The content of Rubisco in wheat plants exposed to water deficiency was reduced less significantly than the activity of the enzyme. Pretreatment of plant seeds with kartolin-4 (o-isopropyl-N-2-hydroxyethyl carbamate), a preparation with cytokinin activity, reduced the dehydration-induced inhibition of enzymatic activity. Upon a subsequent rehydration, kartolin-4 facilitated rapid recovery of the photosynthetic activity, the process being based on the kartolin-induced stimulation of reparation reactions. Under conditions of water stress, a partial decrease in the activity of carbon metabolism enzymes in vitrowas accompanied by complete inhibition of photosynthesis in vivo, perhaps, as a result of an abrupt increase in the stomatal resistance.  相似文献   

3.
Contents of chlorophylls, carotenoids, soluble leaf proteins, and the key enzyme of carbon metabolism—ribulose bisphosphate carboxylase/oxygenase (RuBisCO; EC 4.1.1.39)—in young seedlings and adult leaves of the wheat Triticum aestivum L. cultivars Mironovskaya 808 and Lyutescens 758, contrasting in their water stress tolerances, were compared under conditions of normal available water supply, water deficiency, and subsequent rehydration. It was discovered that compounds displaying a cytokinin activity (6-benzylaminopurine, thidiazuron, kartolin-2, and kartolin-4) reduced the decreases in contents of chlorophylls, carotenoids, soluble leaf proteins, and RuBisCO, progressing with development of water stress, as well as contributed to their more rapid recovery. These compounds with cytokinin activity also accelerated restoration of the compounds studied to their initial concentrations during rehydration. The kartolin preparations caused a maximal protective effect. Water stress had a more pronounced negative effect on the cultivar Lyutescens 758. Dehydration resulted in a more extensive destruction of seedlings compared to leaves of adult plants.  相似文献   

4.
Enzymatic activities of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) (EC 4.1.1.39), phospho(enol)pyruvate carboxylase (EC 4.1.1.31), NAD malate dehydrogenase (EC 1.1.1.37), and NADP glyceraldehydephosphate dehydrogenase complex including phosphoglycerate kinase (EC 2.7.2.3) and glyceraldehydephosphate dehydrogenase (EC 1.2.1.13) were comparatively assayed in wheat seedlings of the cultivar Lyutestsens 758 grown under normal conditions, water deficiency conditions, and subsequent rehydration. Water stress was found to decrease the activity of all enzymes tested, the effect being most pronounced in case of Rubisco. The content of Rubisco in wheat plants exposed to water deficiency was reduced less significantly than the activity of the enzyme. Preliminary treatment of plant seeds with kartolin-4 (o-isopropyl-N-2-hydroxyethyl carbamate), a preparation with cytokinin activity, reduced the dehydration-induced inhibition of enzymatic activity. Upon a subsequent rehydration, kartolin-4 facilitated rapid recovery of the photosynthetic activity, the process being based on the kartolin-induced stimulation of reparation reactions. Under conditions of water stress, a partial decrease in the activity of carbon metabolism enzymes in vitro was accompanied by complete inhibition of photosynthesis in vivo, perhaps, as a result of an abrupt increase in the stomatal resistance.  相似文献   

5.
The activities of NADP: glyceraldehyde-phosphate dehydrogenase (GAPDH), an enzyme complex comprising of phosphoglycerate kinase (EC 2.7.2.3) and glyceraldehyde-phosphate dehydrogenase (EC 1.2.1.13), and phosphoenolpyruvate carboxylase (PEPK; EC 4.1.1.31) in seedlings and leaves of wheat (Triticum aestivum L.) plants of the cultivars Mironovskaya 808 and Lutescens 758 have been compared under conditions of normal water supply, water deficiency, and subsequent rehydration. GAPDH activity, which determines the carbohydrate route of photosynthetic metabolism at the initial stages, is decreased by water stress to a greater extent than that of PEPK, on the activity of which non-carbohydrate metabolic pathways depend. Pretreatment of seedlings and mature plants with natural (6-benzylaminopurine) and synthetic (tidiazuron, kartolin-2, and kartolin-4) cytokinins attenuates the loss of enzyme activities during drought and facilitates their recovery within the period of rehydration; both effects are underlain by augmentation of reparation processes. The relative intensification of non-carbohydrate pathways of photosynthetic metabolism, observed under conditions of water deficiency, is accompanied by an increase in the osmotic pressure of cell sap. Possible mechanisms of this protector effect of cytokinin preparations are discussed.  相似文献   

6.
Chernyad'ev  I.I.  Monakhova  O.F. 《Photosynthetica》1998,35(4):603-610
The carboxylating activity and content of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO, EC 4.1.1.39), and other soluble proteins in young seedlings and mature leaves of Lutescens-758, a drought-sensitive cultivar of soft spring wheat Triticum aestivum L., were studied under the conditions of drought and subsequent rehydration. Seedlings and mature plants preliminarily treated with the cytokinin-like compound kartolin-4 were compared to untreated plants. Drought-induced decrease in RuBPCO activity should be attributed not only to proteolytic decomposition of the enzyme protein itself but also to a partial inhibition of its catalytic activity. The decrease in RuBPCO activity was larger than that in RuBPCO content. Water stress induced a marked decrease in the soluble protein content. Kartolin-4 increased the resistance to drought.  相似文献   

7.
The activities of NADP: glyceraldehyde-phosphate dehydrogenase (GAPDH), an enzyme complex comprising of phosphoglycerate kinase (EC 2.7.2.3) and glyceraldehyde-phosphate dehydrogenase (EC 1.2.1.13), and phosphoenolpyruvate carboxylase (PEPK; EC 4.1.1.31) in seedlings and leaves of wheat (Triticum aestivum L.) plants of the cultivars Mironovskaya 808 and Lutescens 758 have been compared under conditions of normal water supply, water deficiency, and subsequent rehydration. GAPDH activity, which determines the carbohydrate route of photosynthetic metabolism at the initial stages, is decreased by water stress to a greater extent than that of PEPK, on the activity of which non-carbohydrate metabolic pathways depend. Pretreatment of seedlings and mature plants with natural (6-benzylaminopurine) and synthetic (tidiazuron, kartolin-2, and kartolin-4) cytokinins attenuates the loss of enzyme activities during drought and facilitates their recovery within the period of rehydration; both effects are underlain by augmentation of reparation processes. The relative intensification of non-carbohydrate pathways of photosynthetic metabolism, observed under conditions of water deficiency, is accompanied by an increase in the osmotic pressure of cell sap. Possible mechanisms of this protector effect of cytokinin preparations are discussed.  相似文献   

8.
The effects of dehydration and subsequent rehydration on photosynthetic parameters and carbon reserves were investigated in the resurrection plant Reaumuria soongorica. Dehydration was imposed by withholding water and covering plants with a PVC sheet when it rained, over a period of 53 days, by which time all leaves had been shed. Thereafter, plants were watered at 7-day intervals. The diurnal course of the net photosynthetic rate (Pn) was bimodal under well-watered conditions. After a period of withholding water, the second peak disappeared, and Pn, instantaneous water use efficiency (WUE), stomatal conductance (gs) and intercellular CO2 concentration (Ci) decreased, but sugar, starch and non-structural carbohydrate (NSC) reserves increased. It was concluded that under the conditions of high temperature and dehydration, the reduction of Pn should be mainly attributed to gs. On rehydration Pn, gs, Ci and WUE increased slightly in the stem. Accompanying new leaf production, carbon reserves in the stem decreased. This indicated that carbon reserves in the stem have two important ecological roles, survival during dormant periods and support of vegetative regrowth following rehydration.  相似文献   

9.
The effects of synthetic preparations exhibiting cytokinin-like activity (6-benzylaminopurine, Thidiazuron, and kartolin-2) on the specific leaf area (SLA) were studied in plants of the family Gramineae (wheat, Triticum aestivum L.; meadow fescue, Festuca pratensis Huds.; and reed fescue, F. arindinacea Schreb.). At the early stages of ontogeny (until the leaf area reached 50–60% of the maximum value), treatment of plants of the three species with cytokinin-like preparations caused an increase in SLA. The SLA value in these plants was correlated with the rate of photosynthetic assimilation of carbon dioxide and activities of carbon metabolism enzymes: ribulose-1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39), NAD-malate dehydrogenase (EC 1.1.1.37), and NADP-glyceraldehydephosphate dehydrogenase complex, which includes phosphoglycerate kinase (EC 2.7.2.3) and glyceraldehydephosphate dehydrogenase (EC 1.2.1.13). However, there was no correlation of SLA with the activity of phospho(enol)pyruvate carboxylase (EC 4.1.1.31), an anaplerotic carboxylation enzyme of grasses. SLA is suggested to reflect the state and activity of the photosynthetic apparatus and can be recommended as a characteristic of photosynthesis variability (e.g., caused by cytokinin-like preparations).  相似文献   

10.
K. B. Schwab  U. Schreiber  U. Heber 《Planta》1989,177(2):217-227
Using non-invasive techniques (CO2 gas exchange, light scattering, light absorption, chlorophyll fluorescence, chlorophyll luminescence), we have analysed the response of respiration and photosynthesis to dehydration and rehydration of leaves of the resurrection plants Craterostigma plantagineum Hochst., Ramonda mykoni Reichb. and Ceterach officinarum Lam. et DC. and of the drought-sensitive mesophyte spinach (Spinacia oleracea L.). The following observations were made: (i) The rate of water loss during wilting of detached leaves of drought-tolerant resurrection plants was similar to that for leaves of the sensitive mesophyte, spinach. Leaves of Mediterranean xerophytes lost water much more slowly. (ii) Below a residual water content of about 20%, leaves of spinach did not recover turgor on rewatering, whereas leaves of the resurrection plants did. (iii) Respiration was less sensitive to the loss of water during wilting in the resurrection plants than in spinach. (iv) The sensitivity of photosynthesis to dehydration was similar in spinach and the resurrection plants. Up to a water loss of 50% from the leaves, photosynthesis was limited by stomatal closure, not by inhibition of reactions of the photosynthetic apparatus. Photosynthesis was inhibited and stomates reopened when loss of water became excessive. (v) After the leaves had lost 80% of their water or more, the light-dependent reactions of photosynthetic membranes were further inhibited by rewatering in spinach; they recovered in the resurrection plants. (vi) In desiccated leaves of the resurrection plants, slow rehydration reactivated mitochondrial gas exchange faster than photosynthetic membrane reactions. Photosynthetic carbon assimilation recovered only slowly.  相似文献   

11.
The responses of tobacco plants over-expressing trans-zeatin O-glucosyltransferase gene under constitutive or senescence-inducible promoter (35S:ZOG1 and SAG12:ZOG1) and of wild type (WT) plants to water stress and subsequent rehydration were compared. In plants sufficiently supplied with water, both transgenics have higher net photosynthetic rate (PN) in upper and middle leaves and higher stomatal conductance (gs) in middle leaves than WT. Water use efficiency (WUE = PN/E) was higher in both transgenics than in WT. During prolonged water stress, both PN and E declined to a similar extent in both transgenics and WT plants. However, 7 d after rehydration PN in SAG:ZOG (upper and middle leaves) and 35S:ZOG (upper leaves) was higher than that in WT plants. Increased content of endogenous CKs in 35S:ZOG plants did not prevent their response to ABA application and the results obtained did not support concept of CK antagonism of ABA-induced stomatal closure. The chlorophyll (Chl) a+b content was mostly higher in both transgenics than in WT. During water stress and subsequent rehydration it remained unchanged in upper leaves, decreased slightly in middle leaves only of WT, while rapidly in lower leaves. Total degradation of Chl, carotenoids and xanthophyll cycle pigments (XCP) was found under severe water stress in lower leaves. Carotenoid and XCP contents in middle and upper leaves mostly increased during development of water stress and decreased after rehydration. While β-carotene content was mostly higher in WT, neoxanthin content was higher in transgenics especially in 35S:ZOG under severe stress and after rehydration. The higher content of XCP and degree of their deepoxidation were usually found in upper and middle leaves than in lower leaves with exception of SAG:ZOG plants during mild water stress.  相似文献   

12.
The protective effects of the cytokinin 6-benzylaminopurine and the compounds thidiazuron and kartolin, displaying a cytokinin activity, on the photosynthetic apparatus of young seedlings and leaves of adult plants of two wheat (Triticum aestivum L.) cultivars, Mironovskaya 808 (more drought tolerant) and Lutescens 758 (less tolerant to water stress), were compared on the background of an increasing water deficiency. At the stages of drought and subsequent rehydration, kartolin preparations were the most efficient protectors, enhancing a less pronounced decrease in the intensity of photosynthesis, carboxylating activity of the key enzyme of carbon metabolism—ribulose bisphosphate carboxylase/oxygenase (EC 4.1.1.39)—and the activity of NADP—glyceraldehyde phosphate dehydrogenase—the enzyme complex comprising phosphoglycerate kinase (EC 2.7.2.3.) and glyceraldehyde phosphate dehydrogenase (EC 1.2.1.13). This effect also included an increase in the leaf specific density and plant productivity. The negative influence of water stress on the photosynthetic apparatus was more pronounced in a less tolerant cultivar Lutescens 758 and in the seedlings as compared with the adult plants.  相似文献   

13.
Resynthesis of the photosynthetic apparatus and resumption of CO2 assimilation upon rehydration is reported for the monocotyledonous and poikilochlorophyllous desiccation-tolerant (PDT) plant Xerophyta scabrida (Pax) Th. Dur. et Schinz (Velloziaceae). During desiccation there was a complete breakdown of chlorophylls whereas the total carotenoid content of air-dried leaves was reduced to about 22% of that of functional leaves. The prerequisites for the resynthesis of photosynthetic pigments and functional thylakoids were the reappearance of turgor and maximum leaf water content at 2 and 10 h after rehydration, respectively. The period of increased initial respiration after rewetting leaves (rehydration respiration) lasted up to 30 h and was thus 6 to 10 times longer than in homoiochlorophyllous desiccation-tolerant plants (HDTs) in which chlorophylls are retained during desiccation. Accumulation of chlorophylls a + b and total carotenoids (xanthophylls and carotene) started 10 h after rehydration. Normal levels of chlorophyll and carotenoids were obtained 72 h after rehydration. Values for the variable-fluorescence decrease ratio (Rfd690 values), an indicator of photochemical activity, showed that photochemical function started 10 h after rehydration, but normal values of 2.7 were reached only 72 h after rehydration. Net CO2 assimilation started 24 h after rewetting and normal rates were reached after 72 h, at the same time as normal values of stomatal conductance were obtained. The increasing rates of net CO2 assimilation were paralleled by decreasing values of the intercellular CO2 concentration. All photosynthetic parameters investigated showed values normal for functional chloroplasts by 72 h after the onset of rehydration. Fully regreened leaves of the presumed C3 plant X. scabrida exhibited a net CO2 assimilation rate which was in the same range as that of other C3 plants and higher than that of recovered HDT plants. The fundamental difference between air-dried PDT plants, such as X. scabrida, which have to resynthesize the photosynthetic pigment apparatus, and air-dried HDT plants, which only undergo a functional recovery, is discussed.Abbreviations c -carotene - ci intercellular CO2 concentration - Car x + c total carotenoid content x + c - Chl a + b total chlorophyll a + b content - gs stomatal conductance - HDT homoiochlorophyllous desiccation tolerant - LWC leaf-water content - PN net photosynthesis rate - PDT poikilochloro phyllous desiccation tolerant - Rd dark respiration - Rfd variable fluorescence decrease ratio (Rfd = fd/fs) - x xanthophylls The senior author thanks the Deutschem Akademischem Auslandsdienst (Bonn, Germany), Soros Foundation (Budapest, Hungary) and European Community (Brussels, Belgium) for providing fellowships for research periods at Karlsruhe. The research was also supported by the Hungarian Scientific Research Foundation (OTKA I/848, OTKA I/3.1545 and OTKA I/4.F.5359). We wish to thank Professor T. Pocs (Eger, Hungary — Morogoro, Tanzania) for collecting the plant material and to the linguist Mr. A. Jackson for correcting the English.  相似文献   

14.
The differences in some morphological and physiological characteristics of sun- and shade-adapted Haberlea rhodopensis plants were compared. Changes in the photosynthetic activity, electrolyte leakage from leaf tissues, malondialdehyde content (MDA) and leaf anatomy were studied at different degrees of desiccation as well as after rehydration of plants. The MDA content in well-watered sun Haberlea plants was higher compared to shade plants suggesting higher lipid peroxidation, which is commonly regarded as an indicator of oxidative stress, but desiccation of plants at high light did not cause additional oxidative damage as judged by the unaffected MDA content. The electrolyte leakage from dried leaves (8% RWC) from both shade and sun plants increased fourfold indicating similar membrane damage. However, the recovery after rehydration showed that this damage was reversible. Well-watered sun plants had higher photosynthetic activity probably due to the larger thickness of the mesophyll layer in such plants. On the other hand, desiccation at high light reduced CO2 assimilation which was in accordance with the stronger reduction of stomatal conductance. Stomata were visible only on the abaxial side of sun leaves having also higher abundance of non-glandular trichomes. Increased trichomes density and epicuticular waxes and filaments upon desiccation could help plants to increase reflection, reduce net radiation income, slow down the rate of water loss and survive adverse conditions.  相似文献   

15.
The protective effects of the cytokinin 6-benzylaminopurine and the compounds thidiazuron and kartolin, displaying a cytokinin activity, on the photosynthetic apparatus of young seedlings and leaves of adult plants of two wheat (Triticum aestivum L.) cultivars, Mironovskaya 808 (more drought tolerant) and Lutescens 758 (less tolerant to water stress), were compared on the background of an increasing water deficiency. At the stages of drought and subsequent rehydration, cartolin preparations were the most efficient protectors, enhancing a less pronounced decrease in the intensity of photosynthesis, carboxylating activity of the key enzyme of carbon metabolism--ribulose bisphosphate carboxylase/oxygenase (EC 4.1.1.39)-and the activity of NADP-glyceraldehyde phosphate dehydrogenase--the enzyme complex comprising phosphoglycerate kinase (EC 2.7.2.3) and glyceraldehyde phosphate dehydrogenase (EC 1.2.1.13). This effect also included an increase in the leaf specific density and plant productivity. The negative influence of water stress on the photosynthetic apparatus was more pronounced in a less tolerant cultivar Lutescens 758 and in the seedlings as compared with the adult plants.  相似文献   

16.
Tim S. Stuart 《Planta》1968,83(2):185-206
Summary The leaves of the epiphytic fern Polypodium polypodioides, which lives on the branches of trees, are very similar to those of most higher plants except for the presence of scales on the dorsal side of the leaves. The structure of the cells of the chloroplasts and the mitochondria is the same as that of other higher plants. The only obvious difference found was that the contents of the central vacuole solidified when dehydrated. P. polypodioides was not damaged by loss of 97% of its normal water content and photosynthetic activity was found to be proportional to water content between 20 and 100% water content. When a dried leaf was immersed in liquid water, almost all of the original photosynthetic activity reappeared in the first 30 min of rehydration, provided incisions had been made into the leaf before drying.The rate of water uptake by intact (uncut) leaves was strongly inhibited by anaerobic conditions. This inhibition could be relieved by cutting the leaves, by supplying oxygen, or by removing the scales.Since in P. polypodioides the photosynthetic apparatus is not damaged by severe dehydration its quick revival does not depend on a special repair mechanism. Therefore, P. polypodioides should be a suitable object for a number of studies on the mechanism of photosynthesis.These studies were aided by grant No. AF-AFOSR-662-65 from the Air Force Office of Scientific Research to Dr. Hans Gaffron.  相似文献   

17.
Contents of chlorophylls, carotenoids, soluble leaf proteins, and the key enzyme of carbon metabolism--ribulose bisphosphate carboxylase/oxygenase (RuBisCO; EC 4.1.1.39)--in young seedlings and adult leaves of the wheat Triticum aestivum L. cultivars Mironovskaya 808 and Lyutestsens 758, contrasting in their water stress tolerances, were compared under conditions of normal available water supply, water deficiency, and subsequent rehydration. It was discovered that compounds displaying a cytokinin activity (6-benzylaminopurine, thidiazuron, cartolin-2, and cartolin-4) reduced the decreases in contents of chlorophylls, carotenoids, soluble leaf proteins, and RuBisCO progressing with development of water stress. These compounds with cytokinin activity also accelerated restoration of the compounds studied to their initial concentrations during rehydration. The cartolin preparations caused a maximal protective effect. Water stress had a more pronounced negative effect on cultivar Lyutestsens 758. Dehydration resulted in a more extensive destruction of seedlings compared to leaves of adult plants.  相似文献   

18.
The effect of high irradiance (HI) during desiccation and subsequent rehydration of the homoiochlorophyllous desiccation-tolerant shade plant Haberlea rhodopensis was investigated. Plants were irradiated with a high quantum fluence rate (HI; 350 μmol m−2 s−1 compared to ca. 30 μmol m−2 s−1 at the natural rock habitat below trees) and subjected either to fast desiccation (tufts dehydrated with naturally occurring thin soil layers) or slow desiccation (tufts planted in pots in peat-soil dehydrated by withholding irrigation). Leaf water content was 5 % of the control after 4 d of fast and 19 d of slow desiccation. Haberlea was very sensitive to HI under all conditions. After 19 d at HI, even in well-watered plants there was a strong reduction of rates of net photosynthesis and transpiration, contents of chlorophyll (Chl) and carotenoids, as well as photosystem 2 activity (detected by the Chl fluorescence ratio RFd). Simultaneously, the blue/red and green/red fluorescence ratios increased considerably suggesting increased synthesis of polyphenolic compounds. Desiccation of plants in HI induced irreversible changes in the photosynthetic apparatus and leaves did not recover after rehydration regardless of fast or slow desiccation. Only young leaves survived desiccation.  相似文献   

19.
This paper compares the changes in water content, chlorophyll a fluorescence and leaf ultrastructure during dehydration and rehydration in two desiccation tolerant plants Xerophyta viscosa and X. retinervis. Both species showed decreasing quantum efficiency of photosystem 2 (Fv/Fm) with decreasing water content. Extreme water loss observed after 25 d of dehydration resulted in considerable damage of leaf tissue ultrastructure. After rehydration, both species need several days to reconstitute their photosynthetic machinery.  相似文献   

20.
In mature and young leaves of sunflower (Helianthus annuus L. cv. Catissol-01) plants grown in the greenhouse, photosynthetic rate, stomatal conductance, and transpiration rate declined during water stress independently of leaf age and recovered after 24-h rehydration. The intercellular CO2 concentration, chlorophyll (Chl) content, and photochemical activity were not affected by water stress. However, non-photochemical quenching increased in mature stressed leaves. Rehydration recovered the levels of non-photochemical quenching and increased the Fv/Fm in young leaves. Drought did not alter the total Chl content. However, the accumulation of proline under drought was dependent on leaf age: higher content of proline was found in young leaves. After 24 h of rehydration the content of proline returned to the same contents as in control plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号