首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biotic and abiotic factors that influence the avian distribution in a dry zone wetland was investigated by studying the distribution of Asian Openbill (Anastomus oscitans), Cotton Pygmy-goose (Nettapus coromandelianus) and Pheasant-tailed Jacana (Hydrophasianus chirurgus) in Anavilundawa Ramsar sanctuary in Sri Lanka in 2006. Their distribution was recorded in Anavilundawa, Suruwila and Maiyawa reservoirs, their catchments and respective paddy fields, through line transects. The floral cover of surface water was recorded by floating quadrates. Water lily (Nymphea spp.) was the dominant flora in Anavilundawa reservoir, invasive water hyacinth (Eichhornia crassipes) in Suruwila reservoir and a native lotus (Nelumbo nucifera) in Maiyawa reservoir, respectively. Anavilundawa area had a higher distribution of birds than in the other two areas. Among the three species observed, Asian Openbill distribution was mainly restricted to Anavilundawa whereas Pheasant-tailed Jacana was present in all three areas. Nesting of Asian Openbill occurred only in Anavilundawa while nesting of Pheasant-tailed Jacana was only observed in Maiyawa. Among the three species recorded, Cotton Pygmy-goose numbers were the least. Asian Openbill preferred dead trees and trees with no leaves for nesting and perching over live trees. It is concluded that the spread of invasives such as Water hyacinth and Salvinia (Salvinia molesta) forming mats over surface water have reduced the abundance of habitat specialists like Cotton Pygmy-goose.  相似文献   

2.
Abstract: Shrubland birds are declining throughout the eastern United States. To manage scrub-shrub habitats for birds, managers need information on avian habitat relationships. Past studies have produced contradictory results in some cases and may be of limited generality because of site- and habitat-specific factors. We studied shrubland birds across 6 habitats in 3 New England states to provide more general information on habitat relationships than has been possible in past studies. Our study sites included all major scrub-shrub habitats in New England: wildlife openings, regenerating clear-cuts, beaver ponds, utility rights-of-way, pitch pine (Pinus rigida) woodlands, and scrub oak (Quercus ilicifolia) barrens and ranged from Connecticut to northern New Hampshire, with research conducted from 2002 to 2007. Using N-mixture models of repeated point counts, we found that 6 of 12 shrubland birds preferred areas with greater shrub cover. An additional 4 species appeared to prefer areas with lower-stature vegetation and greater forb cover. Eight of 10 bird species showed relationships with cover of individual plant species, with Spiraea spp., willows (Salix spp.), alders (Alnus spp.), and invasive exotics being the most important. We recommend that shrubland management for birds focus on providing 2 distinct habitats: 1) areas of tall (>1.5 m) vegetation with abundant shrub cover and 2) areas of lower (<1.5 m) vegetation with abundant forb cover but fewer shrubs.  相似文献   

3.
Shaded coffee agroecosystems traditionally have few pest problems potentially due to higher abundance and diversity of predators of herbivores. However, with coffee intensification (e.g., shade tree removal or pruning), some pest problems increase. For example, coffee leaf miner outbreaks have been linked to more intensive management and increased use of agrochemicals. Parasitic wasps control the coffee leaf miner, but few studies have examined the role of predators, such as ants, that are abundant and diverse in coffee plantations. Here, we examine linkages between arboreal ant communities and coffee leaf miner incidence in a coffee plantation in Mexico. We examined relationships between incidence and severity of leaf miner attack and: (1) variation in canopy cover, tree density, tree diversity, and relative abundance of Inga spp. shade trees; (2) presence of Azteca instabilis, an arboreal canopy dominant ant; and (3) the number of arboreal twig‐nesting ant species and nests in coffee plants. Differences in vegetation characteristics in study plots did not correlate with leaf miner damage perhaps because environmental factors act on pest populations at a larger spatial scale. Further, presence of A. instabilis did not influence presence or severity of leaf miner damage. The proportion of leaves with leaf miner damage was significantly lower where abundance of twig‐nesting ants was higher but not where twig‐nesting ant richness was higher. These results indicate that abundance of twig‐nesting ants in shaded coffee plantations may contribute to maintenance of low leaf miner populations and that ants provide important ecosystem services in coffee agroecosystems.  相似文献   

4.
We recorded 310 fresh chimpanzee night nests at 72 nest sites to determine their choice of tree and site for nesting vis-à-vis the effects of sympatric gorillas. Chimpanzees did not use trees for nesting according to their abundance, but instead tended to nest in fruit trees that they used as food sources. Nesting patterns of chimpanzees may vary with nesting group size, the type of vegetation, and fruit species eaten or not eaten by gorillas. When chimpanzees lodged as a small group in the secondary forest, they nested more frequently in trees bearing ripe fruits eaten only by themselves than in those with fruit eaten also by gorillas. When they lodged as a large group in the primary forest, they nested more frequently in trees bearing ripe fruits eaten by both apes. Nest group size is positively correlated with the availability of preferred ripe fruits in secondary forest. These findings not only reflect the larger foraging groups at the larger fruiting trees but also suggest that chimpanzees may have tended to occupy fruiting trees effectively by nesting in them and by forming large nest groups when the fruits attracted gorillas. Competition over fruits between gorillas and chimpanzees, due to their low productivity in the montane forest of Kahuzi, may have promoted the chimpanzee tactics.  相似文献   

5.
Stacy M. Philpott 《Oikos》2010,119(12):1954-1960
One commonly studied driver of community assembly is the effect of dominant species on subordinate species. Dominant species may impact community assembly during competitive sorting, or recruitment. For ants, important and abundant species in the tropics, several factors may drive community assembly including competition, dispersal, priority effects, and environmental conditions. Although competition is a hallmark of ant ecology, few have examined the influence of patchily distributed dominant ants on other ant species and diversity, especially at the recruitment stage. Here, I consider the impacts of a canopy dominant ant species, Azteca instabilis, and changes in vegetation on twig‐nesting ant colony founding and ant community assembly in a coffee agroecosystem. I added artificial nests to coffee plants in areas with and without A. instabilis four times over a year, and then examined the occupation rate and identity of species colonizing nests. I also examined vegetation characteristics of sites where nests were added. The presence of A. instabilis on coffee plants drastically lowered colonization rates, but nest occupation increased with tree density, and with decreasing proportion of Inga spp. trees in the canopy. The presence of A. instabilis limited the number of nests occupied by six of the ten most common species; most rare species, however, were not affected by A. instabilis presence. Richness of colonizing ants in areas with A. instabilis was lower, but these effects did not significantly affect richness across broader scales. Despite large effects on individual species, species composition did not differ greatly in areas with and without A. instabilis, but some vegetation characteristics (basal area and tree richness) were predictive of ant composition. These results suggest that A. instabilis strongly affects founding events especially for common twig‐nesting species and that both vegetation and influences from this dominant species affect community assembly of twig‐nesting ants at the local scale.  相似文献   

6.
Three species of Elodea (Elodea canadensis Michaux, E. nuttallii St John and E. ernstiae St John) have colonized Europe from the American continent. All three arrived in the Alsatian Rhine floodplain (north-eastern France) soon after their arrival in Europe, i.e. in the mid-19th century for E. canadensis, and in the mid-20th century for E. nuttallii and E. ernstiae. The paper investigates the present distribution of Elodea spp. in the floodplain by quantifying the species’ respective occurrences and by describing their habitats. The study further focuses on E. nuttallii which is presently colonizing other parts of Europe. It analyses whether it has continued to expand in the Alsatian Rhine floodplain during recent decades, and it checks whether changes in the abundance of E. nuttallii have had an impact on species richness of water plant communities. E.␣nuttallii has been found to be at present one of the most dominant and most frequent aquatic plant species in the study sector, while E. canadensis and E. ernstiae are less abundant. The species’ distributions differ with regard to water chemistry and water temperature: E. canadensis occurs in oligo-mesotrophic, rather stenothermic habitats, whereas E. nuttallii and E. ernstiae can be encountered in meso- to eutrophic sites with little or no arrival of stenothermic ground water. By comparing successive vegetation relevés from the same sites the study revealed further that the distribution of E. nuttallii has been stable in recent decades, despite local fluctuations in abundance. No relationship could be established between those fluctuations and changes in species richness or type of local plant communities. The sum of the results suggests that the expansion of E. nuttallii in the Alsatian Rhine floodplain had been completed prior to the study period. The species’ present distribution in the study sector as well as its position in local plant communities might therefore be considered a model for what can be expected to happen in areas where E.nuttallii has only recently arrived.  相似文献   

7.
The heterogeneous vegetation mosaic of the South Turkana region of north Kenya is associated with diversity in the region's physical environment. The abundance and distribution of the dominant species are related to gradients in those abiotic factors that influence water availability, including precipitation, soil texture, and topographic relief. Research focused on three Acacia species that are a major component of the Turkana vegetation; A. tortilis, A. senegal, and A. reficiens. These species each exhibit a different response to variations in abiotic factors. Consequently, species abundance varies independently across the landscape, creating a continuum of intergrading populations. Community types can be identified within the mosaic of intergrading populations. Although community borders are not discrete due to continual change in species abundance, types are identifiable and are repeated in areas with similar environmental conditions. The landscape patterns are representative of Whittaker's (1953) climaxas-pattern, with communities created by individual patterns of populations responding to environmental gradients, creating a continuum of community change across the landscape.  相似文献   

8.
The non-indigenous perennial grass, Arundo donax, is an aggressive invader of riparian areas throughout California and many sub-tropical regions of the world, and is hypothesized to provide poorer quality habitat for native wildlife in riparian systems. We sampled aerial and ground-dwelling insects and other terrestrial arthropods associated with Arundo, native willow vegetation (Salix spp.), and mixtures of the two vegetation types during two seasons to determine how Arundo influences invertebrate composition in a low gradient stream in central California. The total number of organisms, total biomass and taxonomic richness of aerial invertebrates associated with native vegetation was approximately twice that associated with Arundo vegetation, while mixed vegetation supported intermediate arthropod levels. Shannon-Weaver (Weiner) diversity associated with native vegetation stands was also higher than that of Arundo vegetation. Ground-dwelling assemblages did not show differences as great as aerial assemblages which are more critical to foraging avian species. These results indicate that vegetation type is a significant factor reducing the abundance and diversity of invertebrates in this, and presumably in many other riparian ecosystems where this invasive species has become a dominant component. Arundo invasion changes the vegetation structure of riparian zones and in turn, may increasingly jeopardize its habitat value for birds and other wildlife whose diets are largely composed of insects found in native riparian vegetation.  相似文献   

9.
ABSTRACT The western gray squirrel (Sciurus griseus) in Washington, USA, is limited to 3 disjunct areas and is a state threatened species. Information is lacking for the North Cascades population, which is the northernmost population for the species. Squirrels in this population exist without oaks (Quercus spp.) that provide forage and cavities for maternal nests elsewhere in their range. During May 2003 to August 2005, we studied selection of nest sites and nest trees by 18 radiocollared squirrels in Okanogan County, Washington. Without oak cavities, females reared their young in dreys. General nest-tree characteristics were similar to characteristics of western gray squirrel nest trees in Southeastern Cascades: relatively tall ponderosa pines (Pinus ponderosa) ≥ 40 cm diameter at breast height. Results from conditional logistic models determined that the odds of a squirrel selecting a tree for nesting increased with greater diameter at breast height and with infection by dwarf mistletoe (Arceuthobium spp.). Nest sites with high selection probability by squirrels had greater basal area and number of tree species than available unselected sites. Retention of forest patches that include a mix of conifer species or conifer and deciduous trees and moderate to high basal area could promote nesting opportunities, connectivity for arboreal travel, as well as abundance and diversity of hypogeous fungi. Experiments to test the efficacy of retaining untreated patches of varying size (including trees infected with mistletoe) on nesting by western gray squirrels within stands managed for fire suppression and forest health would provide important information about the effects of forest fuel management on arboreal wildlife.  相似文献   

10.
Chimpanzees (Pan troglodytes) are well-known to eat invertebrates, especially social insects, across Africa, but allopatric bonobos (P. paniscus) are not. Bonobo insectivory is sparsely documented and apparently sporadic. However, the availability to bonobos of social insect prey and raw materials with which to make tools to exploit them is unknown. Here, we test a set of hypotheses that relates to questions of presence, abundance, density, and distribution of taxa that Pan consume and of vegetation suitable for making extractive foraging tools. We worked at Lui Kotal, Democratic Republic of Congo, where unprovisioned bonobos live in intact forest, far from villages. We collected insect and fecal specimens, transected for prey and assessed raw materials, and monitored mounds of Macrotermes. All but 1 of the major taxa of relevant termites, ants, and (stinging) honey bees were present. The 3 main taxa of insects that chimpanzees elsewhere eat —Macrotermes (fungus-growing termites), Dorylus (Anomma; army or driver ants), and Apis (honey bees)— were abundant and widespread, and usually at densities exceeding those at well-known chimpanzee study-sites. Similarly, woody and nonwoody vegetation suitable for making fishing probes was common at mounds of Macrotermes. There is no obvious ecological reason why bonobos should not use elementary technology in extractive foraging, e.g., termite-fish, ant-fish, ant-dip, honey-dip, to obtain social insects.  相似文献   

11.
Abstract: Lowland riparian vegetation in the southwestern United States is critically important for maintaining a high richness and density of breeding birds. Further investigation is needed within riparian corridors, however, to evaluate the relative importance of vegetation type and hydrologic regime for avian density and nest survival as targets for regional conservation or restoration efforts. We estimated the densities of 40 bird species and for species grouped on the basis of nest height and dependence on surface water in gallery cottonwood–willow (Populus spp.–Salix spp.) forests, saltcedar (Tamarix spp.) shrub lands, and terrace vegetation types along a gradient in the hydrologic regime of the San Pedro River, Arizona, USA. We also assessed nest survival for shrub-nesting insectivores and herbivores. Canopy-nesting birds as a group and 14 individual bird species reached their greatest densities in cottonwood forests regardless of the hydrologic regime. Water-dependent birds as a group reached their highest density in both intermittent- and perennial-flow cottonwood stands, but certain species occurred almost exclusively in perennial-flow sites. Two shrub-nesting species and the brown-headed cowbird (Molothrus ater) were most abundant in saltcedar shrub lands, and the brown-headed cowbird was most abundant in saltcedar stands with intermittent flows. Mesquite (Prosopis spp.) and big sacaton (Sporobolus wrightii) grassland each maintained the highest densities of certain species within ≥1 hydrologic regime. Shrub-nesting insectivores had the greatest nest survival in cottonwood, including Arizona Bell's vireo (Vireo bellii arizonae), and also had lower proportions of nests parasitized and preyed upon, although 95% confidence intervals among vegetation types overlapped. Nest survival for both shrub-nesting insectivores and herbivores was lowest in intermittent-flow saltcedar, although, again, confidence intervals overlapped. Nest survival was lower in parasitized than nonparasitized nests in mesquite and across vegetation types for Arizona Bell's vireo and in cottonwood for Abert's towhee (Pipilo aberti). Riparian management that maintains heterogeneous riparian vegetation types, including floodplain vegetation comprising cottonwood–willow gallery riparian forests with some stretches of perennial flow, are important for maintaining the high diversity and abundance of breeding birds on the San Pedro River and probably across the region. Cottonwood stands also appear to maintain highest nest survival for some shrub-nesting birds.  相似文献   

12.
ABSTRACT Dense nesting cover (DNC) has been a conspicuous component of habitat management for upland-nesting ducks for >30 years, but its benefits for nesting ducks have been contentious. During 1994–1999 we monitored 3,058 dabbling duck (Anas spp.) nests in 84 DNC fields located throughout the Canadian Parklands to examine sources of among-field variation in nest density and nesting success. Nest density averaged 1.51 (SE=0.15) nests/ha and overall nesting success was 20.4%, but there was pronounced annual variation in both estimates. Nesting success increased with increasing field size (range = 6–111 ha), but nest density remained constant. Nest density increased with percent wetland habitat within DNC fields and declined with percent perennial cover in the surrounding 2.4 × 2.4-km landscape, but these variables were not important for predicting nesting success. Nest abundance and nesting success roughly doubled in fields seeded with alfalfa (Medicago sativa) or sweet clovers (Melilotus spp.), but there was no benefit from using native as opposed to tame grasses. We recommend that waterfowl managers in the Canadian Parklands establish DNC with alfalfa in large fields in landscapes with abundant wetlands but minimal competing cover.  相似文献   

13.
Isolated trees have distinctive economic, social and cultural value for the Betsileo people living on the edge of the protected forest corridor between Ranomafana and Andringitra national parks, in South-East Madagascar. Many of these trees are Ficus spp., traditionally protected and respected. At the landscape level, they are isolated features in a heterogeneous mosaic, providing fruit, shade and aesthetic services in open cultivated areas. Within the current management system, isolated trees may also contribute significantly to the provision of ecological services by enhancing bird diversity in open areas outside the forest. We identified practices and values linked to isolated tree uses and management through ethnographic data collection. Bird presence and abundance were sampled by 338 point counts in isolated trees and open areas of the agricultural mosaic. Isolated trees were occupied by 18 out of 32 (56%) bird species in the agricultural mosaic, including 8 (25%) endemic forest species. Endemic forest birds were significantly more numerous in isolated trees than in open habitats, both in species richness and abundance (mean P value < 0.001). Overall bird species richness was significantly higher in open areas containing isolated trees, than in areas without isolated trees. Bird species richness in Ficus spp. was significantly higher than in other isolated tree species, although no differences were detected in abundance or within guilds. Community-based management of isolated trees may thus represent an opportunity for convergence between bird conservation goals outside protected areas and local management values and practices.  相似文献   

14.
The silver maple-American elm floodplain forest spans throughout the floodplains of the Upper Mississippi River System (UMRS). These forests of the UMRS today are less diverse than those of pre-European expansion (ca. early 1800s). Scientists and land managers are concerned about loss of species diversity including mast species such as pin oak (Quercus palustris Muenchh.), swamp white oak (Quercus bicolor Willd.), bur oak (Quercus macrocarpa Michx. Q), pecan (Carya illinoinensis (Wangenh.) K. Koch), and other hickories. The Great Midwest Flood of 1993 maintained species diversity in the lower, unimpounded region of the Upper Mississippi River, providing an opportunity for eastern cottonwood and black willow to regenerate in this portion of the Mississippi River. However, throughout the entire region, floodplain forests of the Upper Mississippi River have become less diverse, and have become dominated by the flood-tolerant and shade-tolerant silver maple (Acer saccharinum L.). The imminent loss of green ash (Fraxinus pennsylvanica Marsh.) to the Emerald Ash Borer (Agrilus planipennis Fairmaire) follows an already changing forest structure due to a disease-related shift of American elm (Ulmus americana L.) from the overstory to the midstory strata. Another invasive, reed canary grass (Phalaris arundinaceae L.), interferes with evolved mechanisms for establishment as it outcompetes trees of the early successional floodplain forest. Further research is needed to create and maintain diverse floodplain forest communities that have been lost under current conditions. Returning flood-prone agricultural lands within the floodplain to the floodplain forest will improve the health and connectivity of the river system, increase the diversity of habitats, and provide flood relief for communities of the Upper Mississippi River.  相似文献   

15.
Clibadium L. (Asteraceae, Heliantheae) is a genus of 29 species distributed throughout latin America, from Mexico to Peru, and in the West Indies, with high numbers of species in Costa Rica, Colombia, and Ecuador.Clibadium includes shrubs and small trees; usually with loosely aggregated capitula; herbaceous phyllaries arranged in 1–5 series; receptacles usually paleaceous throughout; corollas of pistillate florets 2–4-lobed; corollas of the staminate florets 4–5-lobed; purple to black anthers; and chromosome numbers alln=16. Two sections of species previously recognized are here considered as subgenera (subg.Paleata and subg.Clibadium) containing two and four sections, respectively.Clibadium subg.Paleata contains five species distributed in sects.Eggersia (3 spp.) andTrixidium (2 spp.), and subg.Clibadium has 24 species distributed among sects.Clibadium (6 spp.),Glomerata (9 spp.),Grandifolia (5 spp.), andOswalda (4 spp.).  相似文献   

16.
Question: How does the vegetation of boreal forests respond to harvesting and scarification? Location: 650 m a.s.l., central Sweden (61°38’ N). Methods: The response of boreal forest vegetation to cutting and scarification was studied in a field trial, which consisted of three treatments plus conventional harvesting as a control in a complete block design with four replicates. The cutting was done 14 years prior to vegetation inventory and scarification and planting were conducted the first or second years after cutting. Results: The species most abundant at higher cutting intensities were crustose lichens, Cladonia spp., Cladina arbuscula, Polytrichum spp. and pioneer mosses, the grass Deschampsia flexuosa, and the tree Betula pubescens, A few species had substantially lower abundance in treatments with higher cutting intensity, notably Hylocomium splendens and Vaccinium myrtillus. Scarification had a strong effect that was different from the one created by cutting. In scarification treatments, Polytrichum spp. were the only species with high abundance; most species had low abundance, i.e. Barbilophozia lycopodioides, Vaccinium vitis‐idaea, Pleurozium schreberi, Carex globularis, Empetrum nigrum, Cladina arbuscula, Sphagnum spp. Conclusions: Our results elaborate on the details of the well‐known effect of cutting on ground‐layer flora, and also give support for the profound and long‐lasting effect that soil scarification has on forest vegetation.  相似文献   

17.
1. Riparian vegetation in dry regions is influenced by low‐flow and high‐flow components of the surface and groundwater flow regimes. The duration of no‐flow periods in the surface stream controls vegetation structure along the low‐flow channel, while depth, magnitude and rate of groundwater decline influence phreatophytic vegetation in the floodplain. Flood flows influence vegetation along channels and floodplains by increasing water availability and by creating ecosystem disturbance. 2. On reference rivers in Arizona's Sonoran Desert region, the combination of perennial stream flows, shallow groundwater in the riparian (stream) aquifer, and frequent flooding results in high plant species diversity and landscape heterogeneity and an abundance of pioneer wetland plant species in the floodplain. Vegetation changes on hydrologically altered river reaches are varied, given the great extent of flow regime changes ranging from stream and aquifer dewatering on reaches affected by stream diversion and groundwater pumping to altered timing, frequency, and magnitude of flood flows on reaches downstream of flow‐regulating dams. 3. As stream flows become more intermittent, diversity and cover of herbaceous species along the low‐flow channel decline. As groundwater deepens, diversity of riparian plant species (particularly perennial species) and landscape patches are reduced and species composition in the floodplain shifts from wetland pioneer trees (Populus, Salix) to more drought‐tolerant shrub species including Tamarix (introduced) and Bebbia. 4. On impounded rivers, changes in flood timing can simplify landscape patch structure and shift species composition from mixed forests composed of Populus and Salix, which have narrow regeneration windows, to the more reproductively opportunistic Tamarix. If flows are not diverted, suppression of flooding can result in increased density of riparian vegetation, leading in some cases to very high abundance of Tamarix patches. Coarsening of sediments in river reaches below dams, associated with sediment retention in reservoirs, contributes to reduced cover and richness of herbaceous vegetation by reducing water and nutrient‐holding capacity of soils. 5. These changes have implications for river restoration. They suggest that patch diversity, riparian plant species diversity, and abundance of flood‐dependent wetland tree species such as Populus and Salix can be increased by restoring fluvial dynamics on flood‐suppressed rivers and by increasing water availability in rivers subject to water diversion or withdrawal. On impounded rivers, restoration of plant species diversity also may hinge on restoration of sediment transport. 6. Determining the causes of vegetation change is critical for determining riparian restoration strategies. Of the many riparian restoration efforts underway in south‐western United States, some focus on re‐establishing hydrogeomorphic processes by restoring appropriate flows of surface water, groundwater and sediment, while many others focus on manipulating vegetation structure by planting trees (e.g. Populus) or removing trees (e.g. Tamarix). The latter approaches, in and of themselves, may not yield desired restoration outcomes if the tree species are indicators, rather than prime causes, of underlying changes in the physical environment.  相似文献   

18.
The population dynamics of potentially harmful phytoplankton in the semi-closed, coastal Bizerte Lagoon, Tunisia, in the south-western Mediterranean, were examined from November 2007 to February 2009 at six sampling stations, three situated in areas of mussel and oyster farming. The harmful species monitored included the potential producers of amnesic shellfish poisoning (Pseudo-nitzschia spp.), paralytic shellfish poisoning (Alexandrium spp.), diarrheic shellfish poisoning (Dinophysis spp. and Prorocentrum spp.), ichthyotoxins (Cochlodinium polykrikoides, Akashiwo sanguinea and Karenia mikimotoi), yessotoxins (Gonyaulax spinifera) and the discolouration of water (Neoceratium lineatum and Protoperidinium sp.). These were numerically dominated by potentially toxic species of the diatom genus Pseudo-nitzschia, which were present year-round at all stations. Prorocentrum spp., Dinophysis spp. and Neoceratium lineatum were the most abundant and recurrent harmful dinoflagellates, exhibiting their highest densities at the shellfish farming stations. Alexandrium spp. bloomed only on one occasion, reaching its highest densities at a shellfish farming station. Canonical correspondence analyses revealed significant relationships between the harmful phytoplankton species monitored and the environmental conditions. The widespread distribution of harmful phytoplankton in Bizerte Lagoon, with the permanent presence of Pseudo-nitzschia spp. and the high frequency of dinoflagellate blooms in the shellfish areas, suggests a potential risk of shellfish poisoning events in the region.  相似文献   

19.
Distribution and abundance of black noddy Anous minutus nests in relation to vegetation were studied at Masthead Island, Great Barrier Reef. Methods used included mapping, correlation and regression analyses. Number of nests varied significantly with height and species of tree. Taller trees contained more nests per tree than did smatter trees. Most nests occurred in Pisonia but the highest nesting densities occurred in Ficus and Celtis. There were significant positive correlations between treephxsiognomy (d.b.h. etc.) and number of nests in Pisonia, Ficus and Celtis but noddies may avoid nesting in senile trees. Noddies preferred to nest in some species of tree rather than others, e.g. Ficus and Celtis were apparently preferred to Pisonia. The sparse fotiage of Ficus and Celtis may facilitate access of noddies to their nests and therefore be preferred to the more densely foliaged Pisonia.  相似文献   

20.
The crazy ant (Anoplolepis gracilipes) invaded Bird island, Seychelles, in the 1980s. In 1997, its range expanded and population densities increased. The impacts of this change were studied in 2001 using a combination of arthropod collecting methods. The ant population excluded larger invertebrates (principally the large ant Odontomachus simillimus and the crabs, principally Ocypode spp.). Cockroaches, however, remained abundant in ant-infested areas and tree-nesting birds (Lesser Noddy Anous tenuirostris) appear to be able to breed successfully in the presence of the crazy ant. The ants are only abundant in areas of deep shade which provide cool nesting areas, yet enabling them to forage in the open when ground temperatures fall. The expansion of the ants was correlated with the regeneration of woodland on the island. Recommendations are made for the management of the woodland which may reduce the impacts of the crazy ant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号