首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To further define the underlying mechanisms of immune suppression induced by UV-B irradiation, we have examined the kinetics of homing patterns of in vitro UV-B-irradiated and gamma-irradiated-thoracic duct lymphocytes (TDL) compared to dendritic cells (DC). Our findings show that 111In-oxine-labeled TDL specifically home to the spleen, liver, lymph nodes, and bone marrow with subsequent recirculation of a large number of cells from the spleen to lymph nodes. In contrast, DC preferentially migrate to the spleen and liver with a relatively insignificant distribution to lymph nodes and an absence of subsequent recirculation. Splenectomy prior to cell injection significantly diverts the spleen-seeking DC to the liver but not to the lymph nodes, while the homing of TDL to lymph nodes is significantly increased. In vitro exposure of 111In-oxine labeled TDL to gamma irradiation does not significantly impair immediate homing to lymphoid tissues but inhibits cell recirculation between 3 and 24 hr. In contrast, gamma irradiation does not affect the tissue distribution of labeled DC, suggesting that DC are more radioresistant to gamma irradiation than TDL. Unlike the findings in animals injected with gamma-irradiated cells, UV-B irradiation virtually abolished the homing of TDL to lymph nodes and significantly reduced the homing of the spleen-seeking DC to the splenic compartment while a large number of cells were sequestered in the liver. The results of in vitro cell binding assay show that TDL, unlike DC, have the capacity to bind to high endothelial venules (HEV) within lymph node frozen sections while gamma and UV-B irradiation significantly inhibit the binding of TDL to lymph node HEV. These findings suggest that: (i) DC, unlike TDL, are unable to recirculate from blood to lymph nodes through HEV; (ii) although gamma irradiation impairs TDL recirculation, it does not affect DC tissue distribution; and (iii) UV-B irradiation impairs both TDL and DC migration patterns. We conclude that the lack of capacity of irradiated TDL to home to lymph nodes is due to damage to cell surface homing receptors and that the failure of DC to home to the lymph node microenvironment is related to the absence of HEV homing receptors on their cell surface.  相似文献   

2.
To trigger an effective T cell-mediated immune response in the skin, cutaneous dendritic cells (DC) migrate into locally draining lymph nodes, where they present Ag to naive T cells. Little is known about the interaction of DC with the various cellular microenvironments they encounter during their migration from the skin to lymphoid tissues. In this study, we show that human DC generated from peripheral blood monocytes specifically interact with human dermal fibroblasts via the interaction of beta(2) integrins on DC with Thy-1 (CD90) and ICAM-1 on fibroblasts. This induced the phenotypic maturation of DC reflected by expression of CD83, CD86, CD80, and HLA-DR in a TNF-alpha- and ICAM-1-dependent manner. Moreover, fibroblast-matured DC potently induced T cell activation reflected by CD25 expression and enhanced T cell proliferation. Together these data demonstrate that dermal fibroblasts that DC can encounter during their trafficking from skin to lymph node can act as potent regulators of DC differentiation and function, and thus may actively participate in the regulation and outcome of DC-driven cutaneous immune responses.  相似文献   

3.
The in vivo distribution of intravenously injected lymphokine activated killer (LAK) cells, generated in vitro with rIL-2 from normal murine splenocytes, was studied in BALB/c mice and compared with that of normal splenocytes. Both normal splenocytes and LAK cells were labeled with 51Cr, and the results were analyzed at 6, 24, and 48 hours after injection by localization index as the parameter. After injection through tail veins of mice, LAK cells were found to migrate to the spleen, lungs, liver, lymph nodes, bones and the kidneys. The apparent increased distribution pattern of LAK cells to the lung at 6 and 24 hours after injection was not detected when normal splenocytes were injected. Since almost one third of the injected LAK cells were found to localize in the spleen, it was postulated that splenectomy would affect the in vivo organ distribution of LAK cells. Accordingly, the in vivo distribution of LAK cells in splenectomized mice was further investigated. Results indicated that splenectomy enhanced the convergence of LAK cells to the lungs, liver, lymph nodes and bones. Therefore, splenectomy may augment the therapeutic effect of the adoptive transfer of LAK cells in pulmonary, hepatic, lymph node and bony metastases.  相似文献   

4.
Thymus cells were labeled in vitro with FITC and injected into syngeneic recipients. In cell suspensions of lymphoid organs green cells were inspected for PNA receptors with double immunofluorescence. A striking preference of PNA-negative cells to localize in lymph nodes and the lymphoid compartment of the spleen was demonstrated. Incubation with anti-Ly sera revealed that Ly 1+ PNA-negative cells homed in popliteal lymph nodes and Peyer's patch but not in mesenteric lymph nodes.  相似文献   

5.
Helicobacter pylori infection induces chronic inflammation in the gastric mucosa with a marked increase in the number of lymphoid follicles consisting of infiltrating B and T cells, neutrophils, dendritic cells (DC) and macrophages. It has been suggested that an accumulation of mature DC in the tissue, resulting from a failure of DC to migrate to lymph nodes, may contribute to this chronic inflammation. Migration of DC to lymph nodes is regulated by chemokine receptor CCR7, expressed on mature DC, and the CCR7 ligands CCL19 and CCL21. In this study we analysed the maturation, in vitro migration and cytokine production of human DC after stimulation with live H. pylori. For comparison, DC responses to non-pathogenic Escherichia coli bacteria were also evaluated. Stimulation with H. pylori induced maturation of DC, i.e. up-regulation of the chemokine receptors CCR7 and CXCR4 and the maturation markers HLA-DR, CD80 and CD86. The H. pylori-stimulated DC also induced CD4(+) T-cell proliferation. DC stimulated with H. pylori secreted significantly more interleukin (IL)-12 compared to DC stimulated with E. coli, while E. coli-stimulated DC secreted more IL-10. Despite low surface expression of CCR7 protein following stimulation with H. pylori compared to E. coli, the DC migrated equally well towards CCL19 after stimulation with both bacteria. Thus, we could not detect any failure in the migration of H. pylori stimulated DC in vitro that may contribute to chronic gastritis in vivo, and our results suggest that H. pylori induces maturation and migration of DC to lymph nodes where they promote T cell responses.  相似文献   

6.
Dendritic cells (DC) serve an essential function in linking the innate and acquired immune responses to antigen. Peripheral DC acquire antigen and migrate to draining lymph nodes, where they localize to the T cell-rich paracortex and function as potent antigen presenting cells. We examined the effects of human immunodeficiency virus (HIV) infection on DC function in vivo using the rhesus macaque/simian immunodeficiency virus (SIV) model. Our data show that during acute SIV infection, Langerhans cell density is reduced in skin and activated DC are increased in proportion in lymph nodes, whereas during AIDS, DC migration from skin and activation within lymph nodes are suppressed. These findings suggest that changes in DC function at different times during the course of infection may serve to promote virus dissemination and persistence: early during infection, DC mobilization may facilitate virus spread to susceptible lymph node T cell populations, whereas depressed DC function during advanced infection could promote generalized immunosuppression.  相似文献   

7.
During humoral immune responses, naive B cells differentiate into Ab-secreting plasma cells within secondary lymphoid organs. Differentiating plasma cells egress from their sites of generation and redistribute to other tissues, predominantly the bone marrow and mucosal tissues. In this study, we demonstrate that within peripheral lymph nodes newly generated plasma cells localize to medullary cords which express the beta(2) integrin ligand ICAM-1. In beta(2) integrin-deficient mice plasma cells accumulate inside the lymph nodes, resulting in severely reduced plasma cell numbers in the bone marrow. Since plasma cells isolated from beta(2) integrin-deficient animals migrate efficiently into the bone marrow when transferred i.v., our findings provide profound evidence that beta(2) integrins are required for the egress of plasma cells from peripheral lymph nodes.  相似文献   

8.
 Dendritic cells (DC) purified from murine spleen or generated in vitro from bone marrow precursors were compared for their respective abilities to stimulate T cell responses and provide tumor protection in vivo. In vitro incubation with synthetic tumor peptide conferred on both DC populations the ability to induce proliferation of tumor-peptide-specific T cells in vitro. Spleen DC were reproducibly about twofold more effective than bone-marrow-derived DC in this assay. Both DC populations could also induce cytotoxic activity in vivo. In vitro cytoxicity assays showed that, while cytotoxic activity induced by immunization with spleen DC was clearly peptide-specific, a high non-specific cytotoxic activity was consistently observed after immunization with bone-marrow-derived DC, whether peptide-pulsed or not. Regardless of such high non-specific activity in vitro, only tumor-peptide-pulsed DC could provide protection against subsequent inoculation of tumor cells. DC not pulsed with tumor peptide were ineffective. We conclude that DC isolated from spleen or generated in vitro from bone marrow precursors are suitable reagents for use in tumor vaccination studies. Received: 13 March 1997 / Accepted: 25 May 1997  相似文献   

9.
 Chronic myelogenous leukemia (CML) is a clonal disorder characterized by proliferation of cells that possess the bcr-abl fusion gene resulting in the production of one of two possible chimeric 210-kDa tyrosine kinase proteins. Since these chimeric proteins are expressed only in leukemic cells they have the potential to serve as tumor-specific antigens for cytotoxic T lymphocytes (CTL). Using the 12B1 murine leukemia cell line, derived by retroviral transformation of BALB/c bone marrow cells with the bcr-abl (b3a2) fusion gene, we have demonstrated that intravenous inoculation of 12B1 cells into BALB/c mice results in a disseminated acute leukemia analogous to human CML in blast crisis. Histological sections of liver and spleen and polymerase chain reaction analysis of peripheral blood, bone marrow, liver, spleen and lymph nodes confirmed the presence of bcr-abl + leukemia cells in these murine tissues, while Western blot data demonstrated the expression of the fusion protein in 12B1 cells. Immunization of mice with dendritic cells (DC) loaded with the synthetic bcr-abl chimeric nonapeptide, GFKQSSKAL, led to a 150 times higher frequency of bcr-abl-specific CTL precursors in the spleen than in mice immunized with peptide alone. In vitro re-stimulation of DC-peptide-primed splenocytes resulted in substantial secretion of interferon γ and augmented cytolytic activity against 12B1 targets. Finally, vaccination with peptide-loaded DC significantly prolonged survival of BALB/c mice that were challenged with 12B1 leukemia. The capacity to generate bcr-abl-specific CTL in vivo by DC-based immunization may have clinical implications in the treatment of CML. Received: 14 July 2000 / Accepted: 18 October 2000  相似文献   

10.
Initiation of immune responses in brain is promoted by local dendritic cells   总被引:15,自引:0,他引:15  
The contribution of dendritic cells (DCs) to initiating T cell-mediated immune response in and T cell homing into the CNS has not yet been clarified. In this study we show by confocal microscopy and flow cytometry that cells expressing CD11c, CD205, and MHC class II molecules and containing fluorescently labeled, processed Ag accumulate at the site of intracerebral Ag injection. These cells follow a specific pattern upon migrating out of the brain. To track their pathway out of the CNS, we differentiated DCs from bone marrow of GFP-transgenic mice and injected them directly into brains of naive C57BL/6 mice. We demonstrate that DCs migrate from brain to cervical lymph nodes, a process that can be blocked by fixation or pertussis toxin treatment of the DCs. Injection of OVA-loaded DCs into brain initiates a SIINFEKL (a dominant OVA epitope)-specific T cell response in lymph nodes and spleen, as measured by specific tetramer and LFA-1 activation marker staining. Additionally, a fraction of activated SIINFEKL-specific T cells home to the CNS. Specific T cell homing to the CNS, however, cannot be induced by i.v. injection of OVA-loaded DCs alone. These data suggest that brain-emigrant DCs are sufficient to support activated T cells to home to the tissue of DC origination. Thus, initiation of immune reactivity against CNS Ags involves the migration of APCs from nervous tissue to peripheral lymphoid tissues, similarly to that in other organs.  相似文献   

11.
The tissue localization of syngeneic thoracic duct lymphocytes was compared to that of allogeneic cells in four rat strain combinations differing at the Ag-B locus (HO → DA, DA → HO, AO → HO, HO → AO). Dual isotope labeling with [3H]uridine and [14C]uridine was applied in order so that the distribution of allogeneic and syngeneic cells could be followed in one recipient. During the first couple of hours after iv injection, allogeneic lymphocytes usually migrated as easily into the various tissues as did syngeneic cells. However, after 24 and 48 hr, a reduced amount of label associated with allogeneic cells was often measured in the tissues. This reduction differed in magnitude in the different strain combinations and was most pronounced in the lymph nodes. A reduced number of allogeneic cells also appeared in the thoracic duct. By contrast, no reduced localization of allogeneic lymphocytes was measured in the draining popliteal lymph nodes late after sc injection. In preimmunized animals allogeneic cells were rapidly removed from the blood and therefore failed to localize in the lymphoid tissues. Furthermore, the lymph node localization of allogeneic cells was more like that of syngeneic cells in splenectomized rats, as well as in irradiated recipients (when the irradiation was given shortly before cell transfer). It is concluded that transplantation antigens play no essential role in the interaction between recirculating lymphocytes and the venous endothelium at the sites where the large-scale physiological emigration of the cells takes place (the HEVS of the lymph nodes and the marginal zone vessels of the spleen). The elimination of allogeneic cells is found later; it probably takes place in the lymph nodes and spleen. Possible mechanisms responsible for this rapid removal of allogeneic lymphocytes in nonimmunized recipients are discussed.  相似文献   

12.
The thoracic duct of Wistar strain rats was cannulated during 5 days for studying the effect of selective lymphocyte depletion on the lymphoid tissue. A technique for the continuous infusion of cell-free lymph, whole lymph of Eagle's medium to the rat with the thoracic duct fistula is described in detail. The prolonged drainage of lymph from rats was followed by lymphopenia, sever atrophy of lymphoid tissues and the depletion of small lymphocytes in the thymus-dependent areas of spleen and lymph nodes. The infusion of cell-free lymph into the drained rat resulted in the recovery of the weight of lymphoid tissues and in the massive proliferation and accumulation of large cells with prominent nucleoli and intensely pyroninophilic cytoplasm in the lymphocyte depleted areas of the peripheral lymphoid tissues and thymic cortex. There was histological evidence that the large pyroninophilic cells developed well in the spleen and tended to localize preferentially around the periarteriolar region through the marginal zone bridging channels to the red pulp. The infusion of Eagle's medium was found ineffective in restoring the weight of the lymphoid tissues and in bringing about the proliferation of lymphoid cells. The rats infused with whole lymph showed almost similar findings biologically and histologically to those of sham-operated rats.  相似文献   

13.
UV radiation-induced regulatory T cells (UV-Treg) inhibit the sensitization but not the elicitation of contact hypersensitivity when injected i.v. Because UV-Treg express the lymph node homing receptor CD62 ligand, upon i.v. injection they migrate into the lymph nodes but not into the periphery and therefore inhibit sensitization but not elicitation. We tried to modify the migratory behavior of UV-Treg with the aim to get them into the periphery and thereby to suppress the effector phase of immune reactions. Because the tissue selective homing of T effector cells is determined by tissue-specific dendritic cells (DC), we attempted to reprogram the migratory behavior of UV-Treg by DC. 2,4-Dinitrofluorobencene (DNFB)-specific UV-Treg coincubated with epidermal Langerhans cells (LC) blocked the elicitation upon i.v. injection into DNFB-sensitized mice. In contrast, i.v. injection of UV-Treg not incubated with LC did not inhibit the ear challenge. The same negative effect was observed for UV-Treg coincubated with DC from bone marrow, spleen, or lymph nodes. This effect was not due to different maturation stages as checked by MHC class II expression of the different DC types. Incubation with LC but not with bone marrow-derived DC down-regulated the expression of CD62 ligand on UV-Treg. Accordingly, CFDA-SE labeled UV-Treg coincubated with LC were found in the ears but not in the lymph nodes upon i.v. injection. This finding shows that the migratory behavior can be reprogrammed by tissue-specific DC and may have input on strategies trying to use Treg not only for the prevention but also for the treatment of immune-mediated diseases.  相似文献   

14.
Dendritic cells (DCs) migrate from sites of inflammation to secondary lymphoid organs where they initiate the adaptive immune response. Although motility is essential to DC function, the mechanisms by which they migrate are not fully understood. We incorporated micropost array detectors into a microfluidic gradient generator to develop what we consider to be a novel method for probing low magnitude traction forces during directional migration. We found migration of primary murine DCs is driven by short-lived traction stresses at the leading edge or filopodia. The traction forces generated by DCs are smaller in magnitude than found in neutrophils, and of similar magnitude during chemotaxis and chemokinesis, at 18 ± 1.4 and 16 ± 1.3 nN/cell, respectively. The characteristic duration of local DC traction forces was 3 min. The maximum principal stress in the cell occurred in the plane perpendicular to the axis of motion, forward of the centroid. We illustrate that the spatiotemporal pattern of traction stresses can be used to predict the direction of future DC motion. Overall, DCs show a mode of migration distinct from both mesenchymal cells and neutrophils, characterized by rapid turnover of traction forces in leading filopodia.  相似文献   

15.
Dendritic cells (DC) are the most efficient antigen presenting cells. The clinical use of DC as vectors for antitumor and anti-infectious disease immunotherapy has been limited by their low level and accessibility in normal tissue. Substantial numbers of DC can be generated from peripheral blood cultured in the presence of interleukin-4 (IL-4) and granulocyte/macrophage-colony-stimulating factor (GM-CSF). We showed in this study that substantial numbers of DC can be obtained from the peripheral blood of patients with (pre)neoplastic lesions of the uterine cervix. The procedure required relatively small blood samples (10 ml) and the presence of 100 U/ml IL-4 and 800 U/ml GM-CSF in the culture medium. There was no significant difference in the morphology, yield, phenotype and function of generated DC between patients with cervical (pre)neoplastic lesions and healthy individuals. When the hematopoietic factor Flt3 ligand (Flt3L, 40 ng/ml) was added, there was an average increase in the DC population of 26% compared to cultures with GM-CSF and IL-4 alone. Approximately 1.2 × 106 cells with the characteristics of dendritic cells could be obtained when Flt3L was included in the medium. The addition of Flt3L did not modify the phenotypic profile of DC (HLA-DR+, CD1a+, CD4+, CD54+, CD80+, CD86+, CD40+, CD3 and CD14). In addition, Flt3L generated functional DC capable of stimulating the proliferation of alloreactive T cells. These results suggest that Flt3L, in association with GM-CSF and IL-4, provides an advantageous tool for the large-scale generation of DC and that an immunotherapy based on the use of DC generated in vitro is possible in patients with (pre)neoplastic lesions of the uterine cervix. Received: 8 January 1998 / Accepted: 30 April 1998  相似文献   

16.
The development of lymphoid cells reactive to tapeworm-associated antigens during the course of Hymenolepis diminuta rejection from mice was studied using an in vitro tapeworm extract (TWE)-induced cell proliferation culture system. Mice infected with three cysticercoids on day 0 developed three adult worms by day 7 but worms were rejected by day 21 post-infection. Concomitant with worm rejection was the development of TWE-sensitized lymphoid cells which responded by proliferation when stimulated in vitro with TWE. Sensitized cells were detected in gut-associated mesenteric lymph nodes but were not detected in spleen, axillary lymph nodes, or Peyer's patches of infected mice, or in lymphoid organs of non-infected mice. These studies suggest that rejection of H. diminuta from mice is associated with the activities of gut-associated, tapeworm antigen-sensitized immune cells localized in the mesenteric lymph nodes.  相似文献   

17.
flt3 ligand (FL) is a growth factor that induces hematopoietic progenitor cell and dendritic cell (DC) expansion when administered to mice. Lymphoid-related (CD8α+) and myeloid-related (CD8α) DC are transiently expanded in multiple tissues. Treatment of tumor-bearing mice with FL results in slower tumor growth and, in some cases, tumor rejection and the development of tumor-specific T cell immunity. The clinical use of DC as cellular vehicles for tumor antigen presentation to generate a tumor-specific T cell response is under investigation. DC are currently generated ex vivo, pulsed with antigen, and then infused into patients, and much effort is being directed toward optimizing each of these steps. Administration of FL to humans induces a profound increase in circulating DC. The availability of a large number of DC generated in vivo has important implications for tumor immunotherapy approaches. Received: 13 May 1999 / Accepted: 14 June 1999  相似文献   

18.

Aims

To examine the effects of route of administration and activation status on the ability of dendritic cells (DC) to accumulate in secondary lymphoid organs, and induce expansion of CD8+ T cells and anti-tumor activity.

Methods

DC from bone marrow (BM) cultures were labeled with fluorochromes and injected s.c. or i.v. into naïve mice to monitor their survival and accumulation in vivo. Percentages of specific CD8+ T cells in blood and delayed tumor growth were used as readouts of the immune response induced by DC immunization.

Results

The route of DC administration was critical in determining the site of DC accumulation and time of DC persistence in vivo. DC injected s.c. accumulated in the draining lymph node, and DC injected i.v. in the spleen. DC appeared in the lymph node by 24 h after s.c. injection, their numbers peaked at 48 h and declined at 96 h. DC that had spontaneously matured in vitro were better able to migrate compared to immature DC. DC were found in the spleen at 3 h and 24 h after i.v. injection, but their numbers were low and declined by 48 h. Depending on the tumor cell line used, DC injected s.c. were as effective or more effective than DC injected i.v. at inducing anti-tumor responses. Pre-treatment with LPS increased DC accumulation in lymph nodes, but had no detectable effect on accumulation in the spleen. Pre-treatment with LPS also improved the ability of DC to induce CD8+ T cell expansion and anti-tumor responses, regardless of the route of DC administration.

Conclusions

Injection route and activation by LPS independently determine the ability of DC to activate tumor-specific CD8+ T cells in vivo.
  相似文献   

19.
Summary A long-term stroma-dependent culture system (LTC) has been developed which continuously produces hemopoietic cells providing an in vitro system for the study of cell differentiation. These nonadherent cell populations contain a large subpopulation of dendritic cells (DC). LTC producing DC were easily generated from spleen, but could also be established from bone marrow (BM) and lymph node with less success. It was difficult to establish DC-producing LTC from thymus. The properties of splenic and thymic stroma have been compared. Spleen stroma developed more complicated networks of fibroblasts, endothelial cells, macrophages, and DC. Thymic stromal monolayers were dominated by epithelial cells and fibroblasts, with a lower proportion of macrophages and endothelial cells. They had a relatively sparse structure of cell networks compared with spleen stroma. Cells with dendritiform morphology first appeared in cultures by 2–3 wk. The majority of cells produced were large cells which expressed DC-specific cell surface markers, major histocompatibility complex (MHC) Class II molecules, and the CD80/CD86(B7) costimulator. A high proportion of cells also expressed myeloid cell markers. No T or B lymphoid cells or granulocytes were present in the cultures. LTC continued to produce nonadherent cells resembling myeloid/DC for long periods, even after passage of stromal cells and stem cells at about 3–4 mo. after culture establishment. The LTC system offers potential to study the in vitro differentiation of myeloid/DC.  相似文献   

20.
 In order to enhance the antitumor vaccination effect of dendritic cells (DC) pulsed with class I tumor peptide, we tried to utilize the local cytokine help of CD4+ T cells reactive to a streptococcal preparation OK432. DC were prepared from murine bone marrow cells by culture with both granulocyte/macrophage-colony-stimulating factor and interleukin(IL)-4. The peritumoral injections of OK432 induced OK432-reactive CD4+ T cells in the draining lymph nodes, and their in vitro production of interferon γ was thus significantly enhanced by restimulation with OK432-pulsed DC. In addition, anti-P815 mastocytoma cytotoxic T lymphocytes were generated from the in vivo OK432-treated P815-draining lymph node cells only when the lymph node cells were restimulated in vitro with the DC pulsed with both P1A peptide and OK432. Moreover, the peritumoral injections of OK432 and the subsequent vaccination of the DC, pulsed with both OK432 and P1A peptide, significantly suppressed the growth of s.c. inoculated P815. Interestingly, a significant level of IL-12 was detected in the coculture supernatant of both OK432-pulsed DC and OK432-reactive CD4+ T cells. Collectively, our results suggest that the antitumor vaccination effect of DC pulsed with class I tumor peptide could thus be effectively augmented by locally utilizing the Th1-type cytokines from OK432-reactive CD4+ T cells. Received: 18 July 1997 / Accepted: 23 December 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号