首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Dendritic cells (DCs) efficiently bind and transmit human immunodeficiency virus (HIV) to cocultured T cells and so may play an important role in HIV transmission. DC-SIGN, a novel C-type lectin that is expressed in DCs, has recently been shown to bind R5 HIV type 1 (HIV-1) strains and a laboratory-adapted X4 strain. To characterize the interaction of DC-SIGN with primate lentiviruses, we investigated the structural determinants of DC-SIGN required for virus binding and transmission to permissive cells. We constructed a panel of DC-SIGN mutants and established conditions which allowed comparable cell surface expression of all mutants. We found that R5, X4, and R5X4 HIV-1 isolates as well as simian immunodeficiency and HIV-2 strains bound to DC-SIGN and could be transmitted to CD4/coreceptor-positive cell types. DC-SIGN contains a single N-linked carbohydrate chain that is important for efficient cell surface expression but is not required for DC-SIGN-mediated virus binding and transmission. In contrast, C-terminal deletions removing either the lectin binding domain or the repeat region abrogated DC-SIGN function. Trypsin-EDTA treatment inhibited DC-SIGN mediated infection, indicating that virus was maintained at the surface of the DC-SIGN-expressing cells used in this study. Finally, quantitative fluorescence-activated cell sorting analysis of AU1-tagged DC-SIGN revealed that the efficiency of virus transmission was strongly affected by variations in DC-SIGN expression levels. Thus, variations in DC-SIGN expression levels on DCs could greatly affect the susceptibility of human individuals to HIV infection.  相似文献   

2.
By superinfection of human immunodeficiency virus type 2 (HIV-2) strain HIV-2ben-infected macaques with simian immunodeficiency virus (SIV) strain SIVmac, we investigated the mutual influences of an apathogenic and a pathogenic virus in vivo. Four rhesus and two cynomolgus monkeys were infected with HIV-2ben in 1988 and 1989, respectively. Virus could be reisolated from five of six animals 6 weeks after infection. The monkeys remained healthy over the next 2 to 3 years. PCR for viral RNA became negative, and virus could no longer be reisolated by coculture. All six macaques were superinfected with the pathogenic SIVmac251/32H. Subsequently, five monkeys became persistently viremic, while one animal was protected against the SIVmac infection. In the peripheral blood mononuclear cells and cocultures of the five viremic animals, DNA from both HIV-2 and SIVmac was present. The plasma contained RNA from both viruses. Thus, superinfection with SIVmac activated HIV-2. A proliferative T-cell response against both HIV-2 and SIVmac was measured in all animals after superinfection. Such a response was regularly seen after infection with the apathogenic HIV-2 but never when the pathogenic SIVmac alone was administered. While naive control monkeys inoculated with SIVmac251/32H regularly develop AIDS-like symptoms soon after infection and have to be killed, none of the preinfected animals has developed AIDS-like symptoms, but two of six animals developed tumors. After the SIVmac challenge, however, apoptotic lymphocytes were detected in the peripheral blood mononuclear cells of all animals. Thus, the presence of an apathogenic viral variant seems to retard the disease occurring after infection with a pathogenic virus rather than to confirm total protection. This partial protection appears to depend on a specific proliferative T-cell response early after infection.  相似文献   

3.
Human cell lines were infected with different strains of human immunodeficiency virus types 1 and 2 (HIV-1 and HIV-2) as well as with a simian immunodeficiency virus SIVmac isolate and used as targets in an antibody-dependent cellular cytotoxicity (ADCC) assay. Sera from HIV-1- or HIV-2-infected subjects provided the antibody, and lymphocytes from normal donors provided the effector cells. About 60% of HIV-1 antibody-positive sera mediated ADCC when tested against any given HIV-1 isolate-infected target cell (human T-cell lymphotropic virus type IIIB, B40, A2587), and about 75% of HIV-2 antibody-positive sera mediated ADCC when tested against target cells infected with HIV-2 isolates (lymphadenopathy-associated virus type 2 and SBL-6669) or simian immunodeficiency virus from macaques. Within each type, individual sera showed different reactivity patterns, and the probability that a serum was ADCC positive was higher when it was tested against several strains. When the ADCC reactivity of sera against different strains was compared, diversity as detected by ADCC appeared to be greater among HIV-1 strains than among HIV-2 strains. For HIV-1, 54 to 67% of the sera gave concordant ADCC reactions, whereas for HIV-2 and SIVmac, 91% of the sera gave concordant results. Almost no strain-specific differences were seen between SBL-6669 and lymphadenopathy-associated virus type 2. As we determined previously, HIV-1 and HIV-2 did not cross-react in ADCC. The results indicated that HIV-1 and HIV-2 antibody-positive sera mediate both strain- and type-specific ADCC. HIV-2 antibody-positive sera seem to mediate ADCC with broader reactivity and to a higher frequency compared with HIV-1 antibody-positive sera.  相似文献   

4.
We demonstrate that trans-dominant negative rev mutants are able to suppress simian immunodeficiency virus provirus replication in both transient cotransfection assays and stably transduced HUT 78 cells. These studies suggest that the efficacy of trans-dominant rev strategies in reducing viral burden may be evaluated in a simian immunodeficiency virus-rhesus macaque animal model.  相似文献   

5.
Simian immunodeficiency virus from rhesus macaques (SIVmac), like human immunodeficiency virus type 1 (HIV-1), encodes a transactivator (tat) which stimulates long terminal repeat (LTR)-directed gene expression. We performed cotransfection assays of SIVmac and HIV-1 tat constructs with LTR-CAT reporter plasmids. The primary effect of transactivation for both SIVmac and HIV-1 is an increase in LTR-directed mRNA accumulation. The SIVmac tat gene product partially transactivates an HIV-1 LTR, whereas the HIV-1 tat gene product fully transactivates an SIVmac LTR. Significant transactivation is achieved by the product of coding exon 1 of the HIV-1 tat gene; however, inclusion of coding exon 2 results in a further increase in mRNA accumulation. In contrast, coding exon 2 of the SIVmac tat gene is required for significant transactivation. These results imply that the tat proteins of SIVmac and HIV-1 are functionally similar but not interchangeable. In addition, an in vitro-generated mutation in SIVmac tat disrupts splicing at the normal splice acceptor site at the beginning of coding exon 2 and activates a site approximately 15 nucleotides downstream. The product of this splice variant stimulates LTR-directed gene expression. This alternative splice acceptor site is also used by a biologically active provirus with an efficiency of approximately 5% compared with the upstream site. These data suggest that a novel tat protein is encoded during the course of viral infection.  相似文献   

6.
At present it is not known which form of immunity would be most effective against infection with human immunodeficiency virus (HIV). To evaluate the possible role of cellular immunity, we examined whether four HIV type 2-exposed but seronegative macaques developed cellular immune responses and determined whether these exposed macaques were resistant to mucosal transmission of simian immunodeficiency virus (SIV). Following intrarectal challenge with SIV, 2 monkeys were protected against detectable SIV replication and another showed suppressed viral replication compared to 14 persistently infected controls. The two protected monkeys demonstrated SIV-specific cytotoxic T lymphocytes before as well as after SIV challenge. Here we provide evidence that activation of the cell-mediated arm of the immune system only, without antibody formation, can control SIV replication in macaques. The results imply that vaccines that stimulate a strong and broad cellular immune response could prevent mucosal HIV transmission.  相似文献   

7.
An 80-kilodalton glycoprotein (gp80) was produced in human immunodeficiency virus type 2 (HIV-2)-infected cells along with three envelope glycoproteins that we have recently reported: the extracellular glycoprotein (gp125), the envelope glycoprotein precursor (gp140), and the transient dimeric form of the precursor (gp300). gp125 and gp80 were detectable after the synthesis of gp140 and the formation of gp300. Using a specific monoclonal antibody, we showed here that gp80 is a dimeric form of the transmembrane glycoprotein gp36 of HIV-2. Dimerization of the envelope glycoprotein precursor and dimeric forms of the transmembrane glycoproteins were also observed in cells infected with simian immunodeficiency virus (SIV-mac), a virus closely related to HIV-2. Under routine conditions of our experiments (i.e., extraction by 1% Triton X-100 before polyacrylamide gel electrophoresis in sodium dodecyl sulfate [SDS]), monomeric forms of the transmembrane glycoprotein of HIV-2 and SIV-mac were only seldomly observed. Dimeric forms of the envelope precursors and the transmembrane glycoproteins are probably stabilized by extraction in the nonionic detergent Triton X-100 since such dimeric forms resist dissociation during subsequent electrophoresis in the presence of the ionic detergent SDS. However, the dissociation of these dimeric forms might occur when samples are prepared by extraction directly in 1% SDS or by incubation of the purified dimers at acidic pH. Dimerization of the envelope precursor might be required for its processing to give the mature envelope proteins, whereas the transmembrane dimer might be essential for optimal structure of the virion and thus its infectivity.  相似文献   

8.
We constructed ten mutants of simian immunodeficiency virus isolated from African green monkey (SIVAGM), and nine mutants of human immunodeficiency virus type 2 (HIV-2) in vitro. Their infectivity, cytopathogenicity, transactivation potential, virus RNA, and protein synthesis were examined by transfection and infection experiments. Mutations in three structural (gag, pol, env) and two regulator (tat, rev) genes abolished the infectivity of both viruses, but vpx, vpr (HIV-2), and nef were dispensable and mutant viruses were indistinguishable phenotypically from wild type virus. A vif mutant of HIV-2 showed poor infectivity in cell-free condition, whereas SIVAGM mutants grew equally well with wild type virus. In transient transfection assays, rev mutants derived from both viruses produced mainly small mRNA species and no detectable virus proteins and particles. Transactivation potential of tat mutants originated from both viruses was about three- to ten-fold less than that of respective wild type DNAs, generating small amounts of virus.  相似文献   

9.
Human and simian immunodeficiency-associated retroviruses are extraordinarily complex, containing at least five genes, tat, art, sor, R, and 3' orf, in addition to the structural genes gag, pol, and env. Recently, nucleotide sequence analysis of human immunodeficiency virus type 2 (HIV-2) and simian immunodeficiency virus SIVMAC revealed the existence of still another open reading frame, termed X, which is highly conserved between these two viruses but absent from HIV-1. In this report, we demonstrate for the first time that the X open reading frame represents a functional retroviral gene in both HIV-2 and SIVMAC and that it encodes a virion-associated protein of 14 and 12 kilodaltons, respectively. We also describe the production of recombinant TrpE/X fusion proteins in Escherichia coli and show that sera from some HIV-2-infected individuals specifically recognize these proteins.  相似文献   

10.
A T-lymphoid cell line termed 221 was derived from a rhesus monkey infected with herpesvirus saimiri. Growth of 221 cells was dependent on the addition of interleukin-2 (IL-2) to the culture medium. In the absence of IL-2, 221 cells arrested in G0-G1 but did not die. Simian immunodeficiency virus (SIV) replicated efficiently in IL-2-stimulated 221 cells whether or not the nef gene was present. In the absence of IL-2, nef-containing SIV replicated 8 to 100 times more efficiently in 221 cells than did the same virus lacking nef. nef-containing virus preferentially stimulated the production of IL-2 from 221 cells. HIV-1 nef and v-ras genes, but not the c-ras gene, were shown to substitute functionally for SIV nef when tested as recombinant viruses in this assay system. These results demonstrate a role for natural nef in causing lymphoid cell activation, and they provide a system for delineating the biochemical mechanisms responsible for this activation.  相似文献   

11.
12.
Human immunodeficiency virus type 2 (HIV-2)/simian immunodeficiency virus SIVSM Vpx is incorporated into virion particles and is thus present during the early steps of infection, when it has been reported to influence the nuclear import of viral DNA. We recently reported that Vpx promoted the accumulation of full-length viral DNA following the infection of human monocyte-derived dendritic cells (DCs). This positive effect was exerted following the infection of DCs with cognate viruses and with retroviruses as divergent as HIV-1, feline immunodeficiency virus, and even murine leukemia virus, leading us to suggest that Vpx counteracted an antiviral restriction present in DCs. Here, we show that Vpx is required, albeit to a different extent, for the infection of all myeloid but not of lymphoid cells, including monocytes, macrophages, and monocytoid THP-1 cells that had been induced to differentiate with phorbol esters. The intracellular localization of Vpx was highly heterogeneous and cell type dependent, since Vpx localized differently in HeLa cells and DCs. Despite these differences, no clear correlation between the functionality of Vpx and its intracellular localization could be drawn. As a first insight into its function, we determined that SIVSM/HIV-2 and SIVRCM Vpx proteins interact with the DCAF1 adaptor of the Cul4-based E3 ubiquitin ligase complex recently described to associate with HIV-1 Vpr and HIV-2 Vpx. However, the functionality of Vpx proteins in the infection of DCs did not strictly correlate with DCAF1 binding, and knockdown experiments failed to reveal a functional role for this association in differentiated THP-1 cells. Lastly, when transferred in the context of a replication-competent viral clone, Vpx was required for replication in DCs.  相似文献   

13.
Primate lentiviruses have narrow host ranges, due in part to their sensitivities to mammalian intracellular antiviral factors such as APOBEC3G and TRIM5alpha. Despite the protection provided by this innate immune system, retroviruses are able to transfer between species where they can cause disease. This is true for sooty mangabey simian immunodeficiency virus, which has transferred to humans as HIV-2 and to rhesus macaques as SIVmac, where it causes AIDS. Here we examine the sensitivities of the closely related HIV-2 and SIVmac to restriction by TRIM5alpha. We show that rhesus TRIM5alpha can restrict HIV-2 but not the closely related SIVmac. SIVmac has not completely escaped TRIM5alpha, as shown by its sensitivity to distantly related TRIM5alpha from the New World squirrel monkey. Squirrel monkey TRIM5alpha blocks SIVmac infection after DNA synthesis and is not saturable with restriction-sensitive virus-like particles. We map the determinant for TRIM5alpha sensitivity to the structure in the capsid protein that recruits CypA into HIV-1 virions. We also make an SIV, mutated at this site, which bypasses restriction in all cells tested.  相似文献   

14.
15.
In an in vitro assay employing reconstituted nuclei, importin 7 (IPO7) has been implicated in nuclear translocation of human immunodeficiency virus type 1 (HIV-1) cDNA. Using RNA interference technology, we inhibited expression of IPO7 by 80 to 95% in primary macrophages and in HeLa cells and monitored their ability to support HIV-1 and simian immunodeficiency virus (SIV) cDNA synthesis, nuclear translocation, and infection efficiency. Marked IPO7 deficiency did not alter the rate or extent of HIV-1 or SIV cDNA synthesis or nuclear translocation. The infection efficiency of HIV-1 was similarly unaltered. Therefore, in natural, nondividing targets of HIV-1, IPO7 may be dispensable for infection.  相似文献   

16.
We have investigated the in vivo pathogenic properties of two molecularly cloned strains of human immunodeficiency virus type 1 (HIV-1), HIV-1NL4-3 and HIV-1JR-CSF, in human fetal thymus/liver implants in severe combined immunodeficient mice. Studies comparing their in vivo replication kinetics and abilities to induce CD4+ thymocyte depletion were performed. HIV-1NL4-3 replicated in vivo with faster kinetics and induced greater levels of CD4+ thymocyte depletion than did HIV-1JR-CSF. These results demonstrate that different viral isolates have different pathogenic properties in this system. In the SCID-hu model, this pathogenesis most likely occurs in the absence of an immune response. Therefore, we investigated whether the absence of immune selection resulted in extensive genetic variation and the generation of viral quasispecies. To this end, DNA corresponding to the fourth variable domain region of the viral envelope gp120 protein recovered from biopsy samples at 6 weeks postinfection was sequenced. Little genetic variation was noted in either HIV-1JR-CSF- or HIV-1NL4-3-infected implants. The mutation levels demonstrated in both viral strains were more reflective of the acute rather than the chronic phase of HIV-1 infection in humans. These results suggest that the SCID-hu mouse model can be used to study the in vivo pathogenicity of different HIV-1 isolates in the absence of host immune selective pressures.  相似文献   

17.
Seven new human immunodeficiency virus type 2 (HIV-2) isolates (CBL-20 to CBL-26) from The Gambia were characterized. Their cytopathogenicity and growth in vitro correlated with the severity of clinical disease. CBL-22 was highly sensitive to neutralization by HIV-2 sera and was cross-neutralized by some HIV-1 sera. These findings, the differing sizes of envelope glycoproteins of individual isolates, and the sequence analysis of amplified regions of the viral DNAs show that these HIV-2 isolates from one geographical region in West Africa exhibit biological and genome variability comparable to that observed for HIV-1.  相似文献   

18.
Two of 25 healthy pet sooty mangabey (SM) monkeys (Cercocebus atys) living in West Africa were seropositive by immunoblot when surveyed for antibody to simian immunodeficiency virus of macaques (SIVmac). SIVsmLIB1 was isolated from one of the pet sooty mangabeys. Nucleotide sequence data showed that this isolate is a member of the SIVsm/human immunodeficiecy virus type 2 (HIV-2)/SIVmac group of primate lentiviruses. Furthermore, sequence comparisons revealed extensive genetic diversity among SIVsm isolates similar to that observed previously in SIV isolates from naturally infected African green monkeys. These observations provide additional evidence for monkey-human cross-species transmission of SIVsm as the source of HIV-2 infection of human.  相似文献   

19.
The nef gene of the pathogenic simian immunodeficiency virus (SIV) 239 clone was replaced with primary human immunodeficiency virus type 1 (HIV-1) nef alleles to investigate whether HIV-1 Nef can substitute for SIV Nef in vivo. Initially, two rhesus macaques were infected with the chimeric viruses (Nef-SHIVs). Most of the nef alleles obtained from both animals predicted intact open reading frames. Furthermore, forms containing upstream nucleotide substitutions that enhanced expression of the inserted gene became predominant. One animal maintained high viral loads and slowly progressed to immunodeficiency. nef long terminal repeat sequences amplified from this animal were used to generate a second generation of Nef-SHIVs. Two macaques, which were subsequently infected with a mixture of cloned chimeric viruses, showed high viral loads and progressed to fatal immunodeficiency. Five macaques received a single molecular clone, named SHIV-40K6. The SHIV-40K6 nef allele was active in CD4 and class I major histocompatibility complex downregulation and enhanced viral infectivity and replication. Notably, all of the macaques inoculated with SHIV-40K6 showed high levels of viral replication early in infection. During later stages, however, the course of infection was variable. Three animals maintained high viral loads and developed immunodeficiency. Of the remaining two macaques, which showed decreasing viral loads after the acute phase of infection, only one efficiently controlled viral replication and remained asymptomatic during 1.5 years of follow-up. The other animal showed an increasing viral load and developed signs of progressive infection during later stages. Our data demonstrate that HIV-1 nef can, to a large extent, functionally replace SIVmac nef in vivo.  相似文献   

20.
Zhang Y  Lou B  Lal RB  Gettie A  Marx PA  Moore JP 《Journal of virology》2000,74(15):6893-6910
We have used coreceptor-targeted inhibitors to investigate which coreceptors are used by human immunodeficiency virus type 1 (HIV-1), simian immunodeficiency viruses (SIV), and human immunodeficiency virus type 2 (HIV-2) to enter peripheral blood mononuclear cells (PBMC). The inhibitors are TAK-779, which is specific for CCR5 and CCR2, aminooxypentane-RANTES, which blocks entry via CCR5 and CCR3, and AMD3100, which targets CXCR4. We found that for all the HIV-1 isolates and all but one of the HIV-2 isolates tested, the only relevant coreceptors were CCR5 and CXCR4. However, one HIV-2 isolate replicated in human PBMC even in the presence of TAK-779 and AMD3100, suggesting that it might use an undefined, alternative coreceptor that is expressed in the cells of some individuals. SIV(mac)239 and SIV(mac)251 (from macaques) were also able to use an alternative coreceptor to enter PBMC from some, but not all, human and macaque donors. The replication in human PBMC of SIV(rcm) (from a red-capped mangabey), a virus which uses CCR2 but not CCR5 for entry, was blocked by TAK-779, suggesting that CCR2 is indeed the paramount coreceptor for this virus in primary cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号