首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Although the alpha-chymases of primates and dogs are known as chymotrypsin-like proteases, the enzymatic properties of rodent alpha-chymases (rat mast cell protease 5/rMCP-5 and mouse mast cell protease 5/mMCP-5) have not been fully understood. We report that recombinant rMCP-5 and mMCP-5 are elastase-like proteases, not chymotrypsin-like proteases. An enzyme assay using chromogenic peptidyl substrates showed that mast cell protease-5s (MCP-5s) have a clear preference for small aliphatic amino acids (e.g. alanine, isoleucine, valine) in the P1 site of substrates. We used site-directed mutagenesis and computer modeling approaches to define the determinant residue for the substrate specificity of mMCP-5, and found that the mutant possessing a Gly substitution of the Val at position 216 (V216G) lost elastase-like activity but acquired chymase activity, suggesting that the Val216 dominantly restricts the substrate specificity of mMCP-5. Structural models of mMCP-5 and the V216G mutant based on the crystal structures of serine proteases (rMCP-2, human cathepsin G, and human chymase) revealed the active site differences that can account for the marked differences in substrate specificity of the two enzymes between elastase and chymase. These findings suggest that rodent alpha-chymases have unique biological activity different from the chymases of other species.  相似文献   

2.
Chymases are mast cell serine proteases with chymotrypsin-like primary substrate specificity. Amino acid sequence comparisons of alpha-chymases from different species indicated that certain rodent alpha-chymases have a restricted S1 pocket that could only accommodate small amino acids, i.e. they may, despite being classified as chymases, in fact display elastase-like substrate specificity. To explore this possibility, the alpha-chymase, rat mast cell protease 5 (rMCP-5), was produced as a proenzyme with a His6 purification tag and an enterokinase-susceptible peptide replacing the natural propeptide. After removal of the purification tag/enterokinase site by enterokinase digestion, rMCP-5 bound the serine-protease-specific inhibitor diisopropyl fluorophosphate, showing that rMCP-5 was catalytically active. The primary specificity was investigated with chromogenic substrates of the general sequence succinyl-Ala-Ala-Pro-X-p-nitroanilide, where the X was Ile, Val, Ala, Phe or Leu. The activity was highest toward substrates with Val or Ala in the P1 position, whereas low activity toward the peptide with a P1 Phe was observed, indicating that the substrate specificity of rMCP-5 indeed is elastase-like. The extended substrate specificity was examined utilizing a phage-displayed random nonapeptide library. The preferred cleavage sequence was resolved as P4-(Gly/Pro/Val), P3-(Leu/Val/Glu), P2-(Leu/Val/Thr), P1-(Val/Ala/Ile), P1'-(Xaa), and P2'-(Glu/Leu/Asp). Hence, the extended substrate specificity is similar to human chymase in most positions except for the P1 position. We conclude that the rat alpha-chymase has converted to elastase-like substrate specificity, perhaps associated with an adoption of new biological targets, separate from those of human alpha-chymase.  相似文献   

3.
Based on the structural comparison of the S-1 pocket in different trypsin-like serine proteases, a series of Boc-D-trimethylsilylalanine-proline-boro-X pinanediol derivatives, with boro-X being different amino boronic acids, have been synthesised as inhibitors of thrombin. The influence of hydrogen donor/acceptor properties of different residues in the P-1 side chain of these inhibitors on the selectivity profile has been investigated. This study confirmed the structure-based working hypothesis: The hydrophobic/hydrophilic character of amino acid residues 190 and 213 in the neighbourhood of Asp 189 in the S-1 pocket of thrombin (Ala/Val), trypsin (Ser/Val) and plasmin (Ser/Thr) define the specificity for the interaction with different P-1 residues of the inhibitors. Many of the synthesised compounds demonstrate potent antithrombin activity with Boc-D-trimethylsilylalanine-proline-boro-methoxypropylglycine++ + pinanediol (9) being the most selective thrombin inhibitor of this series.  相似文献   

4.
To explore guinea pigs as models of chymase biology, we cloned and expressed the guinea pig ortholog of human chymase. In contrast to rats and mice, guinea pigs appear to express just one chymase, which belongs to the alpha clade, like primate chymases and mouse mast cell protease-5. The guinea pig enzyme autolyzes at Leu residues in the loop where human chymase autolyzes at Phe. In addition, guinea pig alpha-chymase selects P1 Leu in a combinatorial peptide library and cleaves Ala-Ala-Pro-Leu-4-nitroanilide but has negligible activity toward substrates with P1 Phe and does not cleave angiotensin I. This contrasts with human chymase, which cleaves after Phe or Tyr, prefers P1 Phe in peptidyl 4-nitroanilides, and avidly hydrolyzes angiotensin I at Phe8 to generate bioactive angiotensin II. The guinea pig enzyme also is inactivated more effectively by alpha1-antichymotrypsin, which features P1 Leu in the reactive loop. Unlike mouse, rat, and hamster alpha-chymases, guinea pig chymase lacks elastase-like preference for P1 Val or Ala. Partially humanized A216G guinea pig chymase acquires human-like P1 Phe- and angiotensin-cleaving capacity. Molecular models suggest that the wild type active site is crowded by the Ala216 side chain, which potentially blocks access by bulky P1 aromatic residues. On the other hand, the guinea pig pocket is deeper than in Val-selective chymases, explaining the preference for the longer aliphatic side chain of Leu. These findings are evidence that chymase-like peptidase specificity is sensitive to small changes in structure and provide the first example of a vertebrate Leu-selective peptidase.  相似文献   

5.
We examined the influence of Ser/Ala190 in the S1 site on P1 substrate selectivity in several serine proteases. The impact of residue 190 on the selectivity was constant, regardless of differences in original selectivity or reactivity. Substrate binding in S1 was optimised in all wild-type enzymes, while the effects on kcat depended on the combination of residue 190 and substrate. Mutagenesis of residue 190 did not affect the S2–S4 sites. Pronounced selectivity for arginine residues was coupled with low enzymatic activity, in particular in recombinant factor IXa. This is due to the dominance of the S1–P1 interaction over substrate binding in the S2–S4 sites.  相似文献   

6.
Human granzyme H (GzmH) is constitutively expressed in human NK cells that have important roles in innate immune responses against tumors and viruses. GzmH is a chymotrypsin-like serine protease. Its substrate preference and its mechanism of substrate recognition are poorly understood. To provide structural insights into the substrate recognition mechanisms for GzmH, we solved the crystal structures of a D102N-GzmH mutant alone and in complex with a decapeptide substrate and an inhibitor to 2.2 ?, 2.4 ?, and 2.7 ?, respectively. The Thr(189), Gly(216), and Gly(226) specificity triad in the S1 pocket of GzmH defines its preference for bulky, aromatic residues (Tyr and Phe) at the P1 position. Notably, we discovered that an unusual RKR motif (Arg(39)-Lys(40)-Arg(41)), conserved only in GzmH, helps define the S3' and S4' binding regions, indicating the preference for acidic residues at the P3' and P4' sites. Disruption of the RKR motif or the acidic P3' and P4' residues in the substrate abolished the proteolytic activity of GzmH. We designed a tetrapeptide chloromethylketone inhibitor, Ac-PTSY-chloromethylketone, which can selectively and efficiently block the enzymatic and cytotoxic activity of GzmH, providing a useful tool for further studies on the function of GzmH.  相似文献   

7.
The switch in export specificity of the type III flagellar protein export apparatus from rod/hook type to filament type is believed to occur upon completion of hook assembly by way of an interaction of the type III secretion substrate specificity switch (T3S4) domain of the hook-length control protein FliK, with the integral membrane export apparatus component FlhB. The T3S4 domain of FliK (FliKT3S4) consisting of amino acid residues 265-405 has an unstable and flexible conformation in its last 35 residues (FliKCT). To investigate the role of FliKT3S4 in substrate specificity switching, we studied the effect of deletions and point mutations within this domain and characterized suppressor mutations. Deletions of ten amino acid residues within the region of residues 301-350 and five amino acids of residues 401-405 abolished switching of export specificity. Site directed mutagenesis showed that highly conserved residues, Val302, Ile304, Leu335, Val401 and Ala405, are essential, and that the five C terminal residues (401-405) are restricted in conformation for the switching process. Suppressor mutant analysis of the fliK(S319Y) mutant, which produces extended hooks with filaments attached due to delayed switching, suggested that FliKT3S4 interacts with the C terminal half of the cytoplasmic domain of FlhB (FlhBC). We propose a two step binding model of FliKT3S4 and FlhBC, in which residues 301-350 of FliK bind to FlhBC upon hook assembly completion at about 55 nm, and then unfolded FliKCT binds to FlhBC to trigger the switch in substrate specificity.  相似文献   

8.
Substrate mimetics are excellent tools for protease-mediated peptide synthesis that enable the coupling of peptides independently of the primary specificity of the enzyme without undesired cleavages of the newly formed peptide bonds. However, the synthetic utility of this beneficial approach is limited to reactions with nonspecific amino-acid-containing peptides while the coupling of specific ones leads to unwanted cleavages due to the native proteolytic activity of the biocatalyst. This paper reports on the use of site-directed mutagenesis to design trypsin variants with decreased cleavage activity. Starting from the variant D189S, which is known for its low proteolytic potential, Ser189 and Ser190 were exchanged for Ala to further repress the inherent amidase activity of trypsin D189S. The effect of mutations was analysed by model synthesis reactions using specific amino-acid-containing peptides and substrate mimetics as the reactants. Finally, computer-assisted protein-ligand docking studies were performed to get closer insight into the molecular basis of the experimental results.  相似文献   

9.
Cathepsin G (CG) (EC 3.4.21.20) and chymase (EC 3.4.21.39) are two closely-related chymotrypsin-like proteases that are released from cytoplasmic granules of activated mast cells and/or neutrophils. We investigated the potential for their substrate-binding subsites to discriminate between their substrate specificities, aiming to better understand their respective role during the progression of inflammatory diseases. In addition to their preference for large aromatic residues at P1, both preferentially accommodate small hydrophilic residues at the S1' subsite. Despite significant structural differences in the S2' subsite, both prefer an acidic residue at that position. The Ala226/Glu substitution at the bottom of the CG S1 pocket, which allows CG but not chymase to accommodate a Lys residue at P1, is the main structural difference, allowing discrimination between the activities of these two proteases. However, a Lys at P1 is accommodated much less efficiently than a Phe, and the corresponding substrate is cleaved by β2-tryptase (EC 3.4.21.59). We optimized a P1 Lys-containing substrate to enhance sensitivity towards CG and prevent cleavage by chymase and β2-tryptase. The resulting substrate (ABZ-GIEPKSDPMPEQ-EDDnp) [where ABZ is O-aminobenzoic acid and EDDnp is N-(2,4-dinitrophenyl)-ethylenediamine] was cleaved by CG but not by chymase and tryptase, with a specificity constant of 190 mM(-1)·s(-1). This allows the quantification of active CG in cells or tissue extracts where it may be present together with chymase and tryptase, as we have shown using a HMC-1 cell homogenate and a sputum sample from a patient with severe asthma.  相似文献   

10.
The aim of this study was the development of a sensitive and specific substrate for protease A (PrtA), a serralysin-like metzincin from the entomopathogenic microorganism, Photorhabdus. First, cleavage of three biological peptides, the A and B chains of insulin and beta-lipotropin, and of 15 synthetic peptides, was investigated. In the biological peptides, a preference for the hydrophobic residues Ala, Leu and Val was observed at three substrate positions, P2, P1' and P2'. At these positions in the synthetic peptides the preferred residues were Val, Ala and Val, respectively. They contributed to the efficiency of hydrolysis in the order P1' > P2 > P2'. Six amino acids of the synthetic peptides were sufficient to reach the maximum rate of hydrolysis, in accordance with the ability of PrtA to cleave three amino acids from both the N- and the C-terminus of some fragments of biological peptides. Using the best synthetic peptide, a fluorescence-quenched substrate, N-(4-[4'(dimethylamino)phenylazo]benzoyl-EVYAVES-5-[(2-aminoethyl)amino]naphthalene-1-sulfonic acid, was prepared. The approximately 4 x 10(6) M(-1) x s(-1) specificity constant of PrtA (at K(m) approximately 5 x 10(-5) M and k(cat) approximately 2 x 10(2) s(-1)) on this substrate was the highest activity for a serralysin-type enzyme, allowing precise measurement of the effects of several inhibitors and pH on PrtA activity. These showed the characteristics of a metalloenzyme and a wide range of optimum pH, similar to other serralysins. PrtA activity could be measured in biological samples (Photorhabdus-infected insect larvae) without interference from other enzymes, which indicates that substrate selectivity is high towards PrtA. The substrate sensitivity allowed early (14 h post infection) detection of PrtA, which might indicate PrtA's participation in the establishment of infection and not only, as it has been supposed, in bioconversion.  相似文献   

11.
The S2 subsite specificity of the plant protease papain has been altered to resemble that of mammalian cathepsin B by site-directed mutagenesis. On the basis of amino acid sequence alignments for papain and cathepsin B, a double mutant (Val133Ala/Ser205Glu) was produced where Val133 and Ser205 are replaced by Ala and Glu, respectively, as well as a triple mutant (Val133Ala/Val157Gly/Ser205Glu), where Val157 is also replaced by Gly. Three synthetic substrates were used for the kinetic characterization of the mutants, as well as wild-type papain and cathepsin B: CBZ-Phe-Arg-MCA, CBZ-Arg-Arg-MCA, and CBZ-Cit-Arg-MCA. The ratio of kcat/KM obtained by using CBZ-Phe-Arg-MCA as substrate over that obtained with CBZ-Arg-Arg-MCA is 8.0 for the Val133Ala/Ser205Glu variant, while the equivalent values for wild-type papain and cathepsin B are 904 and 3.6, respectively. This change in specificity has been achieved by replacing only two amino acids out of a total of 212 in papain and with little loss in overall enzyme activity. However, further replacement of Val157 by Gly as in Val133Ala/Val157Gly/Ser205Glu causes an important decrease in activity, although the enzyme still displays a cathepsin B like substrate specificity. In addition, the pH dependence of activity for the Val133Ala/Ser205Glu variant compares well with that of cathepsin B. In particular, the activity toward CBZ-Arg-Arg-MCA is modulated by a group with a pKa of 5.51, a behavior that is also encountered in the case of cathepsin B but is absent with papain.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The complement system is a central component of host defense but can also contribute to the inflammation seen in pathological conditions. The C1s protease of the first complement component, the C1 complex, initiates the pathway. In this study we have elucidated the full specificity of the enzyme for the first time using a randomized phage display library. It was found that, aside from the crucial P(1) position, the S(3) and S(2) subsites (in that order) played the greatest role in determining specificity. C1s prefers Leu or Val at P(3) and Gly or Ala residues at P(2). Apart from the S(2)' position, which showed specificity for Leu, prime subsites did not greatly affect specificity. It was evident, however, that together they significantly contributed to the efficiency of cleavage of a peptide. A peptide substrate based on the top sequence obtained in the phage display validated these results and produced the best kinetics of any C1s substrate to date. The results allow an understanding of the active site specificity of the C1s protease for the first time and provide a basis for the development of specific inhibitors aimed at controlling inflammation associated with complement activation in adverse pathological situations.  相似文献   

13.
The substrate specificity of a plant serine protease, cucumisin (EC 3.4.21.25), was studied by the use of synthetic oligopeptides and peptidyl-pNA substrates. Since P1'-Ser, Ala, and Gly substrates were hydrolyzed rapidly, cucumisin appears to prefer a small side chain at the P1' position of the oligopeptide substrate. The k(cat)/Km for the hydrolysis of P1-Leu, Ala, Phe, and Glu substrates demonstrated that they were preferentially cleaved over P1-Lys, diaminopropionic acid (Dap), Gly, Val, and Pro substrates. From the digestion of peptidyl-pNAs, the specificity of the protease was determined to be broad, but the preferential cleavage sites were hydrophobic amino acid residues at the P1 position.  相似文献   

14.
The substrate specificity of cucumisin [EC 3.4.21.25] was identified by the use of the synthetic peptide substrates Leu(m)-Pro-Glu-Ala-Leu(n) (m = 0-4, n = 0-3). Neither Pro-Glu-Ala-Leu (m = 0) nor Leu-Pro-Glu-Ala (n = 0) was cleaved by cucumisin, however other analogus peptides were cleaved between Glu-Ala. The hydrolysis rates of Leu(m)-Pro-Glu-Ala-Leu increased with the increase of m = 1 to 2 and 3, but was however, essentially same with the increase of m = 3 to 4. Similarly, the hydrolysis rates of Leu-Leu-Pro-Glu-Ala-Leu(n) increased with the increase of n = 0 to 1 and 2, but was essentially same with the increase of n = 2 to 3. Then, it was concluded that cucumisin has a S5-S3' subsite length. In order to identify the substrate specificity at P1 position, Leu-Leu-Pro-X-Ala-Leu (X; Gly, Ala, Val, Leu, Ile, Pro, Asp, Glu, Lys, Arg, Asn, Gln, Phe, Tyr, Ser, Thr, Met, Trp, His) were synthesized and digested by cucumisin. Cucumisin showed broad specificity at the P1 position. However, cucumisin did not cleave the C-terminal side of Gly, Ile, Pro, and preferred Leu, Asn, Gln, Thr, and Met, especially Met. Moreover, the substrates, Leu-Leu-Pro-Glu-Y-Leu (Y; Gly, Ala, Ser, Leu, Val, Glu, Lys, Phe) were synthesized and digested by cucumisin. Cucumisin did not cleave the N-terminal side of Val but preferred Gly, Ser, Ala, and Lys especially Ser. The specificity of cucumisin for naturally occurring peptides does not agree strictly with the specificity obtained by synthetic peptides at the P1 or P1' position alone, but it becomes clear that the most of the cleavage sites on naturally occurring peptides by cucumisin contain suitable amino acid residues at P1 and (or) P1' positions. Moreover, cucumisin prefers Pro than Leu at P2 position, indicating that the specificity at P2 position differs from that of papain.  相似文献   

15.
NADP(H)-dependent cytosolic aldo-keto reductases (AKR) are mostly monomeric enzymes which fold into a typical (α/β)(8)-barrel structure. Substrate specificity and inhibitor selectivity are determined by interaction with residues located in three highly variable loops (A, B, and C). Based on sequence identity, AKR have been grouped into families, namely AKR1-AKR15, containing multiple subfamilies. Two human enzymes from the AKR1B subfamily (AKR1B1 and AKR1B10) are of special interest. AKR1B1 (aldose reductase) is related to secondary diabetic complications, while AKR1B10 is induced in cancer cells and is highly active with all-trans-retinaldehyde. Residues interacting with all-trans-retinaldehyde and differing between AKR1B1 and AKR1B10 are Leu125Lys and Val131Ala (loop A), Leu301Val, Ser303Gln, and Cys304Ser (loop C). Recently, we demonstrated the importance of Lys125 as a determinant of AKR1B10 specificity for retinoids. Residues 301 and 304 are also involved in interactions with substrates or inhibitors, and thus we checked their contribution to retinoid specificity. We also extended our study with retinoids to rodent members of the AKR1B subfamily: AKR1B3 (aldose reductase), AKR1B7 (mouse vas deferens protein), AKR1B8 (fibroblast-growth factor 1-regulated protein), and AKR1B9 (Chinese hamster ovary reductase), which were tested against all-trans isomers of retinaldehyde and retinol. All enzymes were active with retinaldehyde, but with k(cat) values (0.02-0.52 min(-1)) much lower than that of AKR1B10 (27 min(-1)). None of the enzymes showed oxidizing activity with retinol. Since these enzymes (except AKR1B3) have Lys125, other residues should account for retinaldehyde specificity. Here, by using site-directed mutagenesis and molecular modeling, we further delineate the contribution of residues 301 and 304. We demonstrate that besides Lys125, Ser304 is a major structural determinant for all-trans-retinaldehyde specificity of AKR1B10.  相似文献   

16.
Differences in the substrate specificity of alpha-glucosidases should be due to the differences in the substrate binding and the catalytic domains of the enzymes. To elucidate such differences of enzymes hydrolyzing alpha-1,4- and alpha-1,6-glucosidic linkages, two alpha-glucosidases, maltase and isomaltase, from Saccharomyces cerevisiae were cloned and analyzed. The cloned yeast isomaltase and maltase consisted of 589 and 584 amino acid residues, respectively. There was 72.1% sequence identity with 165 amino acid alterations between the two alpha-glucosidases. These two alpha-glucosidase genes were subcloned into the pKP1500 expression vector and expressed in Escherichia coli. The purified alpha-glucosidases showed the same substrate specificities as those of their parent native glucosidases. Chimeric enzymes constructed from isomaltase by exchanging with maltase fragments were characterized by their substrate specificities. When the consensus region II, which is one of the four regions conserved in family 13 (alpha-amylase family), is replaced with the maltase type, the chimeric enzymes alter to hydrolyze maltose. Three amino acid residues in consensus region II were different in the two alpha-glucosidases. Thus, we modified Val216, Gly217, and Ser218 of isomaltase to the maltase-type amino acids by site-directed mutagenesis. The Val216 mutant was altered to hydrolyze both maltose and isomaltose but neither the Gly217 nor the Ser218 mutant changed their substrate specificity, indicating that Val216 is an important residue discriminating the alpha-1,4- and 1,6-glucosidic linkages of substrates.  相似文献   

17.
Tyrosine phenol-lyase (TPL) and tryptophan indole-lyase (Trpase) catalyse the reversible hydrolytic cleavage of L-tyrosine or L-tryptophan to phenol or indole, respectively, and ammonium pyruvate. These enzymes are very similar in sequence and structure, but show strict specificity for their respective physiological substrates. We have mutated the active site residues of TPL (Thr(124), Arg(381), and Phe(448)) to those of Trpase and evaluated the effects of the mutations. Tyr(71) in Citrobacter freundii TPL, and Tyr(74) in E. coli Trpase, are essential for activity with both substrates. Mutation of Arg(381) of TPL to Ala, Ile, or Val (the corresponding residues in the active site of Trpase) results in a dramatic decrease in L-Tyr beta-elimination activity, with little effect on the activity of other substrates. Arg(381) may be the catalytic base with pK(a) of 8 seen in pH-dependent kinetic studies. T124D TPL has no measureable activity with L-Tyr or 3-F-L-Tyr as substrate, despite having high activity with SOPC. T124A TPL has very low but detectable activity, which is about 500-fold less than wild-type TPL, with L-Tyr and 3-F-L-Tyr. F448H TPL also has very low activity with L-Tyr. None of the mutant TPLs has any detectable activity with L-Trp as substrate. H463F Trpase also exhibits low activity with L-Trp, but retains high activity with other substrates. Thus, additional residues remote from the active site may be needed for substrate specificity. Both Trpase and TPL may react by a rare S(E)2-type mechanism.  相似文献   

18.
Five amino acids (Y105, Y176, Y189, Y189, W207) that constitute the substrate binding site of PHB depolymerase PhaZ7 were identified. All residues are located at a single surface‐exposed location of PhaZ7. Exchange of these amino acids by less hydrophobic, hydrophilic or negatively charged residues reduced binding of PhaZ7 to PHB. Modifications of other residues at the PhaZ7 surface (F9, Y66, Y103, Y124, Y169, Y172, Y173, F198, Y203, Y204, F251, W252) had no effect on substrate binding. The PhaZ7 wild‐type protein, three muteins with single amino acid exchanges (Y105A, Y105E, Y190E), a PhaZ7 variant with deletion of residues 202–208, and PhaZ7 in which the active‐site serine had been replaced by alanine (S136A) were crystallized and their structures were determined at 1.6–2.0 Å resolution. The structures were almost identical but revealed flexibility of some regions. Structural analysis of PhaZ7 (S136A) with bound 3‐hydroxybutyrate tetramer showed that the substrate binds in a cleft that is composed of Y105, Y176, Y189 and Y190 and thus confirmed the data obtained by site‐directed mutagenesis. To the best of our knowledge this is the first example in which the substrate binding site of a PHB depolymerase is documented at a molecular and structural level.  相似文献   

19.
The central phosphatase domain of Clostridium thermocellum polynucleotide kinase/phosphatase (CthPnkp) belongs to the dinuclear metallophosphoesterase superfamily. Prior mutational studies of CthPnkp identified 7 individual active site side chains (Asp-187, His-189, Asp-233, Asn-263, His-323, His-376, and Asp-392) required for Ni2+-dependent hydrolysis of p-nitrophenyl phosphate. Here we find that Mn2+-dependent phosphomonoesterase activity requires two additional residues, Arg-237 and His-264. We report that CthPnkp also converts bis-p-nitrophenyl phosphate to p-nitrophenol and inorganic phosphate via a processive two-step mechanism. The Ni2+-dependent phosphodiesterase activity of CthPnkp requires the same seven side chains as the Ni2+-dependent phosphomonoesterase. However, the Mn2+-dependent phosphodiesterase activity does not require His-189, Arg-237, or His-264, each of which is critical for the Mn2+-dependent phosphomonoesterase. Mutations H189A, H189D, and D392N transform the metal and substrate specificity of CthPnkp such that it becomes a Mn2+-dependent phosphodiesterase. The H189E change results in a Mn2+/Ni2+-dependent phosphodiesterase. Mutations H376N, H376D, and D392E convert the enzyme into a Mn2+-dependent phosphodiesterase-monoesterase. The phosphodiesterase activity is strongly stimulated compared with wild-type CthPnkp when His-189 is changed to Asp, Arg-237 is replaced by Ala or Gln, and His-264 is replaced by Ala, Asn, or Gln. Steady-state kinetic analysis of wild-type and mutated enzymes illuminates the structural features that affect substrate affinity and kcat. Our results highlight CthPnkp as an "undifferentiated" diesterase-monoesterase that can evolve toward narrower metal and substrate specificities via alterations of the active site milieu.  相似文献   

20.
Plant beta-glucosidases display varying substrate specificities. The maize beta-glucosidase isozyme Glu1 (ZmGlu1) hydrolyzes a broad spectrum of substrates in addition to its natural substrate DIMBOA-Glc (2-O-beta-d-glucopyranosyl-4-hydroxy-7-methoxy-1,4-benzoxaxin-3-one), whereas the sorghum beta-glucosidase isozyme Dhr1 (SbDhr1) hydrolyzes exclusively its natural substrate dhurrin (p-hydroxy-(S)-mandelonitrile-beta-d-glucoside). Structural data from cocrystals of enzyme-substrate and enzyme-aglycone complexes have shown that five amino acid residues (Phe198, Phe205, Trp378, Phe466, and Ala467) are located in the aglycone-binding site of ZmGlu1 and form the basis of aglycone recognition and binding, hence substrate specificity. To study the mechanism of substrate specificity further, mutant beta-glucosidases were generated by replacing Phe198, Phe205, Asp261, Met263, Phe377, Phe466, Ala467, and Phe473 of Glu1 by Dhr1 counterparts. The effects of mutations on enzyme activity and substrate specificity were studied using both natural and artificial substrates. The simple mutant replacing Phe198 by a valine had the most drastic effect on activity, because the capacity of this enzyme to hydrolyze beta-glucosides was almost completely abolished. The analysis of this mutation was completed by a structural study of the double mutant ZmGlu1-E191D,F198V in complex with the natural substrate. The structure reveals that the single mutation F198V causes a cascade of conformational changes, which are unpredictable by standard molecular modeling techniques. Some other mutations led to drastic effects: replacing Asp261 by an asparagine decreases the catalytic efficiency of this simple mutant by 75% although replacing Tyr473 by a phenylalanine increase its efficiency by 300% and also provides a new substrate specificity by hydrolyzing dhurrin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号