首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Oxygen is a fundamental element for all living organisms, and modifications in its concentration influence several physiological and pathological events such as embryogenesis, development and also aging. Regulation of oxygen levels is an important factor in neural stem cell biology (e.g. differentiation, growth and the capacity to generate more differentiated cells). Studies on neural stem cells in culture have deepened our knowledge of their survival, proliferation and differentiation pathways. However, traditional cell culture for neural stem cells is performed employing environmental oxygen levels of 20%, while the effective oxygen concentration in the developing and adult brain is significantly lower; this results in an important alteration of the in vivo conditions. Several data indicate that a so called "physiologic hypoxic condition" could strongly influence the growth of neural stem cells and their differentiation mechanisms both in vivo and in vitro. The present overview deals with the different mechanisms utilized by invertebrate and vertebrate organisms to respond to hypoxic conditions. It highlights how the adaptations and responses to different oxygen concentrations have changed along the developmental route and underlines the importance of oxygen concentration in neural physiology and differentiation, with a final hint to the involvement of hypoxia in brain cancer stem cells.  相似文献   

2.
The cancer relapse and mortality rate suggest that current therapies do not eradicate all malignant cells. Currently, it is accepted that tumorigenesis and organogenesis are similar in many respects, as for example, homeostasis is governed by a distinct sub-population of stem cells in both situations. There is increasing evidence that many types of cancer contain their own stem cells: cancer stem cells (CSC), which are characterized by their self-renewing capacity and differentiation ability. The investigation of solid tumour stem cells has gained momentum particularly in the area of brain tumours. Gliomas are the most common type of primary brain tumours. Nearly two-thirds of gliomas are highly malignant lesions with fast progression and unfortunate prognosis. Despite recent advances, two-year survival for glioblastoma (GBM) with optimal therapy is less than 30%. Even among patients with low-grade gliomas that confer a relatively good prognosis, treatment is almost never curative. Recent studies have demonstrated the existence of a small fraction of glioma cells endowed with features of primitive neural progenitor cells and a tumour-initiating function. In general, this fraction is characterized for forming neurospheres, being endowed with drug resistance properties and often, we can isolate some of them using sorting methods with specific antibodies. The molecular characterization of these stem populations will be critical to developing an effective therapy for these tumours with very dismal prognosis. To achieve this aim, the development of a mouse model which recapitulates the nature of these tumours is essential. This review will focus on glioma stem cell knowledge and discuss future implications in brain cancer therapy and regenerative medicine.  相似文献   

3.
Immunocytochemistry is a very powerful and fairly straightforward method for determining the presence, subcellular localization, and relative abundance of an antigen of interest, most commonly a protein, in cultured cells. This protocol presents an easy-to-follow series of steps that will enable researchers to conserve primary and secondary antibodies while getting high quality, reproducible qualitative and quantitative data out of their staining. There are two aspects of this protocol that help to conserve the volume of antibody necessary for staining. For one, the cells are grown on small, circular coverslips that are placed in wells of a tissue culture plate. After fixation, the cells on coverslips can be removed from the wells of the plate. For antibody staining, the coverslip with cells is inverted onto a small drop of antibody solution on parafilm and is covered with a second piece of parafilm to prevent drying. Using this method, only approximately 25 microl of antibody solution is needed for each coverslip (or sample) to be stained. This protocol describes immunostaining of human neural stem/precursor cells (hNSPCs), but can be used for many other cell types.  相似文献   

4.
This paper discusses the evidence for the role of CREB in neural stem/progenitor cell (NSPC) function and oncogenesis and how these functions may be important for the development and growth of brain tumours. The cyclic-AMP response element binding (CREB) protein has many roles in neurons, ranging from neuronal survival to higher order brain functions such as memory and drug addiction behaviours. Recent studies have revealed that CREB also has a role in NSPC survival, differentiation and proliferation. Recent work has shown that over-expression of CREB in transgenic animals can impart oncogenic properties on cells in various tissues and that aberrant CREB expression is associated with tumours in patients. It is the central position of CREB, downstream of key developmental and growth signalling pathways, which give CREB the ability to influence a spectrum of cell activities, such as cell survival, growth and differentiation in both normal and cancer cells.  相似文献   

5.
Neurogenesis persists in two germinal regions in the adult mammalian brain, the subventricular zone of the lateral ventricles and the subgranular zone in the hippocampal formation. Within these two neurogenic niches, specialized astrocytes are neural stem cells, capable of self-renewing and generating neurons and glia. Cues within the niche, from cell-cell interactions to diffusible factors, are spatially and temporally coordinated to regulate proliferation and neurogenesis, ultimately affecting stem cell fate choices. Here, we review the components of adult neural stem cell niches and how they act to regulate neurogenesis in these regions.  相似文献   

6.
The Hedgehog-Gli (Hh-Gli) signaling pathway is essential for numerous events during the development of many animal cell types and organs. In particular, it controls neural cell precursor proliferation in dorsal brain structures and regulates the number of neural stem cells in distinct embryonic, perinatal, and adult niches, such as the developing neocortex, the subventricular zone of the lateral ventricle of the forebrain, and the hippocampus. We have proposed that Hh-Gli signaling regulates dorsal brain growth during ontogeny and that its differential regulation underlays evolutionary change in the morphology (size and shape) of dorsal brain structures. It is also critically involved in sporadic brain tumorigenesis--as well as several other human cancer--suggesting that tumors derive from stem cells or progenitors maintaining an inappropriate active Hh-Gli pathway. Importantly, we and others have demonstrated that human sporadic tumors from the brain and other organs require sustained HH-GLI signaling for sustained growth and survival. Modulating HH-GLI signaling thus represents a novel rational avenue to treat, on one hand, brain degeneration and injury by inducing controlled HH-GLI-mediated regeneration and growth, and on the other hand, to combat cancer by blocking its abnormal activity in tumor cells.  相似文献   

7.
Brain stem cells change their identity   总被引:1,自引:0,他引:1  
McKay RD 《Nature medicine》1999,5(3):261-262
  相似文献   

8.
9.
Induced pluripotent stem cell (iPSC)-based technologies offer an unprecedented opportunity to perform high-throughput screening of novel drugs for neurological and neurodegenerative diseases. Such screenings require a robust and scalable method for generating large numbers of mature, differentiated neuronal cells. Currently available methods based on differentiation of embryoid bodies (EBs) or directed differentiation of adherent culture systems are either expensive or are not scalable. We developed a protocol for large-scale generation of neuronal stem cells (NSCs)/early neural progenitor cells (eNPCs) and their differentiation into neurons. Our scalable protocol allows robust and cost-effective generation of NSCs/eNPCs from iPSCs. Following culture in neurobasal medium supplemented with B27 and BDNF, NSCs/eNPCs differentiate predominantly into vesicular glutamate transporter 1 (VGLUT1) positive neurons. Targeted mass spectrometry analysis demonstrates that iPSC-derived neurons express ligand-gated channels and other synaptic proteins and whole-cell patch-clamp experiments indicate that these channels are functional. The robust and cost-effective differentiation protocol described here for large-scale generation of NSCs/eNPCs and their differentiation into neurons paves the way for automated high-throughput screening of drugs for neurological and neurodegenerative diseases.  相似文献   

10.
The ability to manipulate human neural stem/precursor cells (hNSPCs) in vitro provides a means to investigate their utility as cell transplants for therapeutic purposes as well as to explore many fundamental processes of human neural development and pathology. This protocol presents a simple method of culturing and passaging hNSPCs in hopes of standardizing this technique and increasing reproducibility of human stem cell research. The hNSPCs we use were isolated from cadaveric postnatal brain cortices by the National Human Neural Stem Cell Resource and grown as adherent cultures on flasks coated with fibronectin (Palmer et al., 2001; Schwartz et al., 2003). We culture our hNSPCs in a DMEM:F12 serum-free media supplemented with EGF, FGF, and PDGF and passage them 1:2 approximately every seven days. Using these conditions, the majority of the cells in the culture maintain a bipolar morphology and express markers of undifferentiated neural stem cells (such as nestin and sox2).  相似文献   

11.
Knowledge of the exact number of viable cells in a given volume of a cell suspension is required for many routine tissue culture manipulations, such as plating cells for immunocytochemistry or for cell transfections. This protocol describes a straightforward and fast method for differentiating between live and dead cells and quantifying the cell concentration and total cell number using a hemacytometer. This procedure first requires detaching cells from a growth surface and resuspending them in media. Next, the cells are diluted in a solution of Trypan blue (ideally to a concentration that will give 20-50 cells per quadrant) and placed in the hemacytometer. Finally, averaging the counts of viable cells in several randomly selected quadrants, dividing the average by the volume of one 1 mm(2) quadrant (0.1 microl) and multiplying by the dilution factor gives the number of cells per l. Multiplying this cell concentration by the total volume in microl gives the total cell number. This protocol describes counting human neural stem/precursor cells (hNSPCs), but can also be used for many other cell types.  相似文献   

12.
There is an increase in the numbers of neural precursors in the SVZ (subventricular zone) after moderate ischaemic injuries, but the extent of stem cell expansion and the resultant cell regeneration is modest. Therefore our studies have focused on understanding the signals that regulate these processes towards achieving a more robust amplification of the stem/progenitor cell pool. The goal of the present study was to evaluate the role of the EGFR [EGF (epidermal growth factor) receptor] in the regenerative response of the neonatal SVZ to hypoxic/ischaemic injury. We show that injury recruits quiescent cells in the SVZ to proliferate, that they divide more rapidly and that there is increased EGFR expression on both putative stem cells and progenitors. With the amplification of the precursors in the SVZ after injury there is enhanced sensitivity to EGF, but not to FGF (fibroblast growth factor)-2. EGF-dependent SVZ precursor expansion, as measured using the neurosphere assay, is lost when the EGFR is pharmacologically inhibited, and forced expression of a constitutively active EGFR is sufficient to recapitulate the exaggerated proliferation of the neural stem/progenitors that is induced by hypoxic/ischaemic brain injury. Cumulatively, our results reveal that increased EGFR signalling precedes that increase in the abundance of the putative neural stem cells and our studies implicate the EGFR as a key regulator of the expansion of SVZ precursors in response to brain injury. Thus modulating EGFR signalling represents a potential target for therapies to enhance brain repair from endogenous neural precursors following hypoxic/ischaemic and other brain injuries.  相似文献   

13.
The phenomenon of adult neurogenesis has been demonstrated in most mammals including humans. At least two regions of the adult brain maintain stem cells throughout life; the subgranular zone (SGZ) of the hippocampal dentate gyrus, and the subventricular zone (SVZ) of the lateral ventricle wall. Both regions continuously produce neurons that mature and become integrated into functional networks that are involved in learning and memory and odor discrimination, respectively. Apart from these well‐studied regions neurogenesis has been reported in a number of other brain regions, such as amygdala and cortex. However, these studies have been contested and there is currently no well‐postulated function for non‐SVZ/SGZ neurogenesis. The studies of the regional localization of neurogenesis in the brain have been made possible due to several methods for detecting adult neurogenesis including; bromodeoxyuridine labeling (BrdU) together with markers of mature neurons, genetic labeling, by mouse transgenesis, or with the use of viral vectors. These techniques are already put to creative use and will be essential for the discovery of the nature of the adult neural stem cells. In this mini‐review, we will discuss the localization of neural stem/progenitor cells in the brain and their implications as well as discussing the pro's and con's of stem cell labeling techniques. J. Cell. Physiol. 226: 1–7, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

14.
Neural cancers display cellular hierarchies with self-renewing tumorigenic cancer stem cells (CSCs) at the apex. Instructive cues to maintain CSCs are generated by both intrinsic networks and the niche microenvironment. The CSC-microenvironment relationship is complex, as CSCs can modify their environment and extrinsic forces induce plasticity in the cellular hierarchy.  相似文献   

15.
Zhang QB  Ji XY  Huang Q  Dong J  Zhu YD  Lan Q 《Cell research》2006,16(12):909-915
Understanding of the differentiation profile of brain tumor stem cells (BTSCs), the key ones among tumor cell population, through comparison with neural stem cells (NSCs) would lend insight into the origin of glioma and ultimately yield new approaches to fight this intractable disease. Here, we cultured and purified BTSCs from surgical glioma specimens and NSCs from human fetal brain tissue, and further analyzed their cellular biological behaviors, especially their differentiation property. As expected, NSCs differentiated into mature neural phenotypes. In the same differentiation condition, however, BTSCs exhibited distinguished differences. Morphologically, cells grew flattened and attached for the first week, but gradually aggregated and reformed floating tumor sphere thereafter. During the corresponding period, the expression rate of undifferentiated cell marker CD 133 and nestin in BTSCs kept decreasing, but 1 week later, they regained ascending tendency. Interestingly, the differentiated cell markers GFAP and β-tubulinlII showed an expression change inverse to that of undifferentiated cell markers. Taken together, BTSCs were revealed to possess a capacity to resist differentiation, which actually represents the malignant behaviors of glioma.  相似文献   

16.
Adult neural stem cells bridge their niche   总被引:1,自引:0,他引:1  
Major developments in the neural stem cell (NSC) field in recent years provide new insights into the nature of the NSC niche. In this perspective, we integrate recent anatomical data on the organization of the two main neurogenic niches in the adult brain, the ventricular-subventricular zone (V-SVZ) and the subgranular zone (SGZ), with signaling pathways that control the behavior of NSCs. NSCs in the adult brain stretch into physiologically distinct compartments of their niche. We propose how adult NSCs' morphology may allow these cells to integrate multiple signaling pathways arising from unique locations of their niche.  相似文献   

17.
18.
Stem cells that express therapeutic proteins have been identified to have an anticancer effects on various types of cancer. In the present study study, human neural stem cells (hNSCs) that were genetically engineered to express cytosine deaminase (CD) and human interferon-β (IFN-β) were used for anaplastic thyroid cancer (ATC) treatment owing to their tumor-tropic properties and therapeutic effects. CD is an enzyme that converts 5-fluorocytosine (5-FC), a prodrug, to 5-fluorouracil (5-FU) which is a medication to suppress tumor growth through DNA synthesis inhibition. Also, IFN-β suppresses tumor growth by the induction of apoptotic process. In water soluble tetrazolium salt (WST) assay, SNU-80 cells which are human female ATC cells were cocultured with three cell types including engineered hNSCs such as HB1.F3, HB1.F3.CD, and HB1.F3.CD.IFN-β cells on transwells and treated with 5-FC for 72 hours. Finally, the SNU-80 cell viability was reduced by the coculture with HB1.F3.CD and HB1.F3.CD.IFN-β cells. In dichlorofluorescein diacetate (DCF-DA) and TdT-mediated dUTP nick-end labeling (TUNEL) assays, the production of reactive oxygen species (ROS) and the number of apoptotic cells were increased by HB1.F3.CD and HB1.F3.CD.IFN-β cells in the presence of 5-FC. In Western blot assay, ROS, and apoptosis-related genes were increased in SNU-80 cells when they were cocultured with HB1.F3.CD and HB1.F3.CD.IFN-β cells. In transwell migration assay, hNSCs selectively migrated to SNU-80 cells because hNSCs interacted with chemoattractant factors like SDF-1α, uPAR, and CCR2 secreted by SNU-80 cells. Taken together, engineered hNSCs were revealed to selectively migrate to ATC cells and to inhibit growth as well as to induce apoptosis of ATC cells via ROS production through the actions of transgenes such as CD and IFN-β. Therefore, these engineered hNSCs can be promising candidates for the treatment of metastatic ATC.  相似文献   

19.
Human embryonic stem (hES) cells provide a potentially unlimited cell source for regenerative medicine. Recently, differentiation strategies were developed to direct hES cells towards neural fates in vitro. However, the interaction of hES cell progeny with the adult brain environment remains unexplored. Here we report that hES cell-derived neural precursors differentiate into neurons, astrocytes and oligodendrocytes in the normal and lesioned brain of young adult rats and migrate extensively along white matter tracts. The differentiation and migration behavior of hES cell progeny was region specific. The hES cell-derived neural precursors integrated into the endogenous precursor pool in the subventricular zone, a site of persistent neurogenesis. Like adult neural stem cells, hES cell-derived precursors traveled along the rostral migratory stream to the olfactory bulb, where they contributed to neurogenesis. We found no evidence of cell fusion, suggesting that hES cell progeny are capable of responding appropriately to host cues in the subventricular zone.  相似文献   

20.
Glioblastoma is the most common brain tumor. Median survival in unselected patients is <10 months. The tumor harbors stem-like cells that self-renew and propagate upon serial transplantation in mice, although the clinical relevance of these cells has not been well documented. We have performed the first genome-wide analysis that directly relates the gene expression profile of nine enriched populations of glioblastoma stem cells (GSCs) to five identically isolated and cultivated populations of stem cells from the normal adult human brain. Although the two cell types share common stem- and lineage-related markers, GSCs show a more heterogeneous gene expression. We identified a number of pathways that are dysregulated in GSCs. A subset of these pathways has previously been identified in leukemic stem cells, suggesting that cancer stem cells of different origin may have common features. Genes upregulated in GSCs were also highly expressed in embryonic and induced pluripotent stem cells. We found that canonical Wnt-signaling plays an important role in GSCs, but not in adult human neural stem cells. As well we identified a 30-gene signature highly overexpressed in GSCs. The expression of these signature genes correlates with clinical outcome and demonstrates the clinical relevance of GSCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号